Reinforcement
|_earning

COMP3431 Robot Software Architectures

A Simple Learning Robot

/

Reinforcement Learning

e “Stumpy’” receives a reward after each action
e Did it move forward or not?
e After each move, updates its policy

e Continues trying to maximise its reward

Pole Balancing

\

o—o

X

e Pole balancing can be learned the same way
except that reward is only received at the end

e after falling or hitting the end of the track

Boxes

e State space is discretised

* Each "box” represents a
subset of state space

* When system lands in a box,

execute action specified

* left push

* right push

VA A A A & & 4
AR

//
| =] = «| < |1 |/
== | = <_<_//
—>—>—>—><_<_///
<—<—<—<—<—<—///
— |« | « <—<—//
<—<—<—<—<—<—/

(Machine Educable Noughts and Crosses Engine — D.Michie, 1961)

M

. T F :: L m.....:.m.,m-

’

lﬂ\." — s "'

’ -
-~ e 0 S -

Bazi # .mmm.\.‘...\.\...m.%
[.__ L._\ -\L.\ L..t..?- “
| _.FE .§L 4

Simulation

X = X+ TX,
Xepp = X4 TX
0., = 9,+19t
6, = 0,+16,

F,+ m,l [6°sin®, —6, cos9,]
me+m,

X, =

, —F,—mplf),zsine,
gsin B, + cos B,

me+ mp

é‘ - 5
] 4 my, cos” 0,
3 me+ my,

Parameters

me.=1.0Kkg mass of cart

my,=1.0kg mass of pole

[=05m distance of centre of mass of pole from the pivot
g =98 ms2 acceleration due to gravity

F:=x 10N force applied to cart

t=0.02s time interval of simulation

The BOXES Algorithm

« Each box contains statistics on performance of
controller, which are updated after each failure

 How many times each action has been performed
(usage)

* The sum of lengths of time the system has
survived after taking a particular action (LifeTime)

 Each sum is weighted by a number less than one
which places a discount on earlier experience.

Update Rule

iIf an action has not been tested

choose that action

else if LeftLife . BzghtLlfe :
LeftUsage” RightUsage

choose left

k is a bias to force exploration
else eg. k=14

choose right

Performance

« BOXES is much taster than genetic algorithm

* Only 75 trials, on average, to reach 10,000 time
steps

* But only works for episodic problems
* |.e. has a specific termination

* Doesn’t work for continuous problems like Stumpy

State Transition Graph

States and Actions

Each node is a state

Actions cause transitions from one state to another
A policy is the set of transition rules

e |.e. which action to apply in a given state

Agent receives a reward after each action

Actions may be non-deterministic

e Same action may not always produce same state

Markov Decision Process
(MDP)

e Assume that current state has all the information
needed to decide which action to take

Grid World Example

Coal
Lk
0 | 0 |
0 0 0
e -) Lo T5) L T5—

ExXpected Reward

* Try to maximise expected future reward:

2
Vﬂ(st):”r"‘?”’m"‘?’ rt+2+"‘

. i
_ Z 7/ rz+i
i=0

* Vs the value of state S under policy @

e Vis a discount factor (0..1)

Q Function

How to choose an action in a state?
O(s,a)=r(s,a)+yV (0(s,a))

The Q value for an action, a, in a state, s, is the
immediate reward for the action plus the discounted
value of following the optimal policy after that

V* is value obtained by following the optimal policy

0(s,a)is the succeeding state, assuming the optimal
policy

Q Learning

initialise Q(s,a)=0 for all s and a
observe current state s
repeat
select an action a and execute 1t
observe immediate reward r and next state '

O(s,a) < r+maxQ(s',a')

5§ §'

Exploration vs Exploitation

* How do you choose an action?
« Random
* Pick the current "best” action
* Combination:
* most of the time pick the best action

* occasionally throw in random action

Background

e Reinforcement learning is based in earlier work in
optimisation: dynamic programming

e Text book: Sutton & Barto

Reinforcement Learning
Variants

 There are many variations on reinforcement
learning to improve search.

_ was one of the components of alphaGo and

phaZero, which is now the best Chess and Go
ayer in the world

C T > T

sed to learn helicopter aerobatics

