
COMP1511 - Programming
Fundamentals

Week 9 - Lecture 15

What did we learn last week?
Linked Lists

● A complete working
implementation of Linked Lists

● Inserting nodes
● Removal of nodes
● Cleaning our memory

What are we covering today?
Abstract Data Types

● A recap of Multiple File Projects
● More detail on things like typedef
● The ability to present capabilities of a type to us . . .
● . . . without exposing any of the inner workings

Recap - Multiple File Projects
Separating Code into Multiple files

● Header file (*.h) - Function Declarations
● Implementation file (*.c) - Majority of the running code
● Other files - can include a Header to use its capabilities

Separation protects data and makes functionality easier to read

● We don't have access to internal information we don't need
● We can't accidentally change something important
● We have a simple list of functions we can call

Using Multiple Files
Linking the Files

● A file that #includes the Header (*.h) file will have access to its functions
● A Header's own implementation (*.c) file will always #include it
● Implementation (*.c) files are never included!

Compilation

● All Implementation (*.c) files are compiled
● Header (*.h) files are never compiled, they're included

An Example - CS Beats
Assignment 2 - CS Beats is a nice example

beats.h

● Contains only defines, typedefs and function declarations
● Is commented heavily so that it's easy to know how to use it

beats.c

● Contains actual structs
● Contains implementation of beats.h's functions (once we've written

them)

An Example - CS Beats
How does the main file relate to the beats files?

main.c

● #includes beats.h
● Uses the functions in beats.h

Abstract Data Types
Types we can declare for a specific purpose

● We can name them
● We can fix particular ways of interacting with them
● This can protect data from being accessed the wrong way

We can hide the implementation

● Whoever uses our code doesn't need to see how it was made
● They only need to know how to use it

Typedef
Type Definition

● We declare a new Type that we're going to use
● typedef <original Type> <new Type Name>
● Allows us to use a simple name for a possibly complex structure
● More importantly, hides the structure details from other parts of the code

● We can use Library as a Type without knowing anything about the struct
underlying it

typedef struct library *Library;

Typedef in a Header file
The Header file provides an interface to the functionality

● We can put this in a header (*.h) file along with functions that use it
● This allows someone to see a Type without knowing exactly what it is
● The details go in the *.c file which is not included directly
● We can also see the functions without knowing how they work

● We are able to see the header and use the information
● We hide the implementation that we don't need to know about

An Example of an Abstract Data Type - A Stack
A stack is a very common data structure in programming

● It is a "Last in first out" structure
● You can put something on top of a stack
● You can take something off the top of a stack
● You can't access anything underneath

This is actually how functions work!
The currently running code is on the top of the stack

● main() calls function1() - only function1() is accessible
● function1() calls function2() - only function2() is accessible
● control returns to function1() when function2() returns

main() main()

function1()

main()

function1()

main()

function1()

function2()

running
function1()main running

function2()
return from
function2()

What makes it Abstract?
A Stack is an idea

● An Array or a Linked List is a very specific implementation
● A Stack is just an idea of how things should be organised
● There's a set of rules, but there's no implementation!

Abstract Data Type for a Stack

● We can have a header saying how the Stack is used
● The Implementation could use an Array or a Linked List to store the

objects in the Stack, but we wouldn't know!

Break Time
Programming Languages

● C++, Java, C# and many others are based on C
● There are too many programming languages to count or learn!

● Remember the fundamentals!
● C syntax is not as important as your plans and thinking
● You will encounter many programming languages, some will feel very

different from C in their approach
● But if you learn how you want to communicate with computers, the actual

language you use will never be a barrier for you

Let's build a Stack ADT
We're only concerned with how we'll use it, not what it's made of

● Our user will see a "Stack" rather than an Array or Linked List
● We will start with a Stack of integers
● We will provide access to certain functions:

○ Create a Stack
○ Destroy a Stack
○ Add to the Stack (known as "push")
○ Remove from the Stack (known as "pop")
○ Count how many things are in the Stack

A Header File for a Stack
// stack type hides the struct that it is implemented as
typedef struct stack_internals *Stack;

// functions to create and destroy stacks
Stack stack_create(void);
void stack_free(Stack s);

// Push and Pop items from stacks
// Removing the item returns the item for use
void stack_push(Stack s, int item);
int stack_pop(Stack s);

// Check on the size of the stack
int stack_size(Stack s);

What does our Header (not) Provide?
Standard Stack functions are available

● We can push or pop an element onto or off the Stack
● We are not given access to anything else inside the Stack!
● We cannot pop more than one element at a time
● We aren't able to loop through the Stack

The power of Abstract Data Types

● They stop us from accessing the data incorrectly!

Stack.c
Our *.c file is the implementation of the functionality

● The C file is like the detail under the "headings" in the header
● Each declaration in the header is like a title of what is implemented

● Let's start with a Linked List as the underlying data structure
● A Linked List makes sense because we can grow it and shrink it easily
● We can also look at how to implement this with arrays . . .

The implementation behind a type definition

// Stack internals holds a pointer to the start of a linked list
struct stack_internals {
 struct stack_node *head;
};

struct stack_node {
 struct stack_node *next;
 int data;
};

We can create a pair of structs

● stack_internals represents the whole Stack
● stack_node is a single element of the list

Creation of a Stack
If we want our struct to be persistent, we'll allocate memory for it

We create our Stack empty, so the pointer to the head is NULL

// Create an empty Stack
Stack stack_create(void) {
 Stack new_stack = malloc(sizeof(struct stack_internals));
 new_stack->head = NULL;
 return new_stack;
}

Pushing items onto the Stack
We push items onto the head of the Stack

● We can insert the new element at the head
● All the other elements will stay in the same

order they were in

oldest element

older element

newest element

NULL

pushed element

head

Code for Pushing

void stack_push(Stack s, int item) {
 struct stack_node *new_node = malloc(sizeof(struct stack_node));
 new_node->data = item;

 // Attach new_node to the old head and make it the new head
 new_node->next = s->head;
 s->head = new_node;
}

Adding to the head of a linked list is something we've done before

Popping (removing) a Node
The only node that can be popped is the head
(the top of the stack)

oldest element

older element

newest element

NULL

head

Remove this
node and
return its

value

Code for Popping
// Remove the head from the list and free the memory used
int stack_pop(Stack s) {
 if (s->head == NULL) {
 printf("Attempt to pop an element from an empty stack.\n");
 exit(1);
 }
 // Read the value from the head
 int return_data = s->head->data;
 struct stack_node *remNode = q->head;

 // move the stack head to the new head and free the old
 s->head = s->head->next;
 free(remNode);

 return return_data;
}

Testing Code in our Main.c
int main(void) {
 printf("Creating a deck of cards.\n");
 Stack deck = stack_create();

 int card = 7;
 printf("Putting %d on top of the deck!\n", card);
 stack_push(deck, card);
 card = 10;
 printf("Putting %d on top of the deck!\n", card);
 stack_push(deck, card);

 printf("Card %d just got removed from the deck!\n", stack_pop(deck));

 card = 3;
 printf("Putting %d on top of the deck!\n", card);
 stack_push(deck, card);
}

Other Functionality
There are some functions in the header we haven't implemented

● Destroying and freeing the Stack
● We're still at risk of leaking memory because we're only freeing on

removal
● Checking the Number of Elements
● This would be very handy because it would allow us to tell how many

elements we can pop before we risk errors
● You could even store an int in the Stack struct that increments every time

you push and decrements every time you pop . . .

Different Implementations
Stack.c doesn't have to be a linked list . . . so long as it implements the
functions in Stack.h

● We could use an array instead
● Our data can be stored in an array with a large maximum size
● We'll keep track of where the top is with an int

Array Implementation of a stack
A large array where only some of it is used

● Top is a particular index
● Top signifies where our data ends
● It also happens to be exactly the number of elements in the stack!

65 23 15 3 8

Top is 5 Undefined data . . . we might use
these cells if the stack grows larger

stack.c
// Struct representing the stack using an array
struct stack_internals {
 int stack_data[MAX_STACK_SIZE];
 int top;
};

// create a new stack
stack stack_create() {
 stack s = malloc(sizeof(struct stack_internals));
 s->top = 0;
 return s;
}

Push and Pop
These should only interact with the top of the stack

● Push should add an element after the end of the stack
● It should then move the top index to that new element

● Pop should return the element on the top of the stack
● It should then move the top index down one

Push
Push a new element "82" onto the stack

65 23 15 3 8

Top is 5

65 23 15 3 8

Top is 5

82

65 23 15 3 8

Top is 6

82

The stack starts like this

82 is added at top's index

Top then moves up one

Push code
// Add an element to the top of the stack
void stack_push(stack s, int item) {
 // check to see if we've used up all our memory
 if(s->top == MAX_STACK_SIZE) {
 printf("Maximum stack size reached, cannot push.\n");
 exit(1);
 }
 s->stack_data[s->top] = item;
 s->top++;
}

Pop
Pop removes the top element from the stack

65 23 15 3 8

Top is 5

65 23 15 3 8

Top is 4

65 23 15 3

The stack starts like this

Top moves down one

Read the element at top and
return it

Top is 4

Pop code
// Remove an element from the top of the stack
int stack_pop(stack s) {
 // check to see if the stack is empty
 if(s->top <= 0) {
 printf("Stack is empty, cannot pop.\n");
 exit(1);
 }
 s->top--;
 return s->stack_data[s->top];
}

Hidden Implementations
Neither Implementation needs to change the Header

● The main function doesn't know the difference!
● The structures and implementations are hidden from the header file and

the rest of the code that uses it
● If we want or need to, we can change the underlying implementation

without affecting the main code

Other Abstract Data Types
Stacks are obviously not the only possibility here

● If we simply change the rules (last in, first out), we can make other
structures

● A Queue is "first in, first out", and could be created using similar
techniques

● There are many possibilities that we can create!

What did we cover today?
Abstract Data Types

● Makes use of Multi-file projects we discussed earlier
● typedef to protect a struct from open access
● Using multiple files to control how a type is used
● Hiding the implementation
● Providing a fixed interface
● Showing that different implementations can work with the same ADT

