
COMP1511 - Programming 
Fundamentals

Week 9 - Lecture 15



What did we learn last week?
Linked Lists

● A complete working 
implementation of Linked Lists

● Inserting nodes
● Removal of nodes
● Cleaning our memory



What are we covering today?
Abstract Data Types

● A recap of Multiple File Projects
● More detail on things like typedef
● The ability to present capabilities of a type to us . . .
● . . . without exposing any of the inner workings



Recap - Multiple File Projects
Separating Code into Multiple files

● Header file (*.h) - Function Declarations
● Implementation file (*.c) - Majority of the running code
● Other files - can include a Header to use its capabilities

Separation protects data and makes functionality easier to read

● We don't have access to internal information we don't need
● We can't accidentally change something important
● We have a simple list of functions we can call



Using Multiple Files
Linking the Files

● A file that #includes the Header (*.h) file will have access to its functions
● A Header's own implementation (*.c) file will always #include it
● Implementation (*.c) files are never included!

Compilation

● All Implementation (*.c) files are compiled
● Header (*.h) files are never compiled, they're included



An Example - CS Beats
Assignment 2 - CS Beats is a nice example

beats.h

● Contains only defines, typedefs and function declarations
● Is commented heavily so that it's easy to know how to use it

beats.c

● Contains actual structs
● Contains implementation of beats.h's functions (once we've written 

them)



An Example - CS Beats
How does the main file relate to the beats files?

main.c

● #includes beats.h
● Uses the functions in beats.h



Abstract Data Types
Types we can declare for a specific purpose

● We can name them
● We can fix particular ways of interacting with them
● This can protect data from being accessed the wrong way

We can hide the implementation

● Whoever uses our code doesn't need to see how it was made
● They only need to know how to use it



Typedef
Type Definition

● We declare a new Type that we're going to use
● typedef <original Type> <new Type Name>
● Allows us to use a simple name for a possibly complex structure
● More importantly, hides the structure details from other parts of the code

● We can use Library as a Type without knowing anything about the struct 
underlying it

typedef struct library *Library;



Typedef in a Header file
The Header file provides an interface to the functionality

● We can put this in a header (*.h) file along with functions that use it
● This allows someone to see a Type without knowing exactly what it is
● The details go in the *.c file which is not included directly
● We can also see the functions without knowing how they work

● We are able to see the header and use the information
● We hide the implementation that we don't need to know about



An Example of an Abstract Data Type - A Stack
A stack is a very common data structure in programming

● It is a "Last in first out" structure
● You can put something on top of a stack
● You can take something off the top of a stack
● You can't access anything underneath



This is actually how functions work!
The currently running code is on the top of the stack

● main() calls function1() - only function1() is accessible
● function1() calls function2() - only function2() is accessible
● control returns to function1() when function2() returns

main() main()

function1()

main()

function1()

main()

function1()

function2()

running 
function1()main running 

function2()
return from 
function2()



What makes it Abstract?
A Stack is an idea

● An Array or a Linked List is a very specific implementation
● A Stack is just an idea of how things should be organised
● There's a set of rules, but there's no implementation!

Abstract Data Type for a Stack

● We can have a header saying how the Stack is used
● The Implementation could use an Array or a Linked List to store the 

objects in the Stack, but we wouldn't know! 



Break Time
Programming Languages

● C++, Java, C# and many others are based on C
● There are too many programming languages to count or learn!

● Remember the fundamentals!
● C syntax is not as important as your plans and thinking
● You will encounter many programming languages, some will feel very 

different from C in their approach
● But if you learn how you want to communicate with computers, the actual 

language you use will never be a barrier for you



Let's build a Stack ADT
We're only concerned with how we'll use it, not what it's made of

● Our user will see a "Stack" rather than an Array or Linked List
● We will start with a Stack of integers
● We will provide access to certain functions:

○ Create a Stack
○ Destroy a Stack
○ Add to the Stack (known as "push")
○ Remove from the Stack (known as "pop")
○ Count how many things are in the Stack



A Header File for a Stack
// stack type hides the struct that it is implemented as
typedef struct stack_internals *Stack;

// functions to create and destroy stacks
Stack stack_create(void);
void stack_free(Stack s);

// Push and Pop items from stacks
// Removing the item returns the item for use
void stack_push(Stack s, int item);
int stack_pop(Stack s);

// Check on the size of the stack
int stack_size(Stack s);



What does our Header (not) Provide?
Standard Stack functions are available

● We can push or pop an element onto or off the Stack
● We are not given access to anything else inside the Stack!
● We cannot pop more than one element at a time
● We aren't able to loop through the Stack

The power of Abstract Data Types

● They stop us from accessing the data incorrectly!



Stack.c
Our *.c file is the implementation of the functionality

● The C file is like the detail under the "headings" in the header
● Each declaration in the header is like a title of what is implemented

● Let's start with a Linked List as the underlying data structure
● A Linked List makes sense because we can grow it and shrink it easily
● We can also look at how to implement this with arrays . . .



The implementation behind a type definition

// Stack internals holds a pointer to the start of a linked list
struct stack_internals {
    struct stack_node *head;
};

struct stack_node {
    struct stack_node *next;
    int data;
};

We can create a pair of structs

● stack_internals represents the whole Stack
● stack_node is a single element of the list



Creation of a Stack
If we want our struct to be persistent, we'll allocate memory for it

We create our Stack empty, so the pointer to the head is NULL

// Create an empty Stack
Stack stack_create(void) {
    Stack new_stack = malloc(sizeof(struct stack_internals));
    new_stack->head = NULL;
    return new_stack;
}



Pushing items onto the Stack
We push items onto the head of the Stack

● We can insert the new element at the head
● All the other elements will stay in the same 

order they were in

oldest element

older element

newest element

NULL

pushed element

head



Code for Pushing

void stack_push(Stack s, int item) {
    struct stack_node *new_node = malloc(sizeof(struct stack_node));
    new_node->data = item;
    
    // Attach new_node to the old head and make it the new head
    new_node->next = s->head;
    s->head = new_node;
}

Adding to the head of a linked list is something we've done before



Popping (removing) a Node
The only node that can be popped is the head 
(the top of the stack)

oldest element

older element

newest element

NULL
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Remove this 
node and 
return its 

value



Code for Popping
// Remove the head from the list and free the memory used
int stack_pop(Stack s) {
    if (s->head == NULL) {
        printf("Attempt to pop an element from an empty stack.\n");
        exit(1);
    }
    // Read the value from the head
    int return_data = s->head->data;
    struct stack_node *remNode = q->head;
    
    // move the stack head to the new head and free the old
    s->head = s->head->next;
    free(remNode);
    
    return return_data;
}



Testing Code in our Main.c
int main(void) {
    printf("Creating a deck of cards.\n");
    Stack deck = stack_create();

    int card = 7;
    printf("Putting %d on top of the deck!\n", card);
    stack_push(deck, card);
    card = 10;
    printf("Putting %d on top of the deck!\n", card);
    stack_push(deck, card);

    printf("Card %d just got removed from the deck!\n", stack_pop(deck));

    card = 3;
    printf("Putting %d on top of the deck!\n", card);
    stack_push(deck, card);    
}



Other Functionality
There are some functions in the header we haven't implemented

● Destroying and freeing the Stack
● We're still at risk of leaking memory because we're only freeing on 

removal
● Checking the Number of Elements
● This would be very handy because it would allow us to tell how many 

elements we can pop before we risk errors
● You could even store an int in the Stack struct that increments every time 

you push and decrements every time you pop . . .



Different Implementations
Stack.c doesn't have to be a linked list . . . so long as it implements the 
functions in Stack.h

● We could use an array instead
● Our data can be stored in an array with a large maximum size
● We'll keep track of where the top is with an int 



Array Implementation of a stack
A large array where only some of it is used

● Top is a particular index
● Top signifies where our data ends
● It also happens to be exactly the number of elements in the stack!

65 23 15 3 8

Top is 5 Undefined data . . . we might use 
these cells if the stack grows larger



stack.c
// Struct representing the stack using an array
struct stack_internals {
    int stack_data[MAX_STACK_SIZE];
    int top;
};

// create a new stack
stack stack_create() {
    stack s = malloc(sizeof(struct stack_internals));
    s->top = 0;
    return s;
}



Push and Pop
These should only interact with the top of the stack

● Push should add an element after the end of the stack
● It should then move the top index to that new element

● Pop should return the element on the top of the stack
● It should then move the top index down one



Push
Push a new element "82" onto the stack

65 23 15 3 8

Top is 5

65 23 15 3 8

Top is 5

82

65 23 15 3 8

Top is 6

82

The stack starts like this

82 is added at top's index

Top then moves up one



Push code
// Add an element to the top of the stack
void stack_push(stack s, int item) {
    // check to see if we've used up all our memory
    if(s->top == MAX_STACK_SIZE) {
        printf("Maximum stack size reached, cannot push.\n");
        exit(1);
    }
    s->stack_data[s->top] = item;
    s->top++;
}



Pop
Pop removes the top element from the stack

65 23 15 3 8

Top is 5

65 23 15 3 8

Top is 4

65 23 15 3

The stack starts like this

Top moves down one

Read the element at top and 
return it

Top is 4



Pop code
// Remove an element from the top of the stack
int stack_pop(stack s) {
    // check to see if the stack is empty
    if(s->top <= 0) {
        printf("Stack is empty, cannot pop.\n");
        exit(1);
    }
    s->top--;
    return s->stack_data[s->top];
}



Hidden Implementations
Neither Implementation needs to change the Header

● The main function doesn't know the difference!
● The structures and implementations are hidden from the header file and 

the rest of the code that uses it
● If we want or need to, we can change the underlying implementation 

without affecting the main code



Other Abstract Data Types
Stacks are obviously not the only possibility here

● If we simply change the rules (last in, first out), we can make other 
structures

● A Queue is "first in, first out", and could be created using similar 
techniques

● There are many possibilities that we can create!



What did we cover today?
Abstract Data Types

● Makes use of Multi-file projects we discussed earlier
● typedef to protect a struct from open access
● Using multiple files to control how a type is used
● Hiding the implementation
● Providing a fixed interface
● Showing that different implementations can work with the same ADT


