Exercise Sheet 8

COMP6741: Parameterized and Exact Computation

2016, Semester 2

1. A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction (AND) of disjunctions (OR) of literals (a Boolean variable or its negation).

A HORN formula is a CNF formula where each clause contains at most one positive literal.

For a CNF formula F and an assignment $\tau: S \to \{0,1\}$ to a subset S of its variables, the formula $F[\tau]$ is obtained from F by removing each clause that contains a literal that evaluates to 1 under S, and removing all literals that evaluate to 0 from the remaining clauses.

HORN-Backdoor Detection

Input: A CNF formula F and an integer k.

Parameter: k

Question: Is there a subset S of the variables of F with $|S| \leq k$ such that for each assignment

 $\tau: S \to \{0,1\}$, the formula $F[\tau]$ is a HORN formula?

Example: $(\neg a \lor b \lor c) \land (b \lor \neg c \lor \neg d) \land (a \lor b \lor \neg e) \land (\neg b \lor c \lor \neg e)$ with k = 1 is a YES-instance, certified by $S = \{b\}$.

- Show that HORN-BACKDOOR DETECTION is FPT using the fact that VERTEX COVER is FPT.
- 2. Show that Weighted Circuit Satisfiability $\in XP$.
- 3. Recall that a k-coloring of a graph G = (V, E) is a function $f : V \to \{1, 2, ..., k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Multicolor Clique

Input: A graph G = (V, E), an integer k, and a k-coloring of G

Parameter: k

Question: Does G have a clique of size k?

- Show that Multicolor Clique is W[1]-hard.
- 4. A set system S is a pair (V, H), where V is a finite set of elements and H is a set of subsets of V. A set cover of a set system S = (V, H) is a subset X of H such that each element of V is contained in at least one of the sets in X, i.e., $\bigcup_{Y \in X} Y = V$.

Set Cover

Input: A set system S = (V, H) and an integer k

Parameter: k

Question: Does S have a set cover of cardinality at most k?

- \bullet Show that Set Cover is W[2]-hard.
- 5. A hitting set of a set system S = (V, H) is a subset X of V such that X contains at least one element of each set in H, i.e., $X \cap Y \neq \emptyset$ for each $Y \in H$.

HITTING SET

Input: A set system S = (V, H) and an integer k

Parameter: k

Question: Does S have a hitting set of size at most k?

 \bullet Show that Hitting Set is W[2]-hard.