1. Introduction
 COMP6741: Parameterized and Exact Computation

Serge Gaspers
Semester 2, 2015

Contents

1 Algorithms for NP-hard problems 1
2 Exponential Time Algorithms 2
3 Parameterized Complexity 5
3.1 FPT Algorithm for Vertex Cover . 6
3.2 Algorithms for Vertex Cover. 6

4 Further Reading 8

1 Algorithms for NP-hard problems

Central question

P vs. NP

NP-hard problems

- no known polynomial time algorithm for any NP-hard problem
- belief: $\mathrm{P} \neq \mathrm{NP}$
- What to do when facing an NP-hard problem?

Example problem: Vertex Cover

A vertex cover in a graph $G=(V, E)$ is a subset of vertices $S \subseteq V$ such that every edge of G has an endpoint in S.

Vertex	Cover
Input:	Graph G, integer k
Question:	Does G have a vertex cover of size k ?

Note: Vertex Cover is NP-complete.

Coping with NP-hardness

- Approximation algorithms
- There is an algorithm, which, given an instance (G, k) for Vertex Cover, finds a vertex cover of size at most $2 k$ or correctly determines that G has no vertex cover of size k.
- Exact exponential time algorithms
- There is an algorithm solving Vertex Cover in time $O\left(1.2002^{n}\right)$, where $n=|V|$.
- Fixed parameter algorithms
- There is an algorithm solving Vertex Cover in time $O\left(1.2738^{k}+k n\right)$.
- Heuristics
- Heuristic A finds a smaller vertex cover than Heuristic B on benchmark instances C_{1}, \ldots, C_{m}.
- Restricting the inputs
- Vertex Cover can be solved in polynomial time on bipartite graphs, trees, interval graphs, etc.
- Quantum algorithms?
- Not believed to solve NP-hard problems in polynomial time.

Aims of this course

Design and analyze algorithms for NP-hard problems.
We focus on algorithms that solve NP-hard problems exactly and analyze their worst case running time.

2 Exponential Time Algorithms

Running times

Worst case running time of an algorithm.

- An algorithm is polynomial if $\exists c \in \mathbb{N}$ such that the algorithm solves every instance in time $O\left(n^{c}\right)$, where n is the size of the instance. Also: $n^{O(1)}$ or poly (n).
- quasi-polynomial: $2^{O\left(\log ^{c} n\right)}, c \in O(1)$
- sub-exponential: $2^{o(n)}$
- exponential: $2^{\text {poly(n) }}$
- double-exponential: $2^{2^{\text {poly(n) }}}$
O^{*}-notation ignores polynomial factors in the input size:

$$
\begin{aligned}
& O^{*}(f(n)) \equiv O(f(n) \cdot \operatorname{poly}(n)) \\
& O^{*}(f(k)) \equiv O(f(k) \cdot \operatorname{poly}(n))
\end{aligned}
$$

Brute-force algorithms for NP-hard problems

Theorem 1. Every problem in NP can be solved in exponential time.
Proof. Let Π be an arbitrary problem in NP. [Use certificate-based definition of NP] We know that \exists a polynomial p and a polynomial-time verification algorithm V such that:

- for every $x \in \Pi$ (i.e., every Yes-instance for Π) \exists string $y \in\{0,1\}^{*},|y| \leq p(|x|)$, such that $V(x, y)=1$, and
- for every $x \notin \Pi$ (i.e., every No-instance for Π) and every string $y \in\{0,1\}^{*}, V(x, y)=0$.

Now, we can prove that there exists an exponential-time algorithm for Π with input x :

- For each string $y \in\{0,1\}^{*}$ with $|y| \leq p(|x|)$, evaluate $V(x, y)$ and return YES if $V(x, y)=1$.
- Return No.

Running time: $2^{p(|x|)} \cdot n^{O(1)} \subseteq 2^{O(2 \cdot p(|x|))}=2^{O(p(|x|))}$, but non-constructive.

Three main categories for NP-complete problems

- Subset problems
- Permutation problems
- Partition problems

Subset Problem: Independent Set

An independent set in a graph $G=(V, E)$ is a subset of vertices $S \subseteq V$ such that the vertices in S are pairwise non-adjacent in G.

```
Independent Set
    Input: Graph }G\mathrm{ , integer }
    Question: Does G have an independent set of size k
```


Brute-force: $O^{*}\left(2^{n}\right)$, where $n=|V(G)|$

Permutation Problem: Traveling Salesman

Traveling Salesman Problem (TSP)
Input: \quad a set of n cities, the distance $d(i, j) \in \mathbb{N}$ between every two cities i and j, integer k
Question: Is there a permutation of the cities (a tour) such that the total distance when traveling from city to city in the specified order, and returning back to the origin, is at most k ?

Brute-force: $O^{*}(n!) \subseteq 2^{O(n \log n)}$

Partition Problem: Coloring

A k-coloring of a graph $G=(V, E)$ is a function $f: V \rightarrow\{1,2, \ldots, k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Coloring

Input: Graph G, integer k
Question: Does G have a k-coloring?

Brute-force: $O^{*}\left(k^{n}\right)$, where $n=|V(G)|$

Exponential Time Algorithms

- natural question in Algorithms: design faster (worst-case analysis) algorithms for problems
- might lead to practical algorithms
- for small instances
* you don't want to design software where your client/boss can find with better solutions by hand than your software
- subroutines for
* (sub)exponential time approximation algorithms
* randomized algorithms with expected polynomial run time

Solve an NP-hard problem

- exhaustive search
- trivial method
- try all possible "solutions" (certificates) for a ground set on n elements
- running times for problems in NP
* Subset Problems: $O^{*}\left(2^{n}\right)$
* Permutation Problems: $O^{*}(n!)$
* Partition Problems: $O^{*}\left(c^{n \log n}\right)$
- faster exact algorithms
- for some problems, it is possible to obtain provably faster algorithms
- running times $O\left(1.0892^{n}\right), O\left(1.5086^{n}\right), O\left(1.9977^{n}\right)$

Exponential Time Algorithms in Practice

- How large are the instances one can solve in practice?

Available time nb. of operations	1 s	2^{36}	2^{42}	2^{48}	2^{44}

Note: Intel Core i7 920 (Quad core) executes between 2^{36} and 2^{37} instructions per second at 2.66 GHz .
For every polynomial-time algorithm you have, there is an exponential algorithm that I would rather run.

- Alan Perlis (1922-1990, programming languages, 1st recipient of Turing Award)

Hardware vs. Algorithms

- Suppose a 2^{n} algorithm enables us to solve instances up to size x
- Faster processors
- processor speed doubles after 18-24 months (Moore's law)
- can solve instances up to size $x+1$
- Faster algorithm
- design an $O^{*}\left(2^{n / 2}\right) \subseteq O\left(1.4143^{n}\right)$ time algorithm
- can solve instances up to size $2 \cdot x$

3 Parameterized Complexity

A story
A computer scientist meets a biologist ... The biologist has performed n experiments. Unfortunately, the data obtained from these experiments has some conflicts. He suspects that a small number k of experiments have gone wrong, and he would like to detect whether removing k experiments can solve all the conflicts.

Eliminating conflicts from experiments

$n=1000$ experiments, $k=20$ experiments failed

	Running Time	
Theoretical	Number of Instructions	Real
2^{n}	$1.07 \cdot 10^{301}$	$4.941 \cdot 10^{282}$ years
n^{k}	10^{60}	$4.611 \cdot 10^{41}$ years
$2^{k} \cdot n$	$1.05 \cdot 10^{9}$	0.01526 seconds

Notes:

- We assume that 2^{36} instructions are carried out per second.
- The Big Bang happened roughly $13.5 \cdot 10^{9}$ years ago.

Goal of Parameterized Complexity

Confine the combinatorial explosion to a parameter k.

For which problem-parameter combinations can we find algorithms with running times of the form

$$
f(k) \cdot n^{O(1)}
$$

where the f is a computable function independent of the input size n ?

Examples of Parameters

```
A Parameterized Problem
    Input: an instance of the problem
    Parameter: a parameter k
    Question: a Yes-No question about the instance and the parameter
```

- A parameter can be
- input size (trivial parameterization)
- solution size
- related to the structure of the input (maximum degree, treewidth, branchwidth, genus, ...)
- etc.

Main Complexity Classes

P : class of problems that can be solved in time $n^{O(1)}$
FPT: class of problems that can be solved in time $f(k) \cdot n^{O(1)}$
$\mathrm{W}[\cdot]$: parameterized intractability classes
XP: class of problems that can be solved in time $f(k) \cdot n^{g(k)}$

$$
\mathrm{P} \subseteq \mathrm{FPT} \subseteq \mathrm{~W}[1] \subseteq \mathrm{W}[2] \cdots \subseteq \mathrm{W}[P] \subseteq \mathrm{XP}
$$

Known: If $\mathrm{FPT}=\mathrm{W}[1]$, then the Exponential Time Hypothesis fails, i.e. 3 -SAT can be solved in time $2^{o(n)}$.

3.1 FPT Algorithm for Vertex Cover

Vertex Cover

```
Vertex Cover (VC)
    Input: \(\quad\) A graph \(G=(V, E)\) on \(n\) vertices, an integer \(k\)
    Parameter: \(k\)
    Question: Is there a set of vertices \(C \subseteq V\) of size at most \(k\) such that every edge has at least one endpoint
    in \(C\) ?
```


Algorithm vc1 (G, k);

```
if \(E=\emptyset\) then // all edges are covered
    return Yes
else if \(k=0\) then // we cannot select any vertex
    return No
else
    Select an edge \(u v \in E\);
    return \(\operatorname{vc} 1(G-u, k-1) \vee \operatorname{vc1}(G-v, k-1)\)
```


3.2 Algorithms for Vertex Cover

Brute Force Algorithms

- $2^{n} \cdot n^{O(1)}$ not FPT
- $n^{k} \cdot n^{O(1)}$ not FPT

An FPT Algorithm

Running Time Analysis

- Let us look at an arbitrary execution of the algorithm.
- Recursive calls form a search tree T
- with depth $\leq k$
- where each node has ≤ 2 children
- $\Rightarrow T$ has $\leq 2^{k}$ leafs and $\leq 2^{k}-1$ internal nodes
- at each node the algorithm spends time $n^{O(1)}$
- The running time is $O^{*}\left(2^{k}\right)$

A faster FPT Algorithm

Algorithm vc\& (G, k);

```
if E=\emptyset then // all edges are covered
        return Yes
else if k=0 then // we used too many vertices
        return No
    else if }\Delta(G)\leq2\mathrm{ then // G has maximum degree }\leq
        Solve the problem in polynomial time;
    else
        Select a vertex v of maximum degree;
        return vc2(G-v,k-1)\vee vc2(G-N[v],k-d(v))
```


Exercise

Show that VC can be solved in polynomial time for graphs of maxmium degree at most 2 .

Solution Idea

Show that VC can be solved in polynomial time for graphs of maximum degree at most 2 .

- A graph of maximum degree at most 2 is a disjoint union of paths and cycles
- Denote by $v c_{o p t}(G)$ the size of a smallest vertex cover of G

Lemma 2. For a path P_{k} on $k \geq 1$ vertices, vcopt $\left(P_{k}\right)=\lceil(k-1) / 2\rceil$.
Proof sketch. By induction on k. Base cases: check for $k=1$ and $k=2$. Induction: Let $k \geq 3$ and assume the lemma is true for $P_{k^{\prime}}$ for all $k^{\prime}, 1 \leq k^{\prime}<k$. One can prove that $v c_{o p t}\left(P_{k}\right)=1+v c_{o p t}\left(P_{k-2}\right)=1+\lceil(k-3) / 2\rceil=$ $\lceil(k-1) / 2\rceil$.

- For a cycle C_{k} on $k \geq 3$ vertices, $v c_{o p t}\left(C_{k}\right)=1+v c_{o p t}\left(P_{k-1}\right)=\lceil k / 2\rceil$.

Running time analysis of vc2

$$
\begin{aligned}
T(k) & \leq T(k-1)+T(k-3) \\
x^{k} & \leq x^{k-1}+x^{k-3} \\
x^{3} & -x^{2}-1=0
\end{aligned}
$$

- Positive real root of this equation: $x \approx 1.4655 \ldots$
- Running time: $1.4656^{k} \cdot n^{O(1)}$

4 Further Reading

Further Reading

- Exponential-time algorithms
- Chapter 1, Introduction in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.
- Gerhard J. Woeginger: Exact Algorithms for NP-Hard Problems: A Survey. Combinatorial Optimization 2001: 185-208.
- Chapter 1, Introduction in Serge Gaspers. Exponential Time Algorithms: Structures, Measures, and Bounds. VDM Verlag Dr. Mueller, 2010.
- Parameterized Complexity
- Chapter 1, Introduction in Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, MichałPilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Chapter 2, The Basic Definitions in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- Chapter I, Foundations in Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.
- Preface in Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.

