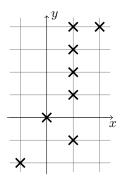
Exercise Sheet 6 COMP6741: Parameterized and Exact Computation

2016, Semester 2

1. A dominating set of a graph G = (V, E) is a set of vertices $S \subseteq V$ such that $N_G[S] = V$.


DEGREE-5 DOMINATING SETInput:A graph G = (V, E) with maximum degree at most 5 and an integer kParameter:kQuestion:Does G have a dominating set of size at most k?

Design a linear kernel for DEGREE-5 DOMINATING SET.

2. Consider the following problem.

POINT LINE COVERInput:A set of points P in the plane \mathbb{R}^2 , and an integer kParameter:kQuestion:Is there a set L of at most k lines in \mathbb{R}^2 such that each point in P lies on at least one
line in L?

Example: $(P = \{(-1, -2), (0, 0), (1, -1), (1, 1), (1, 2), (1, 3), (1, 4), (2, 4)\}, k = 2)$ is a Yes-instance since the lines y = 1 and y = 2x cover all the points.

Show that POINT LINE COVER has a polynomial kernel.

3. A *cluster graph* is a graph where every connected component is a complete graph.

CLUSTER EDITING		
Input:	Graph $G = (V, E)$, integer k	
Parameter:	k	
Question:	Is it possible to edit (add or delete) at most k edges of G so that it becomes a cluster	
	graph?	

- (a) Show that G is a cluster graph iff G contains no induced P_3 (path with 3 vertices).
- (b) Design a kernel for CLUSTER EDITING with $O(k^2)$ vertices.
- 4. A k-coloring of a graph G = (V, E) is a function $f: V \to \{1, 2, ..., k\}$ such that $f(u) \neq f(v)$ if $uv \in E$.

SAVING COLORS		
Input:	Graph G , integer k	
Parameter:	k	
Question:	Does G have a $(n-k)$ -coloring?	

Design a kernel for SAVING COLORS with O(k) vertices. Hint: use the Crown Lemma.

5. An *edge clique cover* of a graph G is a set of cliques in G so that each edge of G is contained in at least one of these cliques.

Edge Clique Cover		
Input:	graph G , integer k	
Parameter:	k	
Question:	Does G have an edge clique cover with k cliques?	

Design a kernel for EDGE CLIQUE COVER with $O(2^k)$ vertices.