COMP2111 Week 6 Term 1, 2019 Hoare Logic III

Hoare Logic is sound with respect to the semantics given. That is,

Theorem

$$\mathit{If} \vdash \{\varphi\} \, \mathit{P} \, \{\psi\} \, \mathit{then} \models \{\varphi\} \, \mathit{P} \, \{\psi\}$$

Summary

- Set theory revisited
- Soundness of Hoare Logic
- Completeness of Hoare Logic

Summary

- Set theory revisited
- Soundness of Hoare Logic
- Completeness of Hoare Logic

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

- (a) If $A \subseteq B$ then $R(A) \subseteq R(B)$
- **(b)** $R(A) \cup S(A) = (R \cup S)(A)$
- (c) R(S(A)) = (S; R)(A)

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

- (a) If $A \subseteq B$ then $R(A) \subseteq R(B)$
- **(b)** $R(A) \cup S(A) = (R \cup S)(A)$
- (c) R(S(A)) = (S; R)(A)

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

- (a) If $A \subseteq B$ then $R(A) \subseteq R(B)$
- **(b)** $R(A) \cup S(A) = (R \cup S)(A)$
- (c) R(S(A)) = (S; R)(A)

$$y \in R(A) \Leftrightarrow \exists x \in A \text{ such that } (x, y) \in R$$

 $\Rightarrow \exists x \in B \text{ such that } (x, y) \in R$
 $\Leftrightarrow y \in R(B)$

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

- (a) If $A \subseteq B$ then $R(A) \subseteq R(B)$
- **(b)** $R(A) \cup S(A) = (R \cup S)(A)$
- (c) R(S(A)) = (S; R)(A)

Proof (b):

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

- (a) If $A \subseteq B$ then $R(A) \subseteq R(B)$
- **(b)** $R(A) \cup S(A) = (R \cup S)(A)$
- (c) R(S(A)) = (S; R)(A)

Proof (b):

$$y \in R(A) \cup S(A) \Leftrightarrow y \in R(A) \text{ or } y \in S(A)$$

 $\Leftrightarrow \exists x \in A \text{ s.t. } (x,y) \in R \text{ or } \exists x \in A \text{ s.t. } (x,y) \in S$
 $\Leftrightarrow \exists x \in A \text{ s.t. } (x,y) \in R \text{ or } (x,y) \in S$
 $\Leftrightarrow \exists x \in A \text{ s.t. } (x,y) \in (R \cup S)$
 $\Leftrightarrow y \in (R \cup S)(A)$

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

- (a) If $A \subseteq B$ then $R(A) \subseteq R(B)$
- **(b)** $R(A) \cup S(A) = (R \cup S)(A)$
- (c) R(S(A)) = (S; R)(A)

Proof (c):

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

- (a) If $A \subseteq B$ then $R(A) \subseteq R(B)$
- **(b)** $R(A) \cup S(A) = (R \cup S)(A)$
- (c) R(S(A)) = (S; R)(A)

Proof (c):

$$z \in R(S(A)) \Leftrightarrow \exists y \in S(A) \text{ s.t. } (y, z) \in R$$

 $\Leftrightarrow \exists x \in A, y \in S(A) \text{ s.t. } (x, y) \in S \text{ and } (y, z) \in R$
 $\Leftrightarrow \exists x \in A \text{ s.t. } (x, z) \in (S; R)$
 $\Leftrightarrow z \in (S; R)(A)$

Corollary

If $R(A) \subseteq A$ then $R^*(A) \subseteq A$

Proof

$$R(A) \subseteq A \Rightarrow R^{i+1}(A) = R^{i}(R(A)) \subseteq R^{i}(A)$$

$$\Rightarrow R^{i+1}(A) \subseteq R(A) \subseteq A$$
So $R^{*}(A) = \left(\bigcup_{i=0}^{\infty} R^{i}\right)(A)$

$$= \bigcup_{i=0}^{\infty} R^{i}(A)$$

$$\subseteq A$$

Corollary

If
$$R(A) \subseteq A$$
 then $R^*(A) \subseteq A$

Proof:

$$R(A) \subseteq A \Rightarrow R^{i+1}(A) = R^{i}(R(A)) \subseteq R^{i}(A)$$

$$\Rightarrow R^{i+1}(A) \subseteq R(A) \subseteq A$$
So $R^{*}(A) = \left(\bigcup_{i=0}^{\infty} R^{i}\right)(A)$

$$= \bigcup_{i=0}^{\infty} R^{i}(A)$$

$$\subset A$$

Corollary

If
$$R(A) \subseteq A$$
 then $R^*(A) \subseteq A$

Proof:

$$R(A) \subseteq A \Rightarrow R^{i+1}(A) = R^{i}(R(A)) \subseteq R^{i}(A)$$

$$\Rightarrow R^{i+1}(A) \subseteq R(A) \subseteq A$$
So $R^{*}(A) = \left(\bigcup_{i=0}^{\infty} R^{i}\right)(A)$

$$= \bigcup_{i=0}^{\infty} R^{i}(A)$$

$$\subset A$$

Summary

- Set theory revisited
- Soundness of Hoare Logic
- Completeness of Hoare Logic

Theorem

$$\mathit{If} \vdash \{\varphi\} \, \mathit{P} \, \{\psi\} \, \, \mathit{then} \models \{\varphi\} \, \mathit{P} \, \{\psi\}$$

Proof

By induction on the structure of the proof.

Theorem

$$\mathit{If} \vdash \{\varphi\} \, \mathit{P} \, \{\psi\} \, \mathit{then} \models \{\varphi\} \, \mathit{P} \, \{\psi\}$$

Proof:

By induction on the structure of the proof.

Theorem

$$\mathit{If} \vdash \{\varphi\} \, \mathit{P} \, \{\psi\} \, \, \mathit{then} \models \{\varphi\} \, \mathit{P} \, \{\psi\}$$

Proof:

By induction on the structure of the proof.

$$\frac{}{\left\{\varphi[e/x]\right\}x:=e\left\{\varphi\right\}} \quad \text{(ass)}$$

Need to show $\{\varphi[e/x]\}x := e\{\varphi\}$ is always valid. That is,

$$[x := e](\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$$

Observation: $\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$ where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$

So if $\eta \in \langle \varphi[e/x] \rangle$ then $\eta' \in \langle \varphi \rangle$

Recall: $(\eta, \eta'') \in \llbracket x := e \rrbracket$ if and only if $\eta'' = \eta [x \mapsto \llbracket e \rrbracket^{\eta}]$,

So $[x := e](\eta) \in \langle \varphi \rangle$ for all $\eta \in \langle \varphi[e/x] \rangle$

So $[x := e](\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle$

$$\frac{}{\{\varphi[e/x]\}\,x:=e\,\{\varphi\}} \quad \text{(ass)}$$

Need to show $\{\varphi[e/x]\}x := e\{\varphi\}$ is always valid. That is,

$$\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$$

Observation: $\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$ where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$

So if $\eta \in \langle \varphi[e/x] \rangle$ then $\eta' \in \langle \varphi \rangle$

Recall: $(\eta, \eta'') \in \llbracket x := e \rrbracket$ if and only if $\eta'' = \eta [x \mapsto \llbracket e \rrbracket^{\eta}]$,

So $[x := e](\eta) \in \langle \varphi \rangle$ for all $\eta \in \langle \varphi[e/x] \rangle$

So $\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle$

$$\frac{}{\left\{\varphi[e/x]\right\}x:=e\left\{\varphi\right\}} \quad \text{(ass)}$$

Need to show $\{\varphi[e/x]\}x := e\{\varphi\}$ is always valid. That is,

$$\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$$

Observation:
$$\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$$
 where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$

So if $\eta \in \langle \varphi[e/x] \rangle$ then $\eta' \in \langle \varphi \rangle$

Recall: $(\eta, \eta'') \in \llbracket x := e \rrbracket$ if and only if $\eta'' = \eta \llbracket x \mapsto \llbracket e \rrbracket^{\eta} \rrbracket$.

So $[x := e](\eta) \in \langle \varphi \rangle$ for all $\eta \in \langle \varphi[e/x] \rangle$

So $[x := e](\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle$

$$\frac{}{\left\{\varphi[e/x]\right\}x:=e\left\{\varphi\right\}} \quad \text{(ass)}$$

Need to show $\{\varphi[e/x]\}x := e\{\varphi\}$ is always valid. That is,

$$\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$$

Observation:
$$\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$$
 where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$

So if
$$\eta \in \langle \varphi[e/x] \rangle$$
 then $\eta' \in \langle \varphi \rangle$

Recall:
$$(\eta, \eta'') \in \llbracket x := e \rrbracket$$
 if and only if $\eta'' = \eta [x \mapsto \llbracket e \rrbracket^{\eta}]$.

So
$$[x := e](\eta) \in \langle \varphi \rangle$$
 for all $\eta \in \langle \varphi[e/x] \rangle$

So
$$[x := e](\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle$$

$$\frac{}{\left\{\varphi[e/x]\right\}x:=e\left\{\varphi\right\}} \quad \text{(ass)}$$

Need to show $\{\varphi[e/x]\}x := e\{\varphi\}$ is always valid. That is,

$$\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$$

Observation: $\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$ where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$

So if $\eta \in \langle \varphi[e/x] \rangle$ then $\eta' \in \langle \varphi \rangle$

Recall: $(\eta, \eta'') \in \llbracket x := e \rrbracket$ if and only if $\eta'' = \eta [x \mapsto \llbracket e \rrbracket^{\eta}]$,

So $[\![x:=e]\!](\eta)\in\langle\varphi\rangle$ for all $\eta\in\langle\varphi[e/x]\rangle$

So $[x := e](\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle$

$$\frac{}{\left\{\varphi[e/x]\right\}x:=e\left\{\varphi\right\}} \quad \text{(ass)}$$

Need to show $\{\varphi[e/x]\}x := e\{\varphi\}$ is always valid. That is,

$$\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$$

Observation: $\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$ where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$

So if $\eta \in \langle \varphi[e/x] \rangle$ then $\eta' \in \langle \varphi \rangle$

Recall: $(\eta, \eta'') \in \llbracket x := e \rrbracket$ if and only if $\eta'' = \eta [x \mapsto \llbracket e \rrbracket^{\eta}]$,

So $\llbracket x := e \rrbracket(\eta) \in \langle \varphi \rangle$ for all $\eta \in \langle \varphi[e/x] \rangle$

So $[x := e](\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle$

$$\frac{}{\left\{\varphi[e/x]\right\}x:=e\left\{\varphi\right\}} \quad \text{(ass)}$$

Need to show $\{\varphi[e/x]\}x := e\{\varphi\}$ is always valid. That is,

$$\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$$

Observation: $\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$ where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$

So if
$$\eta \in \langle \varphi[e/x] \rangle$$
 then $\eta' \in \langle \varphi \rangle$

Recall: $(\eta, \eta'') \in \llbracket x := e \rrbracket$ if and only if $\eta'' = \eta [x \mapsto \llbracket e \rrbracket^{\eta}]$,

So
$$\llbracket x := e \rrbracket(\eta) \in \langle \varphi \rangle$$
 for all $\eta \in \langle \varphi[e/x] \rangle$

So
$$[x := e](\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle$$

$$\frac{\{\varphi\} P \{\psi\} \quad \{\psi\} Q \{\rho\}}{\{\varphi\} P; Q \{\rho\}} \quad \text{(seq)}$$

Assume $\{\varphi\} P \{\psi\}$ and $\{\psi\} Q \{\rho\}$ are valid. Need to show that $\{\varphi\} P$; $Q \{\rho\}$ is valid.

Recall:
$$[P; Q] = [P]; [Q]$$

So:
$$[P; Q](\langle \varphi \rangle) = [Q]([P](\langle \varphi \rangle))$$
 (see Lemma 1(c))

By IH:
$$[\![P]\!](\langle \varphi \rangle) \subseteq \langle \psi \rangle$$
 and $[\![Q]\!](\langle \psi \rangle) \subseteq \langle \rho \rangle$

So:
$$[Q]([P](\langle \varphi \rangle)) \subseteq [Q](\langle \psi \rangle) \subseteq \langle \rho \rangle$$
 (see Lemma 1(a))

$$\frac{\{\varphi\} P \{\psi\} \quad \{\psi\} Q \{\rho\}}{\{\varphi\} P; Q \{\rho\}} \quad \text{(seq)}$$

Assume $\{\varphi\}$ P $\{\psi\}$ and $\{\psi\}$ Q $\{\rho\}$ are valid. Need to show that $\{\varphi\}$ P; Q $\{\rho\}$ is valid.

```
So: [P; Q](\langle \varphi \rangle) = [Q]([P](\langle \varphi \rangle)) (see Lemma 1(c)
```

By IH: $[\![P]\!](\langle \varphi \rangle) \subseteq \langle \psi \rangle$ and $[\![Q]\!](\langle \psi \rangle) \subseteq \langle \rho \rangle$

So: $[\![Q]\!]([\![P]\!](\langle \varphi \rangle)) \subseteq [\![Q]\!](\langle \psi \rangle) \subseteq \langle \rho \rangle$ (see Lemma 1(a))

$$\frac{\{\varphi\} P \{\psi\} \qquad \{\psi\} Q \{\rho\}}{\{\varphi\} P; Q \{\rho\}} \qquad \text{(seq)}$$

Assume $\{\varphi\}$ P $\{\psi\}$ and $\{\psi\}$ Q $\{\rho\}$ are valid. Need to show that $\{\varphi\}$ P; Q $\{\rho\}$ is valid.

Recall:
$$[\![P; Q]\!] = [\![P]\!]; [\![Q]\!]$$

So:
$$[P; Q](\langle \varphi \rangle) = [Q]([P](\langle \varphi \rangle))$$
 (see Lemma 1(c))

By IH:
$$[\![P]\!](\langle \varphi \rangle) \subseteq \langle \psi \rangle$$
 and $[\![Q]\!](\langle \psi \rangle) \subseteq \langle \rho \rangle$

So:
$$[\![Q]\!]([\![P]\!](\langle \varphi \rangle)) \subseteq [\![Q]\!](\langle \psi \rangle) \subseteq \langle \rho \rangle$$
 (see Lemma 1(a))

$$\frac{\left\{\varphi\right\}P\left\{\psi\right\}\quad\left\{\psi\right\}Q\left\{\rho\right\}}{\left\{\varphi\right\}P;Q\left\{\rho\right\}}\quad\text{(seq)}$$

Assume $\{\varphi\} P \{\psi\}$ and $\{\psi\} Q \{\rho\}$ are valid. Need to show that $\{\varphi\} P$; $Q \{\rho\}$ is valid.

Recall:
$$[\![P; Q]\!] = [\![P]\!]; [\![Q]\!]$$

So:
$$[P; Q](\langle \varphi \rangle) = [Q]([P](\langle \varphi \rangle))$$
 (see Lemma 1(c))

By IH: $[\![P]\!](\langle \varphi \rangle) \subseteq \langle \psi \rangle$ and $[\![Q]\!](\langle \psi \rangle) \subseteq \langle \rho \rangle$

So:
$$[\![Q]\!]([\![P]\!](\langle \varphi \rangle)) \subseteq [\![Q]\!](\langle \psi \rangle) \subseteq \langle \rho \rangle$$
 (see Lemma 1(a))

$$\frac{\left\{\varphi\right\} P\left\{\psi\right\} \quad \left\{\psi\right\} Q\left\{\rho\right\}}{\left\{\varphi\right\} P; \ Q\left\{\rho\right\}} \quad \text{ (seq)}$$

Assume $\{\varphi\}$ P $\{\psi\}$ and $\{\psi\}$ Q $\{\rho\}$ are valid. Need to show that $\{\varphi\}$ P; Q $\{\rho\}$ is valid.

Recall:
$$\llbracket P;Q \rrbracket = \llbracket P \rrbracket; \llbracket Q \rrbracket$$

So:
$$[P; Q](\langle \varphi \rangle) = [Q]([P](\langle \varphi \rangle))$$
 (see Lemma 1(c))

By IH:
$$[\![P]\!](\langle \varphi \rangle) \subseteq \langle \psi \rangle$$
 and $[\![Q]\!](\langle \psi \rangle) \subseteq \langle \rho \rangle$

So:
$$[\![Q]\!]([\![P]\!](\langle \varphi \rangle)) \subseteq [\![Q]\!](\langle \psi \rangle) \subseteq \langle \rho \rangle$$
 (see Lemma 1(a))

$$\frac{\{\varphi\} P \{\psi\} \quad \{\psi\} Q \{\rho\}}{\{\varphi\} P; Q \{\rho\}} \quad \text{(seq)}$$

Assume $\{\varphi\} P \{\psi\}$ and $\{\psi\} Q \{\rho\}$ are valid. Need to show that $\{\varphi\} P$; $Q \{\rho\}$ is valid.

Recall:
$$[\![P; Q]\!] = [\![P]\!]; [\![Q]\!]$$

So:
$$[P; Q](\langle \varphi \rangle) = [Q]([P](\langle \varphi \rangle))$$
 (see Lemma 1(c))

By IH:
$$\llbracket P \rrbracket (\langle \varphi \rangle) \subseteq \langle \psi \rangle$$
 and $\llbracket Q \rrbracket (\langle \psi \rangle) \subseteq \langle \rho \rangle$

So:
$$[\![Q]\!]([\![P]\!](\langle \varphi \rangle)) \subseteq [\![Q]\!](\langle \psi \rangle) \subseteq \langle \rho \rangle$$
 (see Lemma 1(a))

Lemma

For $R \subseteq \text{Env} \times \text{Env}$, predicates φ and ψ , and $X \subseteq \text{Env}$:

- (a) $\llbracket \varphi \rrbracket (X) = \langle \varphi \rangle \cap X$
- **(b)** $R(\langle \varphi \wedge \psi \rangle) = (\llbracket \varphi \rrbracket; R)(\langle \psi \rangle))$

Lemma

For $R \subseteq \text{Env} \times \text{Env}$, predicates φ and ψ , and $X \subseteq \text{Env}$:

- (a) $\llbracket \varphi \rrbracket (X) = \langle \varphi \rangle \cap X$
- **(b)** $R(\langle \varphi \wedge \psi \rangle) = (\llbracket \varphi \rrbracket; R)(\langle \psi \rangle))$

Lemma

For $R \subseteq \text{Env} \times \text{Env}$, predicates φ and ψ , and $X \subseteq \text{Env}$:

- (a) $\llbracket \varphi \rrbracket (X) = \langle \varphi \rangle \cap X$
- **(b)** $R(\langle \varphi \wedge \psi \rangle) = (\llbracket \varphi \rrbracket; R)(\langle \psi \rangle))$

$$\begin{split} \eta' \in \llbracket \varphi \rrbracket(X) & \Leftrightarrow & \exists \eta \in X \text{ s.t. } (\eta, \eta') \in \llbracket \varphi \rrbracket \\ & \Leftrightarrow & \exists \eta \in X \text{ s.t. } \eta = \eta' \text{ and } \eta \in \langle \varphi \rangle \\ & \Leftrightarrow & \eta' \in X \cap \langle \varphi \rangle \end{split}$$

Lemma

For $R \subseteq \text{Env} \times \text{Env}$, predicates φ and ψ , and $X \subseteq \text{Env}$:

- (a) $\llbracket \varphi \rrbracket (X) = \langle \varphi \rangle \cap X$
- **(b)** $R(\langle \varphi \wedge \psi \rangle) = (\llbracket \varphi \rrbracket; R)(\langle \psi \rangle)$

Proof (b):

$$\begin{split} \langle \varphi \wedge \psi \rangle &= \langle \varphi \rangle \cap \langle \psi \rangle = \llbracket \varphi \rrbracket (\langle \psi \rangle) \\ \text{So } R(\langle \varphi \wedge \psi \rangle) &= R(\llbracket \varphi \rrbracket (\langle \psi \rangle)) \\ &= (\llbracket \varphi \rrbracket; R)(\langle \psi \rangle) \quad \text{(see Lemma 1(b))} \end{split}$$

Inductive case 2: Conditional rule

$$\frac{\{\varphi \land g\} P \{\psi\} \qquad \{\varphi \land \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi} \{\psi\}} \qquad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q if $\{\psi\}$ is valid.

Recall: **[if** g **then** P **else** Q **fi**] = $[g; P] \cup [\neg g; Q]$

```
\begin{split} & \| \mathbf{if} \ g \ \mathbf{then} \ P \ \mathbf{else} \ Q \ \mathbf{fi} \| (\langle \varphi \rangle) \\ &= \| g ; P \| (\langle \varphi \rangle) \cup \| \neg g ; \, Q \| (\langle \varphi \rangle) \qquad \text{(see Lemma 1(b))} \\ &= \| P \| (\langle g \wedge \varphi \rangle) \cup \| Q \| (\langle \neg g \wedge \varphi \rangle) \qquad \text{(see Lemma 2(b))} \\ &\subseteq \langle \psi \rangle \qquad \qquad \text{(by IH)} \end{split}
```

$$\frac{\{\varphi \land g\} P \{\psi\} \qquad \{\varphi \land \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi} \{\psi\}} \qquad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

```
Recall: \llbracket \mathbf{if} \ g \ \mathbf{then} \ P \ \mathbf{else} \ Q \ \mathbf{fi} \rrbracket = \llbracket g; P \rrbracket \cup \llbracket \neg g; Q \rrbracket
```

$$\frac{\{\varphi \land g\} P \{\psi\} \qquad \{\varphi \land \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi} \{\psi\}} \qquad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

```
\begin{split} & \| \mathbf{if} \ g \ \mathbf{then} \ P \ \mathbf{else} \ Q \ \mathbf{fi} \| (\langle \varphi \rangle) \\ & = \| g ; P \| (\langle \varphi \rangle) \cup \| \neg g ; \, Q \| (\langle \varphi \rangle) \qquad \text{(see Lemma 1(b))} \\ & = \| P \| (\langle g \wedge \varphi \rangle) \cup \| Q \| (\langle \neg g \wedge \varphi \rangle) \qquad \text{(see Lemma 2(b))} \\ & \subseteq \langle \psi \rangle \qquad \qquad \text{(by IH)} \end{split}
```

$$\frac{\{\varphi \land g\} P \{\psi\} \qquad \{\varphi \land \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi} \{\psi\}} \qquad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

$$\frac{\{\varphi \land g\} P \{\psi\} \qquad \{\varphi \land \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi} \{\psi\}} \qquad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

$$\frac{\{\varphi \wedge g\} P \{\psi\} \qquad \{\varphi \wedge \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi} \{\psi\}} \qquad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

$$\frac{\{\varphi \wedge g\} P \{\psi\} \qquad \{\varphi \wedge \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi} \{\psi\}} \qquad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

$$\begin{split} & [\![\textbf{if } g \textbf{ then } P \textbf{ else } Q \textbf{ fi}]\!] (\langle \varphi \rangle) \\ &= [\![g ; P]\!] (\langle \varphi \rangle) \cup [\![\neg g ; Q]\!] (\langle \varphi \rangle) \qquad \text{(see Lemma 1(b))} \\ &= [\![P]\!] (\langle g \wedge \varphi \rangle) \cup [\![Q]\!] (\langle \neg g \wedge \varphi \rangle) \qquad \text{(see Lemma 2(b))} \\ &\subseteq \langle \psi \rangle \qquad \qquad \text{(by IH)} \end{split}$$

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

Assume $\{\varphi \land g\} P \{\varphi\}$ is valid. Need to show that $\{\varphi\}$ while g do P od $\{\varphi \land \neg g\}$ is valid.

Recall: $\llbracket \mathbf{while} \ g \ \mathbf{do} \ P \ \mathbf{od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$

$$\llbracket g; P \rrbracket (\langle \varphi \rangle) = \llbracket P \rrbracket (\langle g \wedge \varphi \rangle) \qquad \text{(see Lemma 2(b))}$$

So
$$[g; P]^*(\langle \varphi \rangle) \subseteq \langle \varphi \rangle$$
 (see Corollary)

So
$$[g; P]^*$$
; $[\neg g](\langle \varphi \rangle) = [\neg g]([g; P]^*(\langle \varphi \rangle))$ (see Lemma 1(c))

$$\llbracket \neg g \rrbracket (\langle arphi
angle)$$
 (see Lemma $1(\mathsf{a})$

$$(\neg g \land \varphi)$$
 (See Lemma 2(a)) $^{\circ}$

$$\frac{\{\varphi \wedge g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \wedge \neg g\}} \quad \text{(loop)}$$

Assume $\{\varphi \land g\} P \{\varphi\}$ is valid. Need to show that $\{\varphi\}$ while g do P od $\{\varphi \land \neg g\}$ is valid.

Recall: $\llbracket \mathbf{while} \ g \ \mathbf{do} \ P \ \mathbf{od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$

$$[g; P](\langle \varphi \rangle) = [P](\langle g \wedge \varphi \rangle)$$
 (see Lemma 2(b))

$$\subseteq \langle \varphi \rangle$$
 (IH)

So
$$[g; P]^*(\langle \varphi \rangle) \subseteq \langle \varphi \rangle$$
 (see Corollary)

So
$$[g; P]^*$$
; $[\neg g](\langle \varphi \rangle) = [\neg g]([g; P]^*(\langle \varphi \rangle))$ (see Lemma 1(c))

$$\llbracket \neg g \rrbracket (\langle arphi
angle)$$
 (see Lemma 1(a))

$$=\langle \neg g \wedge \varphi \rangle$$
 \Leftrightarrow (See Lemma 2(a)) $\circ \circ \circ$

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

Assume $\{\varphi \land g\} P \{\varphi\}$ is valid. Need to show that $\{\varphi\}$ while g do P od $\{\varphi \land \neg g\}$ is valid.

Recall: $\llbracket \mathbf{while} \ g \ \mathbf{do} \ P \ \mathbf{od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$

$$\llbracket g; P \rrbracket (\langle \varphi \rangle) = \llbracket P \rrbracket (\langle g \wedge \varphi \rangle) \qquad \text{(see Lemma 2(b))}$$

$$\subseteq \langle \varphi \rangle$$
 (IH)

So
$$[g; P]^*(\langle \varphi \rangle) \subseteq \langle \varphi \rangle$$
 (see Corollary)

So
$$[g; P]^*$$
; $[\neg g](\langle \varphi \rangle) = [\neg g]([g; P]^*(\langle \varphi \rangle))$ (see Lemma 1(c))

$$\llbracket \neg g \rrbracket (\langle \varphi \rangle)$$
 (see Lemma 1(a))

$$=\langle \neg g \land \varphi \rangle$$
 $\langle \text{See Lemma 2(a)} \rangle$

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

Recall:
$$\llbracket \mathbf{while} \ g \ \mathbf{do} \ P \ \mathbf{od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$$

$$[g; P](\langle \varphi \rangle) = [P](\langle g \wedge \varphi \rangle)$$
 (see Lemma 2(b))

$$\subseteq \langle \varphi \rangle$$
 (IH)

So
$$[g; P]^*(\langle \varphi \rangle) \subseteq \langle \varphi \rangle$$
 (see Corollary)

So
$$[g; P]^*$$
; $[\neg g](\langle \varphi \rangle) = [\neg g]([g; P]^*(\langle \varphi \rangle))$ (see Lemma 1(c))

$$\llbracket \neg g \rrbracket (\langle arphi
angle)$$
 (see Lemma 1(a))

$$=\langle \neg g \wedge \varphi \rangle$$
 $\langle \text{See Lemma 2(a)} \rangle$ 290

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

Recall:
$$\llbracket \mathbf{while} \ g \ \mathbf{do} \ P \ \mathbf{od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$$

$$[g; P](\langle \varphi \rangle) = [P](\langle g \wedge \varphi \rangle)$$
 (see Lemma 2(b))
$$\subseteq \langle \varphi \rangle$$
 (IH)

So
$$[g; P]^*(\langle \varphi \rangle) \subseteq \langle \varphi \rangle$$
 (see Corollary)

So
$$[g; P]^*$$
; $[\neg g](\langle \varphi \rangle) = [\neg g]([g; P]^*(\langle \varphi \rangle))$ (see Lemma 1(c))

$$=\langle \neg g \land \varphi \rangle$$
 $\langle \text{See Lemma 2}(\overline{a}) \rangle$

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

Recall:
$$\llbracket \mathbf{while} \ g \ \mathbf{do} \ P \ \mathbf{od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$$

$$[g; P](\langle \varphi \rangle) = [P](\langle g \wedge \varphi \rangle)$$
 (see Lemma 2(b))

$$\subseteq \langle \varphi \rangle$$
 (IH)

So
$$[g; P]^*(\langle \varphi \rangle) \subseteq \langle \varphi \rangle$$
 (see Corollary)

So
$$[g; P]^*$$
; $[\neg g](\langle \varphi \rangle) = [\neg g]([g; P]^*(\langle \varphi \rangle))$ (see Lemma 1(c))
 $\subseteq [\neg g](\langle \varphi \rangle)$ (see Lemma 1(a))

$$=\langle \neg g \land \varphi \rangle$$
 \Leftrightarrow Lemma 2(a) $?$

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

Recall: **[while**
$$g$$
 do P **od]** = **[** g ; P **]***; **[** $\neg g$ **]**

$$[\![g;P]\!](\langle\varphi\rangle) = [\![P]\!](\langle g \wedge \varphi\rangle) \qquad \text{(see Lemma 2(b))}$$

$$\subset \langle\varphi\rangle \qquad \qquad \text{(IH)}$$

So
$$[g; P]^*(\langle \varphi \rangle) \subseteq \langle \varphi \rangle$$
 (see Corollary)

So
$$[g; P]^*$$
; $[\neg g](\langle \varphi \rangle) = [\neg g]([g; P]^*(\langle \varphi \rangle))$ (see Lemma 1(c))

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

Recall:
$$\llbracket \mathbf{while} \ g \ \mathbf{do} \ P \ \mathbf{od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$$

$$[\![g;P]\!](\langle\varphi\rangle) = [\![P]\!](\langle g \wedge \varphi\rangle) \qquad \text{(see Lemma 2(b))}$$

$$\subseteq \langle\varphi\rangle \qquad \qquad \text{(IH)}$$
So $[\![g;P]\!]^*(\langle\varphi\rangle) \subseteq \langle\varphi\rangle \qquad \qquad \text{(see Corollary)}$
So $[\![g;P]\!]^*; [\![\neg g]\!](\langle\varphi\rangle) = [\![\neg g]\!]([\![g;P]\!]^*(\langle\varphi\rangle)) \qquad \text{(see Lemma 1(c))}$

$$\subseteq [\![\neg g]\!](\langle\varphi\rangle) \qquad \qquad \text{(see Lemma 1(a))}$$

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

Assume $\{\varphi \land g\} P \{\varphi\}$ is valid. Need to show that $\{\varphi\}$ while g do P od $\{\varphi \land \neg g\}$ is valid.

Recall: $\llbracket \mathbf{while} \ g \ \mathbf{do} \ P \ \mathbf{od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$

$$[g; P](\langle \varphi \rangle) = [P](\langle g \wedge \varphi \rangle)$$
 (see Lemma 2(b))
$$\subseteq \langle \varphi \rangle$$
 (IH)

(see Corollary)

(see Lemma 2(a))

So
$$\llbracket g; P \rrbracket^*(\langle \varphi \rangle) \subseteq \langle \varphi \rangle$$
 (see Corollary)
So $\llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket(\langle \varphi \rangle) = \llbracket \neg g \rrbracket(\llbracket g; P \rrbracket^*(\langle \varphi \rangle))$ (see Lemma 1(c))

$$\subseteq \llbracket \neg g \rrbracket (\langle \varphi \rangle) \qquad \qquad \text{(see Lemma 1(a))}$$

 $=\langle \neg g \wedge \varphi \rangle$

$$\frac{\varphi' \to \varphi \qquad \{\varphi\} \ P \{\psi\} \qquad \psi \to \psi'}{\{\varphi'\} \ P \{\psi'\}} \qquad \text{(cons)}$$

Assume $\{\varphi\} P \{\psi\}$ is valid and $\varphi' \to \varphi$ and $\psi \to \psi'$. Need to show that $\{\varphi'\} P \{\psi'\}$ is valid.

$$\frac{\varphi' \to \varphi \qquad \{\varphi\} P \{\psi\} \qquad \psi \to \psi'}{\{\varphi'\} P \{\psi'\}} \qquad \text{(cons)}$$

Assume $\{\varphi\} P \{\psi\}$ is valid and $\varphi' \to \varphi$ and $\psi \to \psi'$. Need to show that $\{\varphi'\} P \{\psi'\}$ is valid.

$$\frac{\varphi' \to \varphi \qquad \{\varphi\} P \{\psi\} \qquad \psi \to \psi'}{\{\varphi'\} P \{\psi'\}} \qquad \text{(cons)}$$

Assume $\{\varphi\} P \{\psi\}$ is valid and $\varphi' \to \varphi$ and $\psi \to \psi'$. Need to show that $\{\varphi'\} P \{\psi'\}$ is valid.

$$\frac{\varphi' \to \varphi \qquad \{\varphi\} P \{\psi\} \qquad \psi \to \psi'}{\{\varphi'\} P \{\psi'\}} \qquad \text{(cons)}$$

Assume $\{\varphi\} P \{\psi\}$ is valid and $\varphi' \to \varphi$ and $\psi \to \psi'$. Need to show that $\{\varphi'\} P \{\psi'\}$ is valid.

$$\frac{\varphi' \to \varphi \qquad \{\varphi\} P \{\psi\} \qquad \psi \to \psi'}{\{\varphi'\} P \{\psi'\}} \qquad \text{(cons)}$$

Assume $\{\varphi\} P \{\psi\}$ is valid and $\varphi' \to \varphi$ and $\psi \to \psi'$. Need to show that $\{\varphi'\} P \{\psi'\}$ is valid.

$$\llbracket P \rrbracket (\langle \varphi' \rangle) \subseteq \llbracket P \rrbracket (\langle \varphi \rangle) \text{ (see Lemma 1(a))}$$

$$\subseteq \langle \psi \rangle \text{ (IH)}$$

$$\subseteq \langle \psi' \rangle$$

Soundness of Hoare Logic

Theorem

$$\mathit{If} \vdash \{\varphi\} \, \mathit{P} \, \{\psi\} \, \mathit{then} \models \{\varphi\} \, \mathit{P} \, \{\psi\}$$

Summary

- Set theory revisited
- Soundness of Hoare Logic
- Completeness of Hoare Logic

Theorem (Gödel's Incompleteness Theorem)

- ⇒ There are true statements that do not have a proof
- ⇒ Because of (cons) there are valid triples that result from valid, but unprovable, consequences.
- ⇒ Hoare Logic is not complete

Theorem (Gödel's Incompleteness Theorem)

- ⇒ There are true statements that do not have a proof.
- ⇒ Because of (cons) there are valid triples that result from valid, but unprovable, consequences.
- ⇒ Hoare Logic is not complete.

Theorem (Gödel's Incompleteness Theorem)

- ⇒ There are true statements that do not have a proof.
- ⇒ Because of (cons) there are valid triples that result from valid, but unprovable, consequences.
- \Rightarrow Hoare Logic is not complete.

Theorem (Gödel's Incompleteness Theorem)

- ⇒ There are true statements that do not have a proof.
- ⇒ Because of (cons) there are valid triples that result from valid, but unprovable, consequences.
- ⇒ Hoare Logic is not complete.

Relative completeness of Hoare Logic

Theorem (Relative completeness of Hoare Logic)

With an oracle that decides the validity of predicates,

$$\textit{if} \ \models \left\{\varphi\right\}P\left\{\psi\right\} \ \textit{then} \ \vdash \left\{\varphi\right\}P\left\{\psi\right\}.$$

