COMP2111 Week 6

Term 1, 2019
Hoare Logic Il



Soundness of Hoare Logic

Hoare Logic is sound with respect to the semantics given. That is,

Theorem
IfE{o} P{y} then = {o} P {¥} J
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Some results on relational images
Lemma
For any binary relations R,S C X x Y and subsets A, B C X:
(a) If AC B then R(A) C R(B)
(b) R(A)US(A) = (RUS)(A)
(c) R(S5(A)) = (S: R)(A)

Proof (c):

z € R(S(A)) Jy € S(A)s.t. (y,z) €R
IxeA yeSA) st (x,y)eSand (y,z) R
dx € As.t. (x,z) € (S5;R)

z e (S;R)(A)

to ¢
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Some results on relational images

Corollary
If R(A) C A then R*(A) C A

Proof:
R(AYCA = R™YA)=R(R(A)) C R'(A)
= RTY{A)CRA)CA
So R*(A) = (O R’) (A)
i=0
- L R'(A)
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Soundness of Hoare Logic

Theorem

It {p} P{} then |= {o} P {4}

Proof:
By induction on the structure of the proof.
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Base case: Assignment rule

el x=efp)

Need to show {p[e/x]} x := e {¢} is always valid. That is,
[x = el((¢le/x])) € (@)
Observation: [p[e/x]]" = [¢]" where ' = n[x s [¢]"]

So if n € (ple/x]) then ' € ()

Recall: (n,7") € [x := €] if and only if "' = n[x — [e]"],

So [[x := e](n) € (p) for all n € (¢[e/x])



Base case: Assignment rule

el x=efp)

Need to show {[e/x]} x := e {¢} is always valid. That is,
[x == el({¢le/x])) < (#).
Observation: [ioe/x]]" = [¢]” where 5/ = nlx — [e]”]
So if 1 € (p[e/x]) then i’ € (p)
Recall: (1,7") € [x := €] if and only if 5" = n[x — [e]"],
So [x := e](n) € () for all n € (p[e/x])
So [x := e]({¢le/x])) € (¥)
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Inductive case 1: Sequence rule

{et P{v}  {v}Q{p} (seq)
{0} P; Q{p}

Assume {¢} P{¢} and {¢} Q{p} are valid. Need to show that
{0} P; Q{p} is valid.

Recall: [P; Q] = [P]; [@Q]

So: [P; Q1({¢)) = [QI([PI({¥))) (see Lemma 1(c))
By IH: [P]({¢)) C () and [Q]((¢)) € (p)

So: [QI(IPI({¢))) € [QI((¥)) S (p) (see Lemma 1(a))




Two more useful results

Lemma
For R C ENvV X ENV, predicates ¢ and 1, and X C ENV:

(@) [el(X) =(p) N X
(b) R A)) = ([l R)({%)))




Two more useful results

Lemma
For R C ENvV X ENV, predicates ¢ and 1, and X C ENV:

(@) [el(X) =(p) N X
(b) R A)) = ([l R)({%)))

Proof (a):



Two more useful results

Lemma
For R C ENvV X ENV, predicates ¢ and 1, and X C ENV:
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Two more useful results

Lemma
For R C ENvV X ENV, predicates ¢ and 1, and X C ENV:

(@) [el(X) =(p) N X
(b) R A)) = ([l R)({%)))

Proof (b):
(eny) = (o) N ) =[Ll((¥)

So R({p A)) = R([LI(())
= ([¢]; R)((¥)) (see Lemma 1(b))
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{onegtP{y}  {pA—g}Q{v}
{¢}if g then P else Q fi{y}

(if)
Assume {p A g} P{¢} and {p A —g} Q {9} are valid. Need to
show that {¢}if g then P else Q fi{¢} is valid.

Recall: [if g then P else Q fi] = [g; P] U [~g; Q]

[if g then P else Q fi]({y))
= [g: PI({¥)) U[~&: QI({¢))  (see Lemma 1(b))
= [PI({g A ¢)) U[QI({(—g A ) (see Lemma 2(b))
C (¥) (by IH)
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Inductive case 3: While rule

{r g} P{s}
{¢} while g do P od{¢p A =g}

Assume {pAg}P{p} is valid. Need
{¢} while g do P od {¢ A —g}is valid.

Recall: [while g do P od] = [g; P]"; [¢]

(loop)

to

show

that



Inductive case 3: While rule

Ng}P
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{¢} while g do P od{¢p A =g}
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Inductive case 3: While rule

{eng} P{e}
{4} while g do P od {¢ A =g} (loop)

Assume {pAg}P{p} is valid. Need to show that
{¢} while g do P od {¢ A —g}is valid.

Recall: [while g do P od] = [g; P]"; [¢]
[g: P1({¥)) = [PI({(g A ¢)) (see Lemma 2(b))
() (IH)

So [g: PT"({¢)) < (¢) (see Corollary)
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Inductive case 3: While rule

Ng}P
RUIY-I8(D; (loop)
{¢} while g do P od{¢p A =g}
Assume {pAg}P{p} is valid. Need to show that

{0} while g do P od {¢ A —g}is valid.
Recall: [while g do P od] = [g; P]"; [-¢]
[e: PI({¥)) = [PI({g A ¢)) (see Lemma 2(b))
(o) (1H)
So [g;: PI"({¢)) < (¥) (see Corollary)
)
)

So [g: PI"; [-&l((¢)) = [-gl(lg: PI"({«#))) (see Lemma 1(c)
[-g]({¥)) (see Lemma 1(a)

N

N
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{(p}whilgpg/\di}PPc;{:lp ip nogy UooP)
Assume {pAgtP{p} is valid. Need to show that
{} while g do P od {¢ A —glis valid.
Recall: [while g do P od] = [g; P]"; [¢]
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So [g: PI*({#)) < (¥) (see Corollary)
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Inductive case 4: Consequence rule

o =  A{ptP{Y} Y=
{¢'} P{y'}

Assume {¢} P {1} is valid and ¢ — ¢ and ) — 1)'. Need to show
that {¢'} P {¢'} is valid.

Observe: If ¢ — ¢ then (¢') C ()

(cons)
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Inductive case 4: Consequence rule

o =  A{ptP{Y} Y=
{¢'} P{y'}

Assume {¢} P {1} is valid and ¢ — ¢ and ) — 1)'. Need to show
that {¢'} P {¢'} is valid.

Observe: If ¢ — ¢ then (¢') C ()

(cons)

[PI((¥") < [PI({¢)) (see Lemma 1(a))
C () (1H)
c @)
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Incompleteness

Theorem (Godel’s Incompleteness Theorem)

There is no proof system that can prove every valid first-order
sentence about arithmetic over the natural numbers.

= There are true statements that do not have a proof.

= Because of (cons) there are valid triples that result from valid,
but unprovable, consequences.

= Hoare Logic is not complete.



Relative completeness of Hoare Logic

Theorem (Relative completeness of Hoare Logic)

With an oracle that decides the validity of predicates,

if = {e} P{y} then {p} P{y}.




