
COMP1511 - Programming
Fundamentals

Term 2, 2019 - Lecture 20

What did we cover yesterday?
Exam

● Exam format
● Difficulty of Questions
● How to approach it

Course Recap Part 1

● The earlier parts of the course

What are we covering today?
Course Recap Part 2

● The non-technical part of the course
● The second half of the course (all the spikey bits)

Programming is much more than just code
COMP1511 Programming Skills Topics in the order they were taught

● History of Computing
● Problem Solving
● Code Style
● Code Reviews
● Debugging
● Theory of a Computer
● Professionalism

Problem Solving
Approach Problems with a plan!

● Big problems are usually collections of small problems
● Find ways to break things down into parts
● Complete the ones you can do easily
● Test things in parts before moving on to other parts

Code Style
Half the code is for machines, the other half for humans

● Remember . . . readability == efficiency
● Also super important for working in teams
● It's much easier to isolate problems in code that you fully understand
● It's much easier to get help if someone can skim read your code and

understand it
● It's much easier to modify code if it's written to a good style

Code Reviews
No one has to work without help

● If we read each other's code . . .
● We learn more
● We help each other
● We see new ways of approaching things
● We are able to teach (which is a great way to cement knowledge)

Debugging
The removal of bugs (errors)

● Syntax errors are code language errors
● Logical errors are the code not doing what we intend

● The first step is always: Get more information!
● Once you know exactly what your program is doing around a bug, it's

easier to fix it
● Separate things into their parts to isolate where an error is
● Always try to remember what your intentions are for your code rather

than getting bogged down

Professionalism
There's so much more to computing than code

● What's the most important thing for a Software Professional?
● It's not coding!
● It's caring about what you do and the people around you!
● Even in terms of pure productivity, it's going to get more work done long

term than being good at programming
● If you care about your work, you will be fulfilled by it
● If you care about your coworkers you'll teach and learn from them and

you'll all grow into a great team

Break Time
A thought exercise . . . the future

● Why are you doing computer science (or related field)?
● Is there something you'd like to do with these skills?

○ Jobs?
○ Research?
○ Change the World?

● How do you want to use your time at UNSW to push yourself towards
your goals?

● Note: You don't need all the answers yet, but it's useful to start
thinking

Pointers
Variables that refer to other variables

● A pointer aims at memory (actually stores a memory address)
● That memory can be another variable already in the program
● It can also be allocated memory
● The pointer allows us to access another variable

● * dereferences the pointer (access the variable it's pointing at)
● & gives the address of a variable (like making a pointer to it)
● -> is used with structs to allow a pointer to access a field inside

Simple Pointers Code
int main (void) {
 int i = 100;
 // the pointer ip will aim at the integer i
 int *ip = &i;
 printf("The value of the variable at address %p is %d\n", ip, *ip);

 // this second print statement will show the same address
 // but a value one higher than the previous
 increment(ip);
 printf("The value of the variable at address %p is %d\n", ip, *ip);
}

void increment (int *i) {
*i = *i + 1;

}

Structures
Custom built types made up of other types

● structs are declared before use
● They can contain any other types (including other structs and arrays)
● We use a . operator to access elements they contain
● If we have a pointer to a struct, we use -> to access elements

Structs in code
struct spaceship {
 char name[MAX_NAME_LENGTH];
 int engines;
 int wings;
};

int main (void) {
 struct spaceship xwing;
 xwing.name = "Red 5";
 xwing.engines = 4;
 xwing.wings = 4;

 struct spaceship *myShip = &xwing;

 // my ship takes a hit
 myShip->engines--;
 myShip->wings--;
}

Memory
Our programs are stored in the computer's memory while they run

● All our code will be in memory
● All our variables also
● Variables declared inside a set of curly braces will only last until those

braces close (what goes on inside curly braces stays inside curly braces)
● If we want some memory to last longer than the function, we allocate it
● malloc() and free() allow us to allocate and free memory
● sizeof provides an exact size in bytes so malloc knows how much we need

Memory code
struct spaceship {
 char name[MAX_NAME_LENGTH];
 int engines;
 int wings;
};

int main (void) {
 struct spaceship *myShip = malloc(sizeof (struct spaceship));
 myShip->name = "Millennium Falcon";
 myShip->engines = 1;
 myShip->wings = 0;

 // Lost my ship in a Sabacc game, free its memory
 free(myShip);
}

Linked Lists
Structs for nodes that contain pointers to the same struct

● Nodes can point to each other in a chain to form a linked list
● Convenient because:

○ They're not a fixed size (can grow or shrink)
○ Elements can be inserted or removed easily anywhere in the list

● The nodes may be in separate parts of memory

Node

Next

Data

Node

Next

Data

Node

Next

Data

Node

Next

Data
Head NULL

Linked Lists in code
struct location {
 char name[MAX_NAME_LENGTH];
 struct location *next;
};

int main (void) {
 struct location *head = NULL;
 head = addNode("Tatooine", head);
 head = addNode("Yavin IV", head);
}

// Add a node to the start of a list and return the new head
struct location *addNode(char *name, struct location *list) {
 struct location *newNode = malloc(sizeof(struct location));
 strcpy(newNode->name, name);
 newNode->next = list;
 return newNode;
}

Complications in Pointers, Structs and Memory
What's a pointer?

● It is a number variable that stores a memory address
● Any changes made to pointers will only change where they're aiming

What does * do?

● It allows us to access the variable that the pointer aims at
● This is called "dereferencing" (because the pointer is a reference to

something)

Complications in Pointers, Structs and Memory
What about -> ?

● Specifically access a struct at the end of a pointer
● -> must point at one of the fields in the struct that the pointer aims at
● It will dereference the pointer AND access the field

Pointers to structs that contain pointers to other structs!

● Linked Lists can get pretty serious like this

Complicated Pointer Code

int main (void) {
 // create a list with two locations
 struct location *head = addNode("Dantooine", head);
 head = addNode("Alderaan", head);

 // create a pointer to the first location
 struct location *tatooine = head;

 // set head to a newly created location
 head = malloc((sizeof(struct location));

 // What has happened to the tatooine pointer now?
 // What has happened to the variable that the head and tatooine
 // both pointed at?
}

Pointer Arithmetic
A program's memory (not to scale)

Next

Alderaanhead

Next

Dantooine

NULL

Create a linked list of two locations
with a head pointer aimed at the
first location

Pointer Arithmetic
A program's memory (not to scale)

Next

Alderaan
head

Next

Dantooine

NULL

struct location *tatooine = head
This line creates a new pointer that's a copy of the
head pointer. It is given the same value as head,
which means it's aimed at the same memory address

tatooine

Pointer Arithmetic
A program's memory (not to scale)

Next

Alderaan
head

Next

Dantooine

NULL

head = malloc((sizeof(struct location));
This line allocates new memory and assigns the address of
this new allocation to the head pointer.
Changing head doesn't change anything it was pointing at!

tatooine<>

<>

New node
allocated

Keeping track of pointers
realm->lair->next->enemies->next->name = ????

● This is code that might work in most Castle Defense implementations

● Remember:
● Changing a pointer changes its value, a memory address
● Changing a pointer will change where it's aiming, nothing more!
● Once you use -> on a pointer, you're now looking at a struct field
● This means you are not changing that pointer, you have dereferenced it

and accessed a field in the struct it's aimed at

Abstract Data Types
Separating Declared Functionality from the Implementation

● Functionality declared in a Header File
● Implementation in a C file
● This allows us to hide the Implementation
● It protects the raw data from incorrect access
● It also simplifies the interface when we just use provided functions

Abstract Data Types Header code

// ship type hides the struct that it is
// implemented as
typedef struct shipInternals *ship;

// functions to create and destroy ships
ship shipCreate(char* name);
void shipFree(ship);

// set off on a voyage of discovery
ship voyage(ship, int years);

Abstract Data Types Implementation
// ship type hides the struct that it is implemented as
struct shipInternals {
 char name[MAX_NAME_LENGTH];
};

ship shipCreate(char* name) {
 ship newShip = malloc(sizeof (struct shipInternals));
}
void shipFree(ship) {
 free(ship);
}
// set off on a voyage of discovery
ship voyage(ship, int years) {
 int discoveries = 0, yearsPast = 0;
 while(yearsPast < years) {
 discoveries++;
 }
}

Abstract Data Types Main

#include "ship.h"

int main (void) {
 ship myShip = newShip("Enterprise");
 myShip = voyage(myShip, 5);
}

● Including the Header allows us access to the functions
● The main doesn't know how they're implemented
● We can just trust that the functions do what they say

So, you're programming now . . .
Where do we go from here?

● There's so much you can do with code now
● But there's also so much to learn
● Programming has more to offer than anyone can learn in a lifetime
● There's always something new you can discover
● It's up to you to decide what you want from it and how much of your life

you want to commit to it
● Remember to care for yourselves and your work
● Enjoy yourselves, keep working as hard as you can and I hope to bask in

your future glory

COMP1511

Good luck, have fun :)

