Interrupts (I)

Lecturer: Sri Parameswaran
Notes by: Annie Guo

Lecture overview

e Introduction to Interrupts
Interrupt system specifications
Multiple sources of Interrupts
Interrupt priorities

e Interrupts in AVR
Interrupt Vector Table
Interrupt Service Routines

System Reset
Watchdog Reset

CPU Interacts with I/O

Two approaches:

e Polling
Software queries I/O devices.
No extra hardware needed.

Not efficient.

CPU may waste processor cycles to query a device even if it
does not need any service.

e Interrupts
I/O devices generate signals to request services from CPU .
Need special hardware to implement interrupt services.

Efficient.

A signal is generated only if the I/O device needs services from
CPU.

Interrupt Systems

e An Interrupt system implements interrupt
services

e |t basically performs three tasks:
Recognize interrupt events

Respond to the interrupts
Resume normal programmed task

Recognize Interrupt Events

e Interrupt events
Associated with interrupt signals:
In different forms, including levels and edges.

Can be multiple and synchronous

Namely, there may be many sources to generate an
Interrupts; a number of interrupts can be generated at
the same time.

e Approaches are required to:
|dentify an interrupt event among multiple sources

Determine which interrupts to serve if there are
multiple simultaneous interrupts °

Respond to Interrupts

e Handling interrupt
Wait for the current instruction to finish.
Acknowledge the interrupting device.

Branch to the correct interrupt service routine
(interrupt handler) to service interrupting device.

Resume Normal Task

e Return to the interrupted program at the point
It was interrupted.

Interrupt Process Control

e Interrupts can be enabled or disabled

e Can be controlled in two ways:

Software control

Allow programmers to enable and disable selected/all
Interrupts.

Hardware control

Disable further interrupts while an interrupt is being
serviced

Interrupt Recognition and
Acknowledgement Hardware

INTERR-
UPTING
DEVICE

Pending

: Interrupt

IRQ | | Signal IRQ-FF P

"| conditioning ~ Set j—>

Reset
INTE-FF

» Set Interrupt

Reset Enable

CPU

A

A

A

Interrupt signal to
sequence
controller

Interrupt ack from

sequence
controller

SEQUENCE

CONTROLLER

Disable interrupt
instruction

Enable interrupt
instruction

Return from
interrupt
instruction

Interrupt Recognition and Ack.

e An Interrupt Request (IRQ) may occur at any time.
It may have rising or falling edges or high or low levels.
Frequently it is an active-low signal

multiple devices are wire-ORed together.
= Recall open-collector gates

e Signal Conditioning Circuit detects these different

types of signals.

e Interrupt Request Flip-Flop (IRQ-FF) records the
Interrupt request until it is acknowledged.

When IRQ-FF is set, it generates a pending interrupt
signal that goes towards the Sequence Controller.

IRQ-FF is reset when CPU acknowledges the interrupt with
INTA signal.

Interrupt Recognition and Ack.
(cont.)

e Interrupts can be enabled and disabled by software
Instructions, which is supported by the hardware
Interrupt Enable Flip-Flop (INTE-FF).

e When the INTE-FF is set, all interrupts are enabled
and the pending interrupt is allowed through the
AND gate to the sequence controller.

e The INTE-FF is reset in the following cases.
CPU acknowledges the interrupt.

CPU is reset.
Disable interrupt instruction is executed.

11

Interrupt Recognition and Ack.
(cont.)

e An interrupt acknowledge signal is generated by the
CPU when the current instruction has finished
execution and CPU has detected the IRQ.

This resets the IRQ-FF and INTE-FF and signals the
Interrupting device that CPU is ready to execute the
Interrupting device routine.
e At the end of the interrupt service routine, CPU
executes a return-from-interrupt instruction.

Part of this instruction’s job is to set the INTE-FF to re-
enable interrupts.

e Nested interrupts can happen If the INTE-FF is set
during an interrupt service routine

An interrupt can therefore interrupt interrupting interrupts.

Multiple Sources of Interrupts

e To handle multiple sources of interrupts, the
Interrupt system must
|dentify which device has generated the IRQ.

Using polling approach
Using vectoring approach

Resolve simultaneous interrupt requests
using prioritization schemes.

13

Polled Interrupts

e Software, instead of hardware, Is responsible
for finding the interrupting source.

The device must have logic to generate the IRQ
signal and to set an “l did it” bit in a status register
that is read by CPU.

The bit is reset after the register has been read.

14

Polled Interrupts Execution sell.

Flow oot

Device generates

IRQ

CPU polls
status registers
of all devices

CPU found
the interrupting device

CPU executes
the service routine
for that device

15

Polled Interrupt Logic

Logic to
generate IRQ

IRQ

<

Status register

Data

Address

Control

16

Vectored Interrupts

e CPU’s response to IRQ is to assert INTA.

e The Interrupting device uses INTA to place
Information that identifies itself, called the
vector, onto the data bus for CPU to read.

e CPU uses the vector to execute the interrupt
service routine.

17

Vectored Interrupting Device

Hardware

INTA

RO

Logic to

generate IRQ)

Logic to reset

IRQ

Data

Address

Control

Multiple Interrupt Masking

e CPU has multiple IRQ input pins.

e Masking enables some interrupts and
disables other interrupts

e CPU designers reserve specific memory
ocations for a vector associated with each

RQ line.
e Individual disable/enable bit is assigned to
each interrupting source.

19

Multiple Interrupt Masking
Circult

IRQ O

CPU

<—
IRQ 1
4—
IRQ 2
<—

IRQ n

Interrupt O

Interrupt 1

Interrupt 2

Interrupt 3

Interrupt Enable Register

IRQOE

IRQ1E

IRQ2E

IRQ3E

Wb

IRQO

IRQ1

IRQ2

IRQ3

20

Interrupt Priorities

e \When multiple interrupts occur at the same
time, which one will be serviced first?

e Two resolution approaches:

Software resolution

Polling software determines which interrupting source
IS serviced first.

Hardware resolution
Daisy chain.
Others

21

Software Resolution oo

Device generates

IRQ

CPU polls
status registers
of all devices

CPU found
the interrupting device

CPU executes
the service routine
for that device

Selection
Algorithm

22

Daisy Chain Priority sels
Resolution s
IRQ
CPU INTA= Device 1 INTA: Device ZM oo -INLA‘» Device n
Data
Address
Control

23

Daisy Chain Priority
Resolution (cont.)

e CPU asserts INTA that is passed down the
chain from device to device. The higher-
priority device is closer to CPU.

e When the INTA reaches a device that
generated the IRQ, that device puts its
vector on the data bus and does not pass
along the INTA. So lower-priority devices
do NOT receive the INTA.

24

Other Priority Resolutions

e Separate IRQ Lines.

Each IRQ line is assigned a fixed priority. For
example, IRQO has higher priority than IRQ1 and
IRQ1 has higher priority than IRQ2 and so on.

e Hierarchical Prioritization.

Higher priory interrupts are allowed while lower
ones are masked.

e Nonmaskable Interrupts.
Cannot be disabled.
Used for important events such as power failure.

Transferring Control to
Interrupt Service Routine

e Hardware needs to save the return address.
Most processors save the return address on the stack.

e Hardware may also save some registers such as
program status register.

AVR does not save any registers. It is the programmers’
responsibility to save the program status register and
conflict registers.

e The delay from the time the IRQ is generated by the
Interrupting device to the time the Interrupt Service
Routine (ISR) starts to execute is called interrupt
latency.

26

Interrupt Service Routine

e A seguence of code to be executed when the
corresponding interrupt is responded by CPU.
e Interrupt service routine is a special subroutine,

therefore can be constructed with three parts:
Prologue:

Code for saving conflict registers on the stack.
Body:
Code for doing the required task.
Epilogue:
Code for restoring all saved registers from the stack.
The last instruction is the return-from-interrupt instruction.

27

Software Interrupt

e Software interrupt is the interrupt generated by
software without a hardware-generated-IRQ.

e Software interrupt is typically used to implement
system calls in OS.

e Some processors have a special machine
Instruction to generate software interrupt.
SWI in ARM.

e AVR does NOT provide a software interrupt
Instruction.

Programmers can use External Interrupts to implement
software interrupts.

28

Exceptions

e Abnormalities that occur during the norma
operation of the processor.

Examples are internal bus error, memory access
error and attempts to execute illegal instructions.

e Some processors handle exceptions in the
same way as interrupts.

AVR does not handle exceptions.

29

Reset

e Reset Is a type of interrupt present in most
processors (including AVR).

e Non-maskable.

e |t does not do other interrupt processes, such
as saving conflict registers. It initializes the
system to some Initial state.

30

Non-Nested Interrupts

e Interrupt service routines cannot be
iInterrupted by another interrupt.

_ Interrupt
Main service
program routine

31

Nested Interrupts

e Interrupt service routines can be interrupted
by another interrupt.

ISR1

ISR2

Ma]—|;SR3
ain
program

32

AVR Interrupts

Basically can be divided into internal and external
Interrupts

Each has a dedicated interrupt vector
Hardware is used to recognize interrupts

To enable an interrupt, two control bits must be set
the Global Interrupt Enable bit (I bit) in the Status Register
Using sei
the enable bit for that interrupt

To disable all maskable interrupts, reset the | bit in
SREG

Using c1i instruction

Priority of interrupts Is used to handle multiple
simultaneous interrupts 33

Set Global Interrupt Flag

e Syntax: sel
e Operands: none

e Operation: | € 1.

e Sets the global interrupt flag (I) in SREG. The
Instruction following SEI will be executed before
any pending interrupts.

e Words: 1
e Cycles: 1
e Example:
sei ; set global interrupt enable

sleep ; enter sleep state, waiting for an interrupt
34

Clear Global Interrupt Flag eset
e Syntax: cli :

e Operands: none

e Operation: |< 0

o Clears the Global interrupt flag in SREG.
Interrupts will be immediately disabled.

e Words: 1

e Cycles: 1

e Example:
in rl8, SREG ; store SREG value
cli ; disable interrupts

; do something very important here
out SREG, ril8 ; restore SREG value

35

Interrupt Response Time

e The Interrupt execution response for all the
enabled AVR interrupts Is basically five clock
cycles minimum.

For saving the Program Counter (2 clock cycles)

For jumping to the interrupt routine (3 clock
cycles)

36

Interrupt Vectors

e Each interrupt has a 4-byte (2-word) interrupt vector,
containing an instruction to be executed after MCU

has accepted the interrupt.

e The lowest addresses in the program memory space
are by default defined as the section for Interrupt
Vectors.

e The priority of an interrupt is based on the position
of its vector in the program memory
The lower the address the higher is the priority level.

e RESET has the highest priority

37

000
000
Interrupt Vectors in Mega2560 | ::
Vector | Program
No. Address® Source Interrupt Definition
1| soooot | meser | B P Poveron Rese, Brovnas et
2 $0002 INTO External Interrupt Request 0
3 $0004 INTH External Interrupt Request 1
4 $0006 INT2 External Interrupt Request 2
5 $0008 INT3 External Interrupt Request 3
6 $000A INT4 External Interrupt Request 4
7 $000C INT5S External Interrupt Request 5
8 $000E INT6 External Interrupt Request 6
9 $0010 INT7 External Interrupt Request 7
10 $0012 PCINTO Pin Change Interrupt Request 0
11 $0014 PCINT1 Pin Change Interrupt Request 1
12 $0016® PCINT2 Pin Change Interrupt Request 2

39

Interrupt Vectors in Mega2560
(cont.)
13 $0018 WDT Watchdog Time-out Interrupt
14 $001A TIMER2 COMPA Timer/Counter2 Compare Match A
15 $001C TIMER2 COMPB Timer/Counter2 Compare Match B
16 $001E TIMERZ2 OVF Timer/Counter2 Overflow
17 $0020 TIMER1 CAPT Timer/Counter1 Capture Event
18 $0022 TIMER1 COMPA Timer/Counter1 Compare Match A
19 $0024 TIMER1 COMPB Timer/Countert Compare Match B
20 $0026 TIMER1 COMPC Timer/Counter1 Compare Match C
21 $0028 TIMER1 QVF Timer/Counter1 Overflow
22 $002A TIMERO COMPA Timer/CounterQ0 Compare Match A
23 $002C TIMERO COMPB Timer/Counter0 Compare match B
24 $002E TIMERO OVF Timer/Counter0 Overflow
25 $0030 SPI, STC SPI Serial Transfer Complete
26 $0032 USARTO RX USARTO Rx Complete
27 $0034 USARTO UDRE USARTO Data Register Empty
28 $0036 USARTO TX USARTO Tx Complete
29 $0038 ANALOG COMP Analog Comparator

L X X
- X X

nterrupt Vectors in Mega 000
0o
(X

(cont.) :

30 $003A ADC ADC Conversion Complete

31 $003C EE READY EEPROM Ready

32 $003E TIMER3 CAPT Timer/Counter3 Capture Event

33 $0040 TIMER3 COMPA | Timer/Counter3 Compare Match A

34 $0042 TIMER3 COMPB | Timer/Counter3 Compare Match B

35 $0044 TIMER3 COMPC | Timer/Counter3 Compare Match C

36 $0046 TIMER3 OVF Timer/Counter3 Overflow

37 $0048 USART1 RX USART1 Rx Complete

38 $004A USART1 UDRE USART1 Data Register Empty

39 $004C USART1 TX USART1 Tx Complete

40 $004E TWI 2-wire Serial Interface

4 $0050 SPM READY Store Program Memory Ready

40

41

Interrupt Vectors in Mega2560
(cont.)
4 $0050 SPM READY Store Program Memory Ready
42 $0052) TIMER4 CAPT Timer/Counter4 Capture Event
43 $0054 TIMER4 COMPA | Timer/Counterd Compare Match A
44 $0056 TIMER4 COMPB | Timer/Counterd Compare Match B
45 $0058 TIMER4 COMPC | Timer/Counterd Compare Match C
46 $005A TIMER4 OVF Timer/Counterd4 Overflow
47 $005C*) TIMERS CAPT Timer/Counter5 Capture Event
48 $005E TIMER5 COMPA | Timer/Counter5 Compare Match A
49 $0060 TIMERS COMPB | Timer/Counterb5 Compare Match B
50 $0062 TIMERS5 COMPC | Timer/Counter5 Compare Match C
51 $0064 TIMERS OVF Timer/Counter5 Overflow
52 $0066'* USART2 RX USART2 Rx Complete
53 $0068 USART2 UDRE USART2 Data Register Empty
54 $006A" USART2 TX USART2 Tx Complete
55 $006C") USART3 RX USART3 Rx Complete
56 $006E®) USART3 UDRE USART3 Data Register Empty
57 $00701 USART3 TX USART3 Tx Complete

Interrupt Process

e \When an interrupt occurs, the Global Interrupt
Enable I-bit is cleared and all interrupts are disabled.

e The interrupt routine can set the I-bit to allow nested
Interrupts

e The I-bit is automatically set when a Return from
Interrupt instruction — RETI — Is executed.

e When the AVR exits from an interrupt, it will always
return to the main program and execute one more
Instruction before any pending interrupt is served.

Reset interrupt is an exception

42

Initialization of Interrupt Vector
Table in Mega2560

e Typically an interrupt vector contains a
branch instruction (JMP or RIMP) that
branches to the first instruction of the
Interrupt service routine.

e Or simply RETI (return-from-interrupt) if you
don’t handle this interrupt.

43

000
u u u [] | | “.‘
Example of IVT Initialization in | ss:
L
o0
Mega2560 :
"m2560def.inc"
0x0000 ; Reset vector is at address 0x0000
rjmp RESET ; Jump to the start of Reset interrupt service routine
; Relative jump is used assuming RESET is not far
INTOaddr ; Addresses of vectors are defined in m2560def.inc
jmp IRQO ; Long jump is used assuming IRQO is very far away
INT1laddr
reti ; Return to the break point without handling the interrupt
RESET: ; The interrupt service routine for RESET starts here.

IRQO: ; The interrupt service routine for IRQO starts here. 44

RESET in Mega2560

e The ATmega2560 has five sources of reset:

Power-on Reset.

The MCU is reset when the supply voltage is below
the Power-on Reset threshold (VPOT).

External Reset.

The MCU is reset when a low level is present on the
RESET pin for longer than the minimum pulse length.

Watchdog Reset.

The MCU is reset when the Watchdog Timer period
expires and the Watchdog is enabled.

45

RESET in Mega2560 (Cont.)

Brown-out Reset.

The MCU is reset when the supply voltage VCC is
below the Brown-out Reset threshold (VBOT) and the
Brown-out Detector is enabled.

JTAG AVR Reset.

The MCU is reset as long as there is a logic one in the
Reset Register, one of the scan chains of the JTAG
system.

e For each reset, there is a flag (bit) in MCU
Control and State Register MCUCSR.

These bits are used to determine the source of
the RESET interrupt.

46

RESET Logic in Mega2560

PEN

»D Q

VCC

]

|

i

DATA BUS

A "

h

MCU Control and Status
Register (MCUCSR)

Ol

’—>L

Pull-up Resistor

Power-On Reset

BODEN
BODLEVEL

Circuit

PORF
BORF
EXTRF
WDRF
JTRF

Brown-Out

Reset Circuit

RESET

]

Pull-up Resistor N\ <
SPIKE > o

FILTER » Reset Circuit —{R

|—

| w

0

JTAG Reset Watchdog o

Register Timer E

|_

1 =

>

o

Watchdog ©

Oscillator
—
Clock CK Delay Counters
Generator | TIMEOUT
S Fy h
CKSEL[3:0]
SUT[1:0]

INTERNAL RESET

47

Atmega2560 Pin Configuration

ocogyPas 1]
{REDAPCINTE) PED 2]
imanay FEs 3]
(HCKIBING PER E
[DCaARINIFES [5]
(DCaBANT P4 [E]
oCcacmTE FES 7]
(ramiTe) Fes 8]
(CLEDACFANNTT) FET E
veo i

@xn]

(RO PHE 13
MOz PHI i
pCez PHE [
ocan P[5
(ooaE PHe [T
ocscyPHs [iT
oczE P 18
(AT FEe i
(SCHFCINTI)FE1 [B0
(MOSUFCINTZ) Pa2 [21]

(MISCYFCINTS) PES
[(DCIAFCINT4Y PB4
(D AFCINTS) PES
(DI BIFCINTE) FBE

W

Source: Atmega2560 Data Sheet

(]

0 IO W PCINTT) PRT

[E] PHOADCAPaNTIE

GPCINT)
WPCIMT)
APCIMT
WPCINTHY

HPCIMTE)
HPCINTI

PR GADC
[F] Pesoc
(@] PeeOc

T A DG

0

CEONAART) PO

ootz eme [E]

MOVMNTH PO [E]

aPnPm [F

[{] Paiaon

[F] Peaiaon

FaZ (ADg)

Fad (ADd)

FAZ [ADS)

FAg (ADH)

FAT [ADT)

PO2 {ALE)

P28 [FCINT15)

PUS [FCINT14)

P& [PCINT15)

P28 [FCINT1Z)

P& HCEAPCRHT11)
Pl [TEDSPCINT 104
Pl [RECUPCINTS

o

]
PCT (&15)
FCE [A14)
PCS (A13)
PO4 (A12)
PC3 (A1)
PC2 (A10)
FO1 (A8
FOD (A
P (R
P {(F)

48

Watchdog Timer

e A peripheral I/O device on the microcontroller.

e Itis really a counter that is clocked from a separate
On-chip Oscillator (122 kHz at Vcc=5V)

e It can be controlled to produce different time
Intervals

8 different periods determined by WDP2, WDP1 and
WDPO bits in WDTCSR.

e Can be enabled or disabled by properly updating
WDCE bit and WDE bit in Watchdog Timer Control
Register WDTCSR.

50

Watchdog Timer (cont.)

e Often used to detect software crash.

If enabled, it generates a Watchdog Reset
Interrupt when its period expires.

When its period expires, Watchdog Reset Flag WDRF
In MCU Control Register MCUCSR s set.

« This flag is used to determine if the watchdog timer has
generated a RESET interrupt.

Program needs to reset it before its period expires
by executing instruction WDR.

51

Watchdog Timer Diagram

WATCHDOG WATCHDOG
OSCILLATOR PRESCALER

il I I " " " ("

Sle|ldla 82 alg

A EIEIEIEEE

WATCHDOG clolo|2lz|2| 3|8

RESET oo
WDPD
WDP1
wWDP2
WDE

MCU RESET

Source: Atmega2560 Data Sheet

52

Watchdog Timer Control
Register

e WDTCSR is used to control the scale of the

watchdog timer. It is an MM 1/O register In
AVR

Bit 7 6 5 4 3 2 1 0
(0Ox60) I WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDFO I WDTCSR
Read/Write R/W R/W R/W RW R/W R/W R/W R/W
Initial Value 0 0 0 0 X 0 0 0

Source: Atmega2560 Data Sheet

53

WDTCSR Bit Definition

e Bit 7 — WDIF - Watchdog interrupt flag
e Bit 6 — WDIE - Watchdog interrupt enable

o Bit4
WDCE - Watchdog change enable

Should be set before any changes to be made

o Bit3
WDE - Watchdog enable

Set to enable watchdog; clear to disable the watchdog

e Bits 5,2-0
Prescaler

Named WDP3, WDP2, WDP1, WPDO
= Determine the watchdog time reset intervals

54

Watchdog Timer Prescale
Number of WDT Oscillator Typical Time-out at
WDP3 | WDP2 | WDP1 | WDPO Cycles Vee = 5.0V
0 0 0 0 K (2048) cycles 16ms
0 0 0 1 K (4096) cycles 32ms
0 0 1 0 K (8192) cycles 64ms
0 0 1 1 16K (16384) cycles 0.125s
0 1 0 0 32K (32768) cycles 0.25s
0 1 0 1 64K (65536) cycles 0.5s
0 1 1 0 128K (131072) cycles 1.0s
0 1 1 1 256K (262144) cycles 2.0s
1 0 0 0 512K (524288) cycles 4.0s
1 0 0 1 1024K (1048576) cycles 8.0s

Source: Atmega64 Data Sheet

55

Examples

e Enable watchdog

; Write logical one to WDE

1di rl16, (1<<WDE)
sts WDTCSR, rl6

56

Examples

e Disable watchdog
o Refer to the data sheet

; Write logical one to WDCE and WDE

1di r16, (1<<WDCE)|(1<<WDE)
sts WDTCSR, rilé6

; Turn off WDT
1di rl16, (©<<WDE)
sts WDTCSR, rilé6

57

Examples

e Select a prescale
o Refer to the data sheet

; Write logical one to WDCE and WDE

1di r16, (1<<WDCE)|(1<<WDE)
sts WDTCSR, rlé6

; set time-out as 1 second
1di r16, (1<<WDP2)|(1<<WDP1)
sts WDTCSR, rilé6

58

Watchdog Reset

e Syntax:

e Operands:
e Operation:

e \Words:
e Cycles:

wdr

none

reset the watchdog timer.
1

1

59

Example

e The program in the next slide Is not robust.
May lead to a crash. Why? How to detect the
crash?

60

X X
0000
0000
L
o0
o
; The program returns the length of a string.
"m2560def.inc"
i=rl5 ; store the string length when execution finishes.
c=rle ; store s[i], a string character

main:
1di ZL, low(s<<1)
1di ZH, high(s<<1)
clr i
lpm c, z+
loop:
cpi c, ©
breq endloop
inc i
lpm c, Z+
rjmp loop
endloop: ..

S: “hello, world”

Reading Material

e Chapter 8: Interrupts and Real-Time Events.
Microcontrollers and Microcomputers by
Fredrick M. Cady.

e Mega2560 Data Sheet.

System Control and Reset.
Watchdog Timer.
Interrupts.

62

Homework

1. Refer to the AVR Instruction Set manual,
study the following instructions:
Bit operations
sei, cli
sbi, cbi

MCU control instructions
wdr

63

o0
o0
o0
o0
o0
Homework °
1. What is the function of the following code?
; Write logical one to WDCE and WDE
1di r16, (1<<WDCE)|(1<<WDE)
sts WDTCSR, ril6
; set time-out as 2.1 second
1di r16, (1<<WDP2)|(1<<WDP1) |(1<<WDPQ)
sts WDTCSR, rlé6
; enable watchdog
1di r16, (1<<WDE)
sts WDTCSR, rlé6
loop: oneSecondDelay ; macro for one second delay

wdr
rjmp loop

64

Homework

2. How an 1/O device signals the
microprocessor that it needs service?

65

Homework

3. Why o
Interru

0 you need software to disable
nts (except for the non-maskable

Interru

Ots)?

66

