
1

Interrupts (I)

Lecturer: Sri Parameswaran

Notes by: Annie Guo

2

Lecture overview

 Introduction to Interrupts

 Interrupt system specifications

 Multiple sources of Interrupts

 Interrupt priorities

 Interrupts in AVR

 Interrupt Vector Table

 Interrupt Service Routines

 System Reset

 Watchdog Reset

3

CPU Interacts with I/O

Two approaches:

 Polling

 Software queries I/O devices.

 No extra hardware needed.

 Not efficient.

 CPU may waste processor cycles to query a device even if it

does not need any service.

 Interrupts

 I/O devices generate signals to request services from CPU .

 Need special hardware to implement interrupt services.

 Efficient.

 A signal is generated only if the I/O device needs services from

CPU.

4

Interrupt Systems

 An interrupt system implements interrupt

services

 It basically performs three tasks:

 Recognize interrupt events

 Respond to the interrupts

 Resume normal programmed task

5

Recognize Interrupt Events

 Interrupt events

 Associated with interrupt signals:

 In different forms, including levels and edges.

 Can be multiple and synchronous

 Namely, there may be many sources to generate an

interrupts; a number of interrupts can be generated at

the same time.

 Approaches are required to:

 Identify an interrupt event among multiple sources

 Determine which interrupts to serve if there are

multiple simultaneous interrupts

6

Respond to Interrupts

 Handling interrupt

 Wait for the current instruction to finish.

 Acknowledge the interrupting device.

 Branch to the correct interrupt service routine

(interrupt handler) to service interrupting device.

7

Resume Normal Task

 Return to the interrupted program at the point

it was interrupted.

8

Interrupt Process Control

 Interrupts can be enabled or disabled

 Can be controlled in two ways:

 Software control

 Allow programmers to enable and disable selected/all

interrupts.

 Hardware control

 Disable further interrupts while an interrupt is being

serviced

9

Interrupt Recognition and

Acknowledgement Hardware

Interrupt signal to

sequence

controller

Interrupt ack from

sequence

controller

SEQUENCE

CONTROLLER

Disable interrupt

instruction

Enable interrupt

instruction

Return from

interrupt

instruction

INTERR-

UPTING

DEVICE

Signal

conditioning

IRQ-FF

Set

Reset

INTE-FF

Set

Reset

IRQ

Interrupt

Enable

CPU

Pending

Interrupt

10

Interrupt Recognition and Ack.

 An Interrupt Request (IRQ) may occur at any time.

 It may have rising or falling edges or high or low levels.

 Frequently it is an active-low signal

 multiple devices are wire-ORed together.

▪ Recall open-collector gates

 Signal Conditioning Circuit detects these different

types of signals.

 Interrupt Request Flip-Flop (IRQ-FF) records the

interrupt request until it is acknowledged.

 When IRQ-FF is set, it generates a pending interrupt

signal that goes towards the Sequence Controller.

 IRQ-FF is reset when CPU acknowledges the interrupt with

INTA signal.

11

Interrupt Recognition and Ack.

(cont.)

 Interrupts can be enabled and disabled by software

instructions, which is supported by the hardware

Interrupt Enable Flip-Flop (INTE-FF).

 When the INTE-FF is set, all interrupts are enabled

and the pending interrupt is allowed through the

AND gate to the sequence controller.

 The INTE-FF is reset in the following cases.

 CPU acknowledges the interrupt.

 CPU is reset.

 Disable interrupt instruction is executed.

12

Interrupt Recognition and Ack.

(cont.)

 An interrupt acknowledge signal is generated by the
CPU when the current instruction has finished
execution and CPU has detected the IRQ.
 This resets the IRQ-FF and INTE-FF and signals the

interrupting device that CPU is ready to execute the
interrupting device routine.

 At the end of the interrupt service routine, CPU
executes a return-from-interrupt instruction.
 Part of this instruction’s job is to set the INTE-FF to re-

enable interrupts.

 Nested interrupts can happen If the INTE-FF is set
during an interrupt service routine
 An interrupt can therefore interrupt interrupting interrupts.

13

Multiple Sources of Interrupts

 To handle multiple sources of interrupts, the

interrupt system must

 Identify which device has generated the IRQ.

 Using polling approach

 Using vectoring approach

 Resolve simultaneous interrupt requests

 using prioritization schemes.

14

Polled Interrupts

 Software, instead of hardware, is responsible

for finding the interrupting source.

 The device must have logic to generate the IRQ

signal and to set an “I did it” bit in a status register

that is read by CPU.

 The bit is reset after the register has been read.

15

Device generates

IRQ

CPU polls

status registers

of all devices

CPU found

the interrupting device

CPU executes

the service routine

for that device

SW

Polled Interrupts Execution

Flow

16

Polled Interrupt Logic

Logic to

generate IRQ

Logic to reset IRQ

when status

register is read

Logic to read

status register and

reset “I did it” bit

Logic to set “I

did it” bit

Status register

Data

Address

Control

IRQ

17

Vectored Interrupts

 CPU’s response to IRQ is to assert INTA.

 The interrupting device uses INTA to place

information that identifies itself, called the

vector, onto the data bus for CPU to read.

 CPU uses the vector to execute the interrupt

service routine.

18

Vectored Interrupting Device

Hardware

Logic to

generate IRQ

Logic to reset

IRQ

Vector Information

Three-State Driver

Data

Address

Control

INTA

IRQ

HW

19

Multiple Interrupt Masking

 CPU has multiple IRQ input pins.

 Masking enables some interrupts and

disables other interrupts

 CPU designers reserve specific memory

locations for a vector associated with each

IRQ line.

 Individual disable/enable bit is assigned to

each interrupting source.

20

Multiple Interrupt Masking

Circuit

CPU

•••

IRQ 0

IRQ 1

IRQ 2

IRQ n

21

Interrupt Priorities

 When multiple interrupts occur at the same

time, which one will be serviced first?

 Two resolution approaches:

 Software resolution

 Polling software determines which interrupting source

is serviced first.

 Hardware resolution

 Daisy chain.

 Others

22

Selection

Algorithm

Device generates

IRQ

CPU polls

status registers

of all devices

CPU found

the interrupting device

CPU executes

the service routine

for that device

SW

Software Resolution

23

Daisy Chain Priority

Resolution

CPU Device 1 Device 2 Device n• • •

IRQ

INTA INTA INTA INTA

Data

Address

Control

24

Daisy Chain Priority

Resolution (cont.)

 CPU asserts INTA that is passed down the

chain from device to device. The higher-

priority device is closer to CPU.

 When the INTA reaches a device that

generated the IRQ, that device puts its

vector on the data bus and does not pass

along the INTA. So lower-priority devices

do NOT receive the INTA.

25

Other Priority Resolutions

 Separate IRQ Lines.

 Each IRQ line is assigned a fixed priority. For

example, IRQ0 has higher priority than IRQ1 and

IRQ1 has higher priority than IRQ2 and so on.

 Hierarchical Prioritization.

 Higher priory interrupts are allowed while lower

ones are masked.

 Nonmaskable Interrupts.

 Cannot be disabled.

 Used for important events such as power failure.

26

Transferring Control to

Interrupt Service Routine

 Hardware needs to save the return address.
 Most processors save the return address on the stack.

 Hardware may also save some registers such as
program status register.
 AVR does not save any registers. It is the programmers’

responsibility to save the program status register and
conflict registers.

 The delay from the time the IRQ is generated by the
interrupting device to the time the Interrupt Service
Routine (ISR) starts to execute is called interrupt
latency.

27

Interrupt Service Routine

 A sequence of code to be executed when the
corresponding interrupt is responded by CPU.

 Interrupt service routine is a special subroutine,
therefore can be constructed with three parts:
 Prologue:

 Code for saving conflict registers on the stack.

 Body:

 Code for doing the required task.

 Epilogue:

 Code for restoring all saved registers from the stack.

 The last instruction is the return-from-interrupt instruction.

28

Software Interrupt

 Software interrupt is the interrupt generated by

software without a hardware-generated-IRQ.

 Software interrupt is typically used to implement

system calls in OS.

 Some processors have a special machine

instruction to generate software interrupt.

 SWI in ARM.

 AVR does NOT provide a software interrupt

instruction.

 Programmers can use External Interrupts to implement

software interrupts.

29

Exceptions

 Abnormalities that occur during the normal

operation of the processor.

 Examples are internal bus error, memory access

error and attempts to execute illegal instructions.

 Some processors handle exceptions in the

same way as interrupts.

 AVR does not handle exceptions.

30

Reset

 Reset is a type of interrupt present in most

processors (including AVR).

 Non-maskable.

 It does not do other interrupt processes, such

as saving conflict registers. It initializes the

system to some initial state.

31

Non-Nested Interrupts

 Interrupt service routines cannot be

interrupted by another interrupt.

Main

program

Interrupt

service

routine

32

Nested Interrupts

 Interrupt service routines can be interrupted

by another interrupt.

Main

program

ISR1

ISR2

ISR3

33

AVR Interrupts
 Basically can be divided into internal and external

interrupts

 Each has a dedicated interrupt vector

 Hardware is used to recognize interrupts

 To enable an interrupt, two control bits must be set
 the Global Interrupt Enable bit (I bit) in the Status Register

 Using sei

 the enable bit for that interrupt

 To disable all maskable interrupts, reset the I bit in
SREG
 Using cli instruction

 Priority of interrupts is used to handle multiple
simultaneous interrupts

34

Set Global Interrupt Flag

 Syntax: sei

 Operands: none

 Operation: I 1.

 Sets the global interrupt flag (I) in SREG. The
instruction following SEI will be executed before
any pending interrupts.

 Words: 1

 Cycles: 1

 Example:
sei ; set global interrupt enable

sleep ; enter sleep state, waiting for an interrupt

35

Clear Global Interrupt Flag
 Syntax: cli

 Operands: none

 Operation: I 0

 Clears the Global interrupt flag in SREG.
Interrupts will be immediately disabled.

 Words: 1

 Cycles: 1

 Example:
in r18, SREG ; store SREG value

cli ; disable interrupts

; do something very important here

out SREG, r18 ; restore SREG value

36

Interrupt Response Time

 The interrupt execution response for all the

enabled AVR interrupts is basically five clock

cycles minimum.

 For saving the Program Counter (2 clock cycles)

 For jumping to the interrupt routine (3 clock

cycles)

37

Interrupt Vectors

 Each interrupt has a 4-byte (2-word) interrupt vector,

containing an instruction to be executed after MCU

has accepted the interrupt.

 The lowest addresses in the program memory space

are by default defined as the section for Interrupt

Vectors.

 The priority of an interrupt is based on the position

of its vector in the program memory

 The lower the address the higher is the priority level.

 RESET has the highest priority

38

Interrupt Vectors in Mega2560

39

Interrupt Vectors in Mega2560

(cont.)

40

Interrupt Vectors in Mega2560

(cont.)

41

Interrupt Vectors in Mega2560

(cont.)

42

Interrupt Process

 When an interrupt occurs, the Global Interrupt

Enable I-bit is cleared and all interrupts are disabled.

 The interrupt routine can set the I-bit to allow nested

interrupts

 The I-bit is automatically set when a Return from

Interrupt instruction – RETI – is executed.

 When the AVR exits from an interrupt, it will always

return to the main program and execute one more

instruction before any pending interrupt is served.

 Reset interrupt is an exception

43

Initialization of Interrupt Vector

Table in Mega2560

 Typically an interrupt vector contains a

branch instruction (JMP or RJMP) that

branches to the first instruction of the

interrupt service routine.

 Or simply RETI (return-from-interrupt) if you

don’t handle this interrupt.

44

Example of IVT Initialization in

Mega2560

.include "m2560def.inc"

.cseg

.org 0x0000 ; Reset vector is at address 0x0000

rjmp RESET ; Jump to the start of Reset interrupt service routine

; Relative jump is used assuming RESET is not far

.org INT0addr ; Addresses of vectors are defined in m2560def.inc

jmp IRQ0 ; Long jump is used assuming IRQ0 is very far away

.org INT1addr

reti ; Return to the break point without handling the interrupt

…

RESET: ; The interrupt service routine for RESET starts here.

…

IRQ0: ; The interrupt service routine for IRQ0 starts here.

45

RESET in Mega2560

 The ATmega2560 has five sources of reset:

 Power-on Reset.

 The MCU is reset when the supply voltage is below

the Power-on Reset threshold (VPOT).

 External Reset.

 The MCU is reset when a low level is present on the

RESET pin for longer than the minimum pulse length.

 Watchdog Reset.

 The MCU is reset when the Watchdog Timer period

expires and the Watchdog is enabled.

46

RESET in Mega2560 (Cont.)

 Brown-out Reset.

 The MCU is reset when the supply voltage VCC is

below the Brown-out Reset threshold (VBOT) and the

Brown-out Detector is enabled.

 JTAG AVR Reset.

 The MCU is reset as long as there is a logic one in the

Reset Register, one of the scan chains of the JTAG

system.

 For each reset, there is a flag (bit) in MCU

Control and State Register MCUCSR.

 These bits are used to determine the source of

the RESET interrupt.

47

RESET Logic in Mega2560

48

Atmega2560 Pin Configuration

Source: Atmega2560 Data Sheet

49

50

Watchdog Timer

 A peripheral I/O device on the microcontroller.

 It is really a counter that is clocked from a separate

On-chip Oscillator (122 kHz at Vcc=5V)

 It can be controlled to produce different time

intervals

 8 different periods determined by WDP2, WDP1 and

WDP0 bits in WDTCSR.

 Can be enabled or disabled by properly updating

WDCE bit and WDE bit in Watchdog Timer Control

Register WDTCSR.

51

Watchdog Timer (cont.)

 Often used to detect software crash.

 If enabled, it generates a Watchdog Reset

interrupt when its period expires.

 When its period expires, Watchdog Reset Flag WDRF

in MCU Control Register MCUCSR is set.

▪ This flag is used to determine if the watchdog timer has

generated a RESET interrupt.

 Program needs to reset it before its period expires

by executing instruction WDR.

52

Watchdog Timer Diagram

Source: Atmega2560 Data Sheet

53

Watchdog Timer Control

Register

 WDTCSR is used to control the scale of the

watchdog timer. It is an MM I/O register in

AVR

Source: Atmega2560 Data Sheet

54

WDTCSR Bit Definition

 Bit 7 – WDIF - Watchdog interrupt flag

 Bit 6 – WDIE - Watchdog interrupt enable

 Bit 4

 WDCE - Watchdog change enable
 Should be set before any changes to be made

 Bit 3

 WDE - Watchdog enable
 Set to enable watchdog; clear to disable the watchdog

 Bits 5,2-0
 Prescaler

 Named WDP3, WDP2, WDP1, WPD0
▪ Determine the watchdog time reset intervals

55

Watchdog Timer Prescale

Source: Atmega64 Data Sheet

56

Examples

 Enable watchdog

; Write logical one to WDE

ldi r16, (1<<WDE)
sts WDTCSR, r16

57

Examples

 Disable watchdog

 Refer to the data sheet

; Write logical one to WDCE and WDE

ldi r16, (1<<WDCE)|(1<<WDE)
sts WDTCSR, r16

; Turn off WDT
ldi r16, (0<<WDE)
sts WDTCSR, r16

58

Examples

 Select a prescale

 Refer to the data sheet

; Write logical one to WDCE and WDE

ldi r16, (1<<WDCE)|(1<<WDE)
sts WDTCSR, r16

; set time-out as 1 second
ldi r16, (1<<WDP2)|(1<<WDP1)
sts WDTCSR, r16

59

Watchdog Reset

 Syntax: wdr

 Operands: none

 Operation: reset the watchdog timer.

 Words: 1

 Cycles: 1

60

Example

 The program in the next slide is not robust.

May lead to a crash. Why? How to detect the

crash?

61

; The program returns the length of a string.

.include "m2560def.inc"

.def i=r15 ; store the string length when execution finishes.

.def c=r16 ; store s[i], a string character

.cseg

main:
ldi ZL, low(s<<1)
ldi ZH, high(s<<1)
clr i
lpm c, z+

loop:
cpi c, 0
breq endloop
inc i
lpm c, Z+
rjmp loop

endloop:…

s: .db “hello, world”

62

Reading Material

 Chapter 8: Interrupts and Real-Time Events.

Microcontrollers and Microcomputers by

Fredrick M. Cady.

 Mega2560 Data Sheet.

 System Control and Reset.

 Watchdog Timer.

 Interrupts.

63

Homework

1. Refer to the AVR Instruction Set manual,

study the following instructions:

 Bit operations

 sei, cli

 sbi, cbi

 MCU control instructions

 wdr

64

Homework

1. What is the function of the following code?
; Write logical one to WDCE and WDE

ldi r16, (1<<WDCE)|(1<<WDE)
sts WDTCSR, r16

; set time-out as 2.1 second
ldi r16, (1<<WDP2)|(1<<WDP1)|(1<<WDP0)
sts WDTCSR, r16

; enable watchdog
ldi r16, (1<<WDE)
sts WDTCSR, r16

loop: oneSecondDelay ; macro for one second delay
wdr
rjmp loop

65

Homework

2. How an I/O device signals the

microprocessor that it needs service?

66

Homework

3. Why do you need software to disable

interrupts (except for the non-maskable

interrupts)?

