Exercise Sheet 9 – Solutions and Hints
COMP6741: Parameterized and Exact Computation

2016, Semester 2

1. A \textit{domatic} k-\textit{partition} of a graph $G = (V, E)$ is a partition (D_1, \ldots, D_k) of V into k dominating sets of G.

\begin{tabular}{|l|}
\hline
\textbf{(sol+tw)-Domatic Partition} \\
\hline
\text{Input:} & graph G, integer k \\
\hline
\text{Parameter:} & $k + \text{tw}(G)$ \\
\hline
\text{Question:} & Does G have a domatic k-partition. \\
\hline
\end{tabular}

- Show that (sol+tw)-Domatic Partition is FPT using Courcelle’s theorem

\textbf{Solution}

To show that (sol+tw)-Domatic Partition is FPT, we express it as an MSO sentence which is true for the input graph G if and only if G has a domatic k-partition:

\[
\exists D_1 \subseteq V \exists D_2 \subseteq V \ldots \exists D_k \subseteq V \quad \text{partition}(D_1, D_2, \ldots, D_k) \wedge \\
\forall v \in V \ \text{dom}(v, D_1) \wedge \cdots \wedge \text{dom}(v, D_k)
\]

with

\[
\text{partition}(D_1, D_2, \ldots, D_k) := \forall v \in V \ (v \in D_1 \wedge v \notin D_2 \wedge \cdots \wedge v \notin D_k) \vee \\
(v \notin D_1 \wedge v \in D_2 \wedge \cdots \wedge v \notin D_k) \vee \\
\cdots \\
(v \notin D_1 \wedge \cdots \wedge v \in D_k)
\]

and

\[
\text{dom}(v, X) := v \in X \vee \exists x \in X \ \text{adj}(v, w)
\]

The length of this expression is $O(k^2)$. Since this is a parameterized reduction to Courcelle’s problem, the result follows.

2. Show that the incidence treewidth of a CNF formula F is at most the dual treewidth of F plus 1.

\textbf{Solution}

Start from a tree decomposition (T, γ) of the dual graph of F with minimum width. For each variable v in F, select a bag i_v that contains all the clauses where v occurs. Such a bag necessarily exists, since these clauses form a clique in the dual graph. Add a new bag containing v and all the clauses where v occurs, and make this bag adjacent to i_v. This gives a tree decomposition for the incidence graph of F whose width equals the width of the tree decomposition of the dual graph plus one.
3. Show that CSP is W[1]-hard for parameter incidence treewidth and Boolean domain \(D = \{0, 1\}\).

Hints
Reduce from CLIQUE.
(1) Use Boolean variables \(x_{ij}\) with \(1 \leq i \leq k\) and \(1 \leq j \leq n\) with the meaning that \(x_{ij}\) is set to 1 if the \(i\)th vertex of the clique corresponds to the \(j\)th vertex in the graph.
(2) Add \(O(k^2)\) constraints enforcing that for each \(i \in \{1, \ldots, k\}\), exactly one \(x_{ij}\) is set to 1, and whenever two \(x_{ij}, x_{ij'}\) with \(i \neq i'\) are set to 1, then vertices \(j\) and \(j'\) are adjacent in the graph.
(3) Show that a graph with a vertex cover of size \(q\) has treewidth at most \(q\).

4. Design an \(O^*(2^t)\) time DP algorithm for tw-INDEPENDENT SET.

tw-INDEPENDENT SET
Input: Graph \(G\), integer \(k\), and a tree decomposition of \(G\) of width \(t\)
Parameter: \(t\)
Question: Does \(G\) have an independent set of size \(k\)?

Solution sketch
- Obtain a nice tree decomposition \((T, \gamma)\) of width \(t\) in polynomial time.
- Denote \(T_i\) the subtree of \(T\) rooted at node \(i\).
- Denote \(\gamma_i(i) = \{v \in \gamma(j) : j \in V(T_i)\}\).
- Denote \(G_i(i) = G[\gamma_i(i)]\).
- For each node \(i\) of \(T\), and each \(S \subseteq \gamma(i)\), compute \(ind(i, S)\), the size of the largest independent set of \(G_i(i)\) that contains all vertices of \(S\) and no vertex from \(\gamma(i) \setminus S\) by dynamic programming.
- For a leaf node \(i\) with \(\gamma(i) = \{v\}\):
 \[
 ind(i, \emptyset) = 0 \\
 ind(i, \{v\}) = 1
 \]
- For a forget node \(i\) with child \(i'\) and \(\gamma(i) = \gamma(i') \setminus \{v\}\):
 \[
 ind(i, S) = \max(ind(i', S), ind(i', S \cup \{v\})
 \]
- For an introduce node \(i\) with child \(i'\) and \(\gamma(i) = \gamma(i') \cup \{v\}\):
 \[
 ind(i, S) = \begin{cases}
 -\infty & \text{if } G[S] \text{ contains an edge} \\
 ind(i', S \setminus \{v\}) + [1 \text{ if } v \in S] & \text{otherwise}
 \end{cases}
 \]
- For a join node \(i\) with children \(i'\) and \(i''\):
 \[
 ind(i, S) = ind(i', S) + ind(i'', S) - |S|
 \]

5. Design an \(O^*(9^t)\) time DP algorithm for tw-DOMINATING SET. Can you even achieve an \(O^*(4^t)\) time DP algorithm?

tw-DOMINATING SET
Input: Graph \(G\), integer \(k\), and a tree decomposition of \(G\) of width at most \(t\)
Parameter: \(t\)
Question: Does \(G\) have a dominating set of size \(k\)?
Solution sketch

• Obtain a nice tree decomposition \((T, \gamma)\) of width \(t\) in polynomial time.
• Denote \(T_i\) the subtree of \(T\) rooted at node \(i\)
• Denote \(\gamma_{\downarrow}(i) = \{v \in \gamma(j) : j \in V(T_i)\}\)
• Denote \(G_{\downarrow}(i) = G[\gamma_{\downarrow}(i)]\)
• For each node \(i\) of \(T\), and each labelling \(\ell : \gamma(i) \rightarrow \{\text{in}, \text{outDom}, \text{outNd}\}\), compute the smallest size of a subset \(D\) of \(\gamma_{\downarrow}(i)\) such that \(D \cap \gamma(i)\) is the set of vertices labelled \(\text{in}\) by \(\ell\), and that dominates all vertices from \(\gamma_{\downarrow}(i)\) except those that are labeled \(\text{outNd}\) by \(\ell\) by dynamic programming.

The running time depends on how join nodes are handled.
See Section 10.5 in [Niedermeier, ’06] for details.