ba. Branching algorithms
COMP6741: Parameterized and Exact Computation

Serge Gaspers
1973

Contents

(1 Branching algorithms|

2 Running time analysis|

13_Feedback Vertex Setl

4 Maximum Leaf Spanning Tree|

[5 Further Reading]

1 Branching algorithms

Branching Algorithm
e Selection: Select a local configuration of the problem instance

e Recursion: Recursively solve subinstances

Combination: Compute a solution of the instance based on the solutions of the subinstances

Halting rule: 0 recursive calls

Simplification rule: 1 recursive call

Branching rule: > 2 recursive calls

Example: Our first Vertex Cover algorithm
Algorithm vel(G, k);

1 if F =0 then // all edges are covered
2 L return Yes

w

else if £ <0 then // we cannot select any vertex
L return No

else
Select an edge uv € F;
return vcel(G —u, k —1) V vel(G — v,k — 1)

I

g o O

2 Running time analysis

Search trees
Recall: A search tree models the recursive calls of an algorithm. For a b-way branching where the parameter k
decreases by a at each recursive call, the number of nodes is at most b*/% - (k/a + 1).

k

N

/k:—a\ /k—a\ <k/a+1

k—2a k—2a k—2a k-—2a

< bk/a

If k/a and b are upper bounded by a function of k, and the time spent at each node is FPT (typically, polynomial),
then we get an FPT running time.

3 Feedback Vertex Set

A feedback vertex set of a multigraph G = (V, E) is a set of vertices S C V such that G — S is acyclic.

FEEDBACK VERTEX SET
Input: Multigraph G = (V, E), integer k
Parameter: k&
Question: Does G have a feedback vertex set of size at most k7

Simplification Rules
We apply the first applicablfﬂ simplification rule.

(Finished)
If G is acyclic and k£ > 0, then return YES.

(Budget-exceeded)
If k£ < 0, then return No.

(Loop)
If G has a loop vv € F, then set G < G —v and k + k — 1.

(Multiedge)
If F contains an edge uv more than twice, remove all but two copies of uv.

(Degree-1)
If Jv € V with dg(v) <1, then set G + G —v.

(Degree-2)
If Jv € V with dg(v) = 2, then denote Ng(v) = {u,w} and set G «+ G’ = (V' \ {v}, (F\ {vu,vw}) U {uw}).

1A simplification rule is applicable if it modifies the instance.

Lemma 1. (Degree-2) is sound.
Proof. Suppose S is a feedback vertex set of G of size at most k. Let
g S ifvgs
(S\{vhu{u} ifves.

Now, |S| < k and S’ is a feedback vertex set of G’ since every cycle in G’ corresponds to a cycle in G, with,
possibly, the edge uw replaced by the path (u,v,w).

Suppose S’ is a feedback vertex set of G’ of size at most k. Then, S’ is also a feedback vertex set of G. O

Remaining issues
e A select—discard branching decreases k in only one branch

e One could branch on all the vertices of a cycle, but the length of a shortest cycle might not be bounded by
any function of k

Idea:

e An acyclic graph has average degree < 2

e After applying simplification rules, G has average degree > 3

e The selected feeback vertex set needs to be incident to many edges

e Does a feedback vertex set of size at most k contain at least one vertex among the f(k) vertices of highest

degree?

The fvs needs to be incident to many edges
Lemma 2. If S is a feedback vertex set of G = (V, E), then
> (dgv) = 1) > [E| - V| +1

vES
Proof. Since F' = G — S is acyclic, |[E(F)| < |[V| —|S| — 1. Since every edge in E \ E(F) is incident with a vertex
of S, we have

|E| = [E| = [E(F)| + |E(F)|

< (Z dc(@)) +(VI=151=-1)

veES

= (Z(dc(v) - 1)) +V] -1

veS

The fvs needs to contain a high-degree vertex

Lemma 3. Let G be a graph with minimum degree at least 3 and let H denote a set of 3k vertices of highest degree
in G. Bvery feedback vertex set of G of size at most k contains at least one vertex of H.

Proof. Suppose not. Let S be a feedback vertex set with |S| < k and SN H = (). Then,

2B~ V] =) (da(v) = 1)

=Y (de() =1+ > (da(v)—1)
veEH veV\H
>3- (Y (da(v) ~ 1)+ (da(v) — 1)
veS veES

>4-(E[=VI+1)
& 3|V >2/E|+4.
But this contradicts the fact that every vertex of G has degree at least 3. O

Algorithm for Feedback Vertex Set
Theorem 4. FEEDBACK VERTEX SET can be solved in O*((3k)*) time.
Proof (sketch). e Exhaustively apply the simplification rules.

e The branching rule computes H of size 3k, and branches into subproblems (G — v, k — 1) for each v € H.
O

Current best: O*(3.460%) deterministic [IK19], O*(2.7%) time randomized [LN19)

4 Maximum Leaf Spanning Tree

A leaf of a tree is a vertex with degree 1. A spanning tree in a graph G = (V| E) is a subgraph of G that is a tree
and has |V| vertices.

MAXIMUM LEAF SPANNING TREE
Input: connected graph G, integer k
Parameter: k&
Question: Does G have a spanning tree with at least k leaves?
Property

A k-leaf tree in G is a subgraph of G that is a tree with at least k leaves. A k-leaf spanning tree in G is a
spanning tree in G with at least k leaves.

Lemma 5. Let G = (V, E) be a connected graph. G has a k-leaf tree < G has a k-leaf spanning tree.

Proof. («<): trivial

(=): Let T be a k-leaf tree in G. By induction on x := |V| — |V(T')|, we will show that T can be extended to a
k-leaf spanning tree in G.
Base case: z =0 v'.
Induction: z > 0, and assume the claim is true for all ' < z. Choose uv € E such that v € V(T') and v ¢ V(T).
Since T" := (V(T) U {v}, E(T) U {uv}) has > k leaves and < x external vertices, it can be extended to a k-leaf
spanning tree in G' by the induction hypothesis. O

Strategy

e The branching algorithm will check whether G has a k-leaf tree.

e A tree with > 3 vertices has at least one internal (= non-leaf) vertex.

“Guess” an internal vertex r, i.e., do a |V|-way branching fixing an initial internal vertex r.

In any branch, the algorithm has computed

— T —-atreein G

— I — the internal vertices of T', with r € T

— B — a subset of the leaves of T" where T' may be extended: the boundary set
— L — the remaining leaves of T'

— X — the external vertices V' \ V(T

e The question is whether T' can be extended to a k-leaf tree where all the vertices in L are leaves.

Simplification Rules
Apply the first applicable simplification rule:

(Halt-Yes)
If |L| + | B| > k, then return YES.

(Halt-No)
If |B| = 0, then return No.

(Non-extendable)
If 3v € B with Ng(v) N X =, then move v to L.

Branching Lemma

Lemma 6 (Branching Lemma). Suppose u € B and there exists a k-leaf tree T' extending T where u is an internal
vertex. Then, there exists a k-leaf tree T extending (V(T) U Ng(u), E(T) U {uv : v € Ng(u) N X}).

Proof. Start from T" < T" and perform the following operation for each v € Ng(u) N X.

If v ¢ V(T"), then add he vertex v and the edge uv. Otherwise, add the edge uv, creating a cycle C in T and
remove the other edge of C' incident to v. This does not decrease the number of leaves, since it only increases the
number of edges incident to u, and u was already internal. O

Follow Path Lemma

Lemma 7 (Follow Path Lemma). Suppose u € B and |[Ng(u) N X| = 1. Let Ng(u) N X = {v}. If there exists
a k-leaf tree extending T where u is internal, but no k-leaf tree extending T where u is a leaf, then there exists a
k-leaf tree extending T where both u and v are internal.

Proof. Suppose not, and let T be a k-leaf tree extending T where u is internal and v is a leaf. But then, T — v is
a k-leaf tree as well. O

Algorithm
e Apply halting & simplification rules
e Select u € B. Branch into

—u€eL
— w € I. In this case, add X N Ng(u) to B (Branching Lemma).

* In the special case where |X N Ng(u)| = 1, denote {v} = X N Ng(u), make v internal, and add
N¢g(v) N X to B, continuing the same way until reaching a vertex with at least 2 neighbors in X
(Follow Path Lemma).

* In the special case where | X N Ng(u)| = 0, return No.
e In one branch, a vertex moves from B to L; in the other branch, | B| increases by at least 1.

Running time analysis
o Consider the “measure” p := 2k — 2|L| — |B|
e We have that 0 < u < 2k
e Branch where u € L:

— |B| decreases by 1, |L| increases by 1
— u decreases by 1

Branch where u € 1.

— w moves from B to [
— > 2 vertices move from X to B
— u decreases by at least 1

e Binary search tree of height < p < 2k

Result for Maximum Leaf Spanning Tree
Theorem 8 ([KLR11]). MAXIMUM LEAF SPANNING TREE can be solved in O*(4%) time.

Current best: O(3.188%) |Zeh18§|

5 Further Reading

e Chapter 3, Bounded Search Trees in [Cyg+15|
e Chapter 3, Bounded Search Trees in [DF13]
e Chapter 8, Depth-Bounded Search Trees in [Nie0O6]

References

[Cyg+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Déniel Marx, Marcin Pilipczuk,
Michat Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[DF13) Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.

[IK19] Yoichi Iwata and Yusuke Kobayashi. Improved Analysis of Highest-Degree Branching for Feedback Vertex
Set. Tech. rep. abs/1905.12233. arXiv CoRR, 2019. URL: http://arxiv.org/abs/1905.12233.

[KLR11] Joachim Kneis, Alexander Langer, and Peter Rossmanith. “A New Algorithm for Finding Trees with
Many Leaves”. In: Algorithmica 61.4 (2011), pp. 882-897.

[LN19] Jason Li and Jesper Nederlof. Detecting Feedback Vertex Sets of Size k in O*(2.7%) Time. Tech. rep.
abs/1906.12298. arXiv CoRR, 2019. URL: http://arxiv.org/abs/1906.12298.

[Nie06] Rolf Niedermeier. Invitation to Fized Parameter Algorithms. Oxford University Press, 2006.

[Zeh18] Meirav Zehavi. “The k-leaf spanning tree problem admits a klam value of 39”. In: Fur. J. Comb. 68
(2018), pp. 175-203.

http://arxiv.org/abs/1905.12233
http://arxiv.org/abs/1906.12298

	Branching algorithms
	Running time analysis
	Feedback Vertex Set
	Maximum Leaf Spanning Tree
	Further Reading

