5a. Branching algorithms

COMP6741: Parameterized and Exact Computation

Serge Gaspers

19T3

Contents

1 Branching algorithms 1
2 Running time analysis 2
3 Feedback Vertex Set 2
4 Maximum Leaf Spanning Tree 4
5 Further Reading 6

1 Branching algorithms

Branching Algorithm

- Selection: Select a local configuration of the problem instance
- Recursion: Recursively solve subinstances
- Combination: Compute a solution of the instance based on the solutions of the subinstances
- Halting rule: 0 recursive calls
- Simplification rule: 1 recursive call
- Branching rule: ≥ 2 recursive calls

Example: Our first Vertex Cover algorithm

Algorithm vc1(G, k);

1 if $E = \emptyset$ then
2 return Yes // all edges are covered
3 else if $k \leq 0$ then
4 return No // we cannot select any vertex
5 else
6 Select an edge $uv \in E$;
7 return vc1($G - u$, $k - 1$) \lor vc1($G - v$, $k - 1$)
2 Running time analysis

Search trees

Recall: A search tree models the recursive calls of an algorithm. For a b-way branching where the parameter k decreases by a at each recursive call, the number of nodes is at most $b^{k/a} \cdot (k/a + 1)$.

\[\begin{array}{c}
\text{k} \\
\text{k - a} & \text{k - a} \\
\text{k - 2a} & \text{k - 2a} \\
\vdots & \\
\text{\leq b^{k/a}} \\
\end{array} \]

If k/a and b are upper bounded by a function of k, and the time spent at each node is FPT (typically, polynomial), then we get an FPT running time.

3 Feedback Vertex Set

A feedback vertex set of a multigraph $G = (V, E)$ is a set of vertices $S \subseteq V$ such that $G - S$ is acyclic.

<table>
<thead>
<tr>
<th>Feedback Vertex Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Multigraph $G = (V, E)$, integer k</td>
</tr>
<tr>
<td>Parameter: k</td>
</tr>
<tr>
<td>Question: Does G have a feedback vertex set of size at most k?</td>
</tr>
</tbody>
</table>

Simplification Rules

We apply the first applicable simplification rule.

(Finished)
If G is acyclic and $k \geq 0$, then return Yes.

(Budget-exceeded)
If $k < 0$, then return No.

(Loop)
If G has a loop $vv \in E$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

(Multiedge)
If E contains an edge uv more than twice, remove all but two copies of uv.

(Degree-1)
If $\exists v \in V$ with $d_G(v) \leq 1$, then set $G \leftarrow G - v$.

(Degree-2)
If $\exists v \in V$ with $d_G(v) = 2$, then denote $N_G(v) = \{u, w\}$ and set $G \leftarrow G' = (V \setminus \{v\}, (E \setminus \{vu, vw\}) \cup \{uw\})$.

\[^{1}\text{A simplification rule is applicable if it modifies the instance.}\]
Lemma 1. (Degree-2) is sound.

Proof. Suppose S is a feedback vertex set of G of size at most k. Let

$$S' = \begin{cases} S & \text{if } v \notin S \\ (S \setminus \{v\}) \cup \{u\} & \text{if } v \in S. \end{cases}$$

Now, $|S'| \leq k$ and S' is a feedback vertex set of G' since every cycle in G' corresponds to a cycle in G, with, possibly, the edge uw replaced by the path (u,v,w).

Suppose S' is a feedback vertex set of G' of size at most k. Then, S' is also a feedback vertex set of G. \hfill \Box

Remaining issues

- A select–discard branching decreases k in only one branch
- One could branch on all the vertices of a cycle, but the length of a shortest cycle might not be bounded by any function of k

Idea:

- An acyclic graph has average degree < 2
- After applying simplification rules, G has average degree ≥ 3
- The selected feedback vertex set needs to be incident to many edges
- Does a feedback vertex set of size at most k contain at least one vertex among the $f(k)$ vertices of highest degree?

The fvs needs to be incident to many edges

Lemma 2. If S is a feedback vertex set of $G = (V,E)$, then

$$\sum_{v \in S} (d_G(v) - 1) \geq |E| - |V| + 1$$

Proof. Since $F = G - S$ is acyclic, $|E(F)| \leq |V| - |S| - 1$. Since every edge in $E \setminus E(F)$ is incident with a vertex of S, we have

$$|E| = |E| - |E(F)| + |E(F)|$$

$$\leq \left(\sum_{v \in S} d_G(v) \right) + (|V| - |S| - 1)$$

$$= \left(\sum_{v \in S} (d_G(v) - 1) \right) + |V| - 1.$$ \hfill \Box

The fvs needs to contain a high-degree vertex

Lemma 3. Let G be a graph with minimum degree at least 3 and let H denote a set of $3k$ vertices of highest degree in G. Every feedback vertex set of G of size at most k contains at least one vertex of H.

Proof. Suppose not. Let S be a feedback vertex set with $|S| \leq k$ and $S \cap H = \emptyset$. Then,

$$2|E| - |V| = \sum_{v \in V} (d_G(v) - 1)$$

$$= \sum_{v \in H} (d_G(v) - 1) + \sum_{v \in V \setminus H} (d_G(v) - 1)$$

$$\geq 3 \cdot (\sum_{v \in S} (d_G(v) - 1)) + \sum_{v \in S} (d_G(v) - 1)$$

$$\geq 4 \cdot (|E| - |V| + 1)$$

$$\iff 3|V| \geq 2|E| + 4.$$

But this contradicts the fact that every vertex of G has degree at least 3. \hfill \Box
Algorithm for Feedback Vertex Set

Theorem 4. Feedback Vertex Set can be solved in $O^\ast((3k)^k)$ time.

Proof (sketch). • Exhaustively apply the simplification rules.
 • The branching rule computes H of size $3k$, and branches into subproblems $(G - v, k - 1)$ for each $v \in H$.

Current best: $O^\ast(3.460^k)$ deterministic [IK19], $O^\ast(2.7^k)$ time randomized [LN19]

4 Maximum Leaf Spanning Tree

A leaf of a tree is a vertex with degree 1. A spanning tree in a graph $G = (V,E)$ is a subgraph of G that is a tree and has $|V|$ vertices.

Property

A k-leaf tree in G is a subgraph of G that is a tree with at least k leaves. A k-leaf spanning tree in G is a spanning tree in G with at least k leaves.

Lemma 5. Let $G = (V,E)$ be a connected graph. G has a k-leaf tree \iff G has a k-leaf spanning tree.

Proof. (\Rightarrow): trivial
 (\Leftarrow): Let T be a k-leaf tree in G. By induction on $x := |V| - |V(T)|$, we will show that T can be extended to a k-leaf spanning tree in G.
 Base case: $x = 0 \checkmark$.
 Induction: $x > 0$, and assume the claim is true for all $x' < x$. Choose $uv \in E$ such that $u \in V(T)$ and $v \notin V(T)$. Since $T' := (V(T) \cup \{v\}, E(T) \cup \{uv\})$ has $\geq k$ leaves and $< x$ external vertices, it can be extended to a k-leaf spanning tree in G by the induction hypothesis.

Strategy

• The branching algorithm will check whether G has a k-leaf tree.
• A tree with ≥ 3 vertices has at least one internal (= non-leaf) vertex.
• “Guess” an internal vertex r, i.e., do a $|V|$-way branching fixing an initial internal vertex r.
• In any branch, the algorithm has computed
 − T – a tree in G
 − I – the internal vertices of T, with $r \in I$
 − B – a subset of the leaves of T where T may be extended: the boundary set
 − L – the remaining leaves of T
 − X – the external vertices $V \setminus V(T)$
• The question is whether T can be extended to a k-leaf tree where all the vertices in L are leaves.
Simplification Rules
Apply the first applicable simplification rule:

(Halt-Yes)
If $|L| + |B| \geq k$, then return Yes.

(Halt-No)
If $|B| = 0$, then return No.

(Non-extendable)
If $\exists v \in B$ with $N_G(v) \cap X = \emptyset$, then move v to L.

Branching Lemma
Lemma 6 (Branching Lemma). Suppose $u \in B$ and there exists a k-leaf tree T' extending T where u is an internal vertex. Then, there exists a k-leaf tree T'' extending $(V(T) \cup N_G(u), E(T) \cup \{uv : v \in N_G(u) \cap X\})$.

Proof. Start from $T'' \leftarrow T'$ and perform the following operation for each $v \in N_G(u) \cap X$.
If $v \notin V(T')$, then add the vertex v and the edge uv. Otherwise, add the edge uv, creating a cycle C in T and remove the other edge of C incident to v. This does not decrease the number of leaves, since it only increases the number of edges incident to u, and u was already internal.

Follow Path Lemma
Lemma 7 (Follow Path Lemma). Suppose $u \in B$ and $|N_G(u) \cap X| = 1$. Let $N_G(u) \cap X = \{v\}$. If there exists a k-leaf tree extending T where u is internal, but no k-leaf tree extending T where u is a leaf, then there exists a k-leaf tree extending T where both u and v are internal.

Proof. Suppose not, and let T' be a k-leaf tree extending T where u is internal and v is a leaf. But then, $T - v$ is a k-leaf tree as well.

Algorithm
- Apply halting & simplification rules
- Select $u \in B$. Branch into
 - $u \in L$: In this case, add $X \cap N_G(u)$ to B (Branching Lemma).
 * In the special case where $|X \cap N_G(u)| = 1$, denote $\{v\} = X \cap N_G(u)$, make v internal, and add $N_G(v) \cap X$ to B, continuing the same way until reaching a vertex with at least 2 neighbors in X (Follow Path Lemma).
 * In the special case where $|X \cap N_G(u)| = 0$, return No.
 - $u \in I$: u moves from B to I; in the other branch, $|B|$ increases by at least 1.

Running time analysis
- Consider the “measure” $\mu := 2k - 2|L| - |B|$
- We have that $0 \leq \mu \leq 2k$
- Branch where $u \in L$:
 - $|B|$ decreases by 1, $|L|$ increases by 1
 - μ decreases by 1
- Branch where $u \in I$:
 - u moves from B to I
 - ≥ 2 vertices move from X to B
 - μ decreases by at least 1
- Binary search tree of height $\leq \mu \leq 2k$
Result for Maximum Leaf Spanning Tree

Theorem 8 ([KLR11]). Maximum Leaf Spanning Tree can be solved in $O^*(4^k)$ time.

Current best: $O(3.188^k)$ [Zeh18]

5 Further Reading

- Chapter 3, *Bounded Search Trees* in [Cyg+15]
- Chapter 3, *Bounded Search Trees* in [DF13]
- Chapter 8, *Depth-Bounded Search Trees* in [Nie06]

References

