
COMP1511 - Programming
Fundamentals

Week 9 - Lecture 16

What did we cover yesterday?
Projects with Multiple Files

● Using and Compiling Multiple Files

Abstract Data Types - Queues

● Providing functionality and hiding the implementation
● typedef and how to use it
● A Queue as an example of an Abstract Data Type - rules with no set

underlying structure

What are we covering today?
Finishing our Queue Implementation

● Destroying and Freeing
● Returning the number of items

Another Abstract Data Type

● Stacks
● Implementing with other data structures

Recap - Abstract Data Types
Making our own types with specific uses

● Declare our functionality in a Header (*.h) file
● Hide our Implementation in a *.c file

● The Header declares the type and the functions
● All the implementation is left out of the header

● The C file defines the underlying implementation

Finishing our Queue
Continuing the example

● We need a main file to use the Queue
● Let's try adding and removing

● We're not cleaning our memory properly yet
● So we need a function that frees an entire queue

● Also, a function that returns how many items are in the queue
● This makes it easier for someone to use without risking errors

Adding to the tail
● Connect the new object to the current tail
● Move the tail pointer to the new last object
● We no longer need to loop through the whole queue to find the tail

ObjectNULL

Tail

New
Object ObjectNULL

Tail

New
Object

Code for Adding
void queueAdd(Queue q, int item) {
 struct queueNode *newNode = malloc(sizeof(struct queueNode));
 newNode->data = item;
 newNode->next = NULL;

 if (q->tail == NULL) {
 // Queue is empty
 q->head = newNode;
 q->tail = newNode;
 } else {
 q->tail->next = newNode;
 q->tail = newNode;
 }
}

Removing a Node
The only node that can be removed is the head (the oldest node)

New
Object Object Object Oldest

Object
HeadNULL

Tail

New
Object Object Object Oldest

Object

Head

NULL

Tail

Code for Removing
// Remove the head from the list and free the memory used
int queueRemove(Queue q) {
 if (q->head == NULL) {
 printf("Attempt to remove an element from an empty queue.\n");
 exit(1);
 }
 // Keep track of the old head
 int returnData = q->head->data;
 struct queueNode *remNode = q->head;

 // move the queue to the new head and free the old
 q->head = q->head->next;
 free(remNode);

 return returnData;
}

Testing Code in our Main.c
int main(void) {
 printf("Creating the Queue for Ice Cream.\n");
 Queue iceQueue = queueCreate();
 int id = 1;
 printf("Person %d joins the queue!\n", id);
 queueAdd(iceQueue, id);
 id = 2;
 printf("Person %d joins the queue!\n", id);
 queueAdd(iceQueue, id);
 id = 3;
 printf("Person %d joins the queue!\n", id);
 queueAdd(iceQueue, id);

 printf("Person %d just got their ice cream!\n", queueRemove(iceQueue));
 printf("Person %d just got their ice cream!\n", queueRemove(iceQueue));
 printf("Person %d just got their ice cream!\n", queueRemove(iceQueue));
 return 0;
}

Our queue.h Header File
// queue type hides the struct that it is
// implemented as
typedef struct queueInternals *Queue;

// functions to create and destroy queues
Queue queueCreate(void);
void queueFree(Queue q);

// Add and remove items from queues
// Removing the item returns the item for use
void queueAdd(Queue q, int item);
int queueRemove(Queue q);

// Check on the size of the queue
int queueSize(Queue q);

queueFree()
Free all the memory in the linked list that we're using

● Loop through the list
● free() each node as we go

// Destroy and Free the entire queue
void queueFree(Queue q) {
 while (q->head != NULL) {
 struct queueNode *current = q->head;
 q->head = q->head->next;
 free(current);
 }
}

Testing for memory leaks
Let's use dcc --leakcheck

● What happens when we run with memory leak checking?
● Remember that all memory allocated with malloc() must be freed!

int main(void) {
 Queue iceQueue = queueCreate();
 queueAdd(iceQueue, 1);
 queueAdd(iceQueue, 2);
 queueAdd(iceQueue, 3);

 queueFree(iceQueue);
}

queueFree() Improved
Remember to free all the memory allocations!

// Destroy and Free the entire queue
void queueFree(Queue q) {
 while (q->head != NULL) {
 struct queueNode *current = q->head;
 q->head = q->head->next;
 free(current);
 }
 free(q);
}

Number of items in the Queue
Our last function is queueSize()

● Loop through the list until the end
● Count how many elements are in it

// Return the number of items in the queue
int queueSize(Queue q) {
 struct queueNode *iterator = q->head;
 int counter = 0;
 while(iterator != NULL) {
 counter++;
 iterator = iterator->next;
 }
 return counter;
}

Can we be trickier?
Maybe we don't want to loop through the whole list every time?

● We have a queueInternals struct that can store information
● How about we store the size there?

● Then, whenever we add or remove a node, we add or subtract 1 from this
variable

// Queue internals holds a pointer to the start of a linked list
struct queueInternals {
 struct queueNode *head;
 struct queueNode *tail;
 int size;
};

Completing our Queue
To go along with our size variable . . .

● queueCreate will set the size to 0
● queueAdd will add 1
● queueRemove will subtract 1

In our testing main(), we can now show this working with a loop:

 while(queueSize(iceQueue) > 0) {
 printf("Person %d just got their ice cream!\n", queueRemove(iceQueue));
 printf("There are %d people in the queue.\n", queueSize(iceQueue));
 }

More thoughts on the Queue
Whatever includes the queue only sees the header

● When we're using ADTs we don't know (or need to know) the
implementation

● What if this queue had been implemented using an array?

Challenge

● Implement queue.c using an array instead of a Linked List
● There are several different ways to make that work!

Break Time
Where to find further information about programming?

● There are a lot of online resources that can help with programming
● Teaching yourself can help to go beyond course content
● Stack Overflow is a question and answer site

○ It can sometimes be useful but sometimes be confusing or argumentative

● There are several free online courses that will teach you different
languages

○ Too many to list!

● Experimentation will always teach you something!

Stacks - another Abstract Data Type
A stack is a very common data structure in programming

● It is a "Last in first out" structure
● You can put something on top of a stack
● You can take something off the top of a stack
● You can't access anything underneath

This is actually how functions work!
The currently running code is on the top of the stack

● main() calls function1() - only function1() is accessible
● function1() calls function2() - only function2() is accessible
● control returns to function1() when function2() returns

main() main()

function1()

main()

function1()

main()

function1()

function2()

running
function1()main running

function2()
return from
function2()

What kind of functions does a stack need?
Functionality to put in a header file

● create
● free
● push (add to the top of the stack)
● pop (remove from the top of the stack)
● top (show the top without removing it)
● size

We'll only have time for some of these today

A Stack Header
Looks eerily familiar to Queue . . .

// stack type hides the struct that it is implemented as
typedef struct stackInternals *Stack;

// functions to create and destroy stacks
stack stackCreate(void);
void stackFree(Stack s);

// Push and Pop items from stacks
// Removing the item returns the item for use
void stackPush(Stack s, int item);
int stackPop(Stack s);

// Check on the size of the queue
int stackSize(Stack s);

Implementation
What is our internal data structure going to be?

● We could use a linked list again
● We could use an array
● Whichever it is, it should be invisible to whoever includes the stack.h file

● For this example, let's use an array (just for a change)
● Our data will be stored in an array with a large maximum size
● We'll keep track of where the top is with an int

Array Implementation of a stack
A large array where only some of it is used

● Top is a particular index
● Top signifies where our data ends
● It also happens to be exactly the number of elements in the stack!

65 23 15 3 8

Top is 5 Undefined data . . . we might use
these cells if the stack grows larger

stack.c
// Struct representing the stack using an array
struct stackInternals {
 int stack[MAX_STACK_SIZE];
 int top;
};

// create a new stack
stack stackCreate() {
 stack s = malloc(sizeof(struct stackInternals));
 s->top = 0;
 return s;
}

Push and Pop
These should only interact with the top of the stack

● Push should add an element after the end of the stack
● It should then move the top index to that new element

● Pop should return the element on the top of the stack
● It should then move the top index down one

Push
Push a new element "82" onto the stack

65 23 15 3 8

Top is 5

65 23 15 3 8

Top is 5

82

65 23 15 3 8

Top is 6

82

The stack starts like this

82 is added at top's index

Top then moves up one

Push code
// Add an element to the top of the stack
void stackPush(stack s, int item) {
 // check to see if we've used up all our memory
 if(s->top == MAX_STACK_SIZE) {
 printf("Maximum stack size reached, cannot push.\n");
 exit(1);
 }
 s->stackData[s->top] = item;
 s->top++;
}

Pop
Pop removes the top element from the stack

65 23 15 3 8

Top is 5

65 23 15 3 8

Top is 4

65 23 15 3

The stack starts like this

Top moves down one

Read the element at top and
return it

Top is 4

Pop code
// Remove an element from the top of the stack
int stackPop(stack s) {
 // check to see if the stack is empty
 if(s->top <= 0) {
 printf("Stack is empty, cannot pop.\n");
 exit(1);
 }
 s->top--;
 return s->stackData[s->top];
}

What if this were a linked list?
Implementation should be invisible to the including code

● Let's try to implement the same functions with a linked list
● We'll add elements to the end
● We'll also remove elements from the same end

Object Object Object ObjectTop NULL

Linked List Implementation
struct stackInternals {
 struct node *top;
};
struct node {
 struct node *next;
 int data;
};

stack stackCreate() {
 stack s = malloc(sizeof(struct stackInternals));
 s->top = NULL;
 return s;
}

Push and Pop with a Linked List
All of our changes will apply to the top of the list

● Push adds an element to the top of the list
● Top will then point at that element

● Pop removes the top element of the list and returns it
● Top will then point at the next element

Push
Add a node to the top of the list

Object Object ObjectTop NULL

Object Object ObjectTop NULLNew
Object

Push Code
// Add an element on top of the stack
void stackPush(stack s, int item) {
 struct node *n = malloc(sizeof (struct node));
 if (n == NULL) {
 printf("Cannot allocate memory for a node.\n");
 exit(1);
 }
 n->data = item;
 n->next = s->top;
 s->top = n;
}

Pop
Remove the node from the top of the list

Object Object ObjectTop NULL

Object Object Object NULL

Top

Pop code
// Remove the top element from the stack
int stackPop(stack s) {
 if(s->top == NULL) {
 printf("Stack is empty, cannot pop.\n");
 exit(1);
 }
 // keep a pointer to the node so we can free it
 struct node *n = s->top;
 int item = n->data;
 s->top = s->top->next;
 free(n);
 return item;
}

Hidden Implementations
Neither Implementation needs to change the Header

● The main function doesn't know the difference!
● The structures and implementations are hidden from the header file and

the rest of the code that uses it
● If we want or need to, we can change the underlying implementation

without affecting the main code

What did we learn today?
Abstract Data Types

● Complete implementation of the Queue using a Linked List
● Partial implementation of a Stack using an Array
● Showing that we can also implement the Stack using a Linked List
● Hidden implementations mean they can change if we want!

We're finished for new content for COMP1511

● Next week's lectures will be a recap and strategies for the exam

