
COMP1511 - Programming 
Fundamentals

Week 9 - Lecture 16



What did we cover yesterday?
Projects with Multiple Files

● Using and Compiling Multiple Files

Abstract Data Types - Queues

● Providing functionality and hiding the implementation
● typedef and how to use it
● A Queue as an example of an Abstract Data Type - rules with no set 

underlying structure



What are we covering today?
Finishing our Queue Implementation

● Destroying and Freeing
● Returning the number of items

Another Abstract Data Type

● Stacks
● Implementing with other data structures



Recap - Abstract Data Types 
Making our own types with specific uses

● Declare our functionality in a Header (*.h) file
● Hide our Implementation in a *.c file

● The Header declares the type and the functions
● All the implementation is left out of the header

● The C file defines the underlying implementation



Finishing our Queue
Continuing the example

● We need a main file to use the Queue
● Let's try adding and removing

● We're not cleaning our memory properly yet
● So we need a function that frees an entire queue

● Also, a function that returns how many items are in the queue
● This makes it easier for someone to use without risking errors



Adding to the tail
● Connect the new object to the current tail
● Move the tail pointer to the new last object
● We no longer need to loop through the whole queue to find the tail
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Code for Adding
void queueAdd(Queue q, int item) {
    struct queueNode *newNode = malloc(sizeof(struct queueNode));
    newNode->data = item;
    newNode->next = NULL;
    
    if (q->tail == NULL) {
        // Queue is empty
        q->head = newNode;
        q->tail = newNode;
    } else {
        q->tail->next = newNode;
        q->tail = newNode;
    }    
}



Removing a Node
The only node that can be removed is the head (the oldest node)
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Code for Removing
// Remove the head from the list and free the memory used
int queueRemove(Queue q) {
    if (q->head == NULL) {
        printf("Attempt to remove an element from an empty queue.\n");
        exit(1);
    }
    // Keep track of the old head
    int returnData = q->head->data;
    struct queueNode *remNode = q->head;
    
    // move the queue to the new head and free the old
    q->head = q->head->next;
    free(remNode);
    
    return returnData;
}



Testing Code in our Main.c
int main(void) {
    printf("Creating the Queue for Ice Cream.\n");
    Queue iceQueue = queueCreate();
    int id = 1;
    printf("Person %d joins the queue!\n", id);
    queueAdd(iceQueue, id);
    id = 2;
    printf("Person %d joins the queue!\n", id);
    queueAdd(iceQueue, id);
    id = 3;
    printf("Person %d joins the queue!\n", id);
    queueAdd(iceQueue, id);
    
    printf("Person %d just got their ice cream!\n", queueRemove(iceQueue));
    printf("Person %d just got their ice cream!\n", queueRemove(iceQueue));
    printf("Person %d just got their ice cream!\n", queueRemove(iceQueue));
    return 0;
}



Our queue.h Header File
// queue type hides the struct that it is
// implemented as
typedef struct queueInternals *Queue;

// functions to create and destroy queues
Queue queueCreate(void);
void queueFree(Queue q);

// Add and remove items from queues
// Removing the item returns the item for use
void queueAdd(Queue q, int item);
int queueRemove(Queue q);

// Check on the size of the queue
int queueSize(Queue q);



queueFree()
Free all the memory in the linked list that we're using

● Loop through the list
● free() each node as we go

// Destroy and Free the entire queue
void queueFree(Queue q) {
    while (q->head != NULL) {
        struct queueNode *current = q->head;
        q->head = q->head->next;        
        free(current);
    }
}



Testing for memory leaks
Let's use dcc --leakcheck

● What happens when we run with memory leak checking?
● Remember that all memory allocated with malloc() must be freed!

int main(void) {
    Queue iceQueue = queueCreate();
    queueAdd(iceQueue, 1);
    queueAdd(iceQueue, 2);
    queueAdd(iceQueue, 3);
    
    queueFree(iceQueue);
}



queueFree() Improved
Remember to free all the memory allocations!

// Destroy and Free the entire queue
void queueFree(Queue q) {
    while (q->head != NULL) {
        struct queueNode *current = q->head;
        q->head = q->head->next;        
        free(current);
    }
    free(q);
}



Number of items in the Queue
Our last function is queueSize()

● Loop through the list until the end
● Count how many elements are in it

// Return the number of items in the queue
int queueSize(Queue q) {
    struct queueNode *iterator = q->head;
    int counter = 0;
    while(iterator != NULL) {
        counter++;
        iterator = iterator->next;
    }
    return counter;
}



Can we be trickier?
Maybe we don't want to loop through the whole list every time?

● We have a queueInternals struct that can store information
● How about we store the size there?

● Then, whenever we add or remove a node, we add or subtract 1 from this 
variable

// Queue internals holds a pointer to the start of a linked list
struct queueInternals {
    struct queueNode *head;
    struct queueNode *tail;
    int size;
};



Completing our Queue
To go along with our size variable . . .

● queueCreate will set the size to 0
● queueAdd will add 1
● queueRemove will subtract 1

In our testing main(), we can now show this working with a loop:

    while(queueSize(iceQueue) > 0) {
        printf("Person %d just got their ice cream!\n", queueRemove(iceQueue));
        printf("There are %d people in the queue.\n", queueSize(iceQueue));
    }



More thoughts on the Queue
Whatever includes the queue only sees the header

● When we're using ADTs we don't know (or need to know) the 
implementation

● What if this queue had been implemented using an array?

Challenge

● Implement queue.c using an array instead of a Linked List
● There are several different ways to make that work!



Break Time
Where to find further information about programming?

● There are a lot of online resources that can help with programming
● Teaching yourself can help to go beyond course content
● Stack Overflow is a question and answer site

○ It can sometimes be useful but sometimes be confusing or argumentative

● There are several free online courses that will teach you different 
languages

○ Too many to list!

● Experimentation will always teach you something! 



Stacks - another Abstract Data Type
A stack is a very common data structure in programming

● It is a "Last in first out" structure
● You can put something on top of a stack
● You can take something off the top of a stack
● You can't access anything underneath



This is actually how functions work!
The currently running code is on the top of the stack

● main() calls function1() - only function1() is accessible
● function1() calls function2() - only function2() is accessible
● control returns to function1() when function2() returns
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What kind of functions does a stack need?
Functionality to put in a header file

● create
● free
● push (add to the top of the stack)
● pop (remove from the top of the stack)
● top (show the top without removing it)
● size

We'll only have time for some of these today



A Stack Header
Looks eerily familiar to Queue . . .

// stack type hides the struct that it is implemented as
typedef struct stackInternals *Stack;

// functions to create and destroy stacks
stack stackCreate(void);
void stackFree(Stack s);

// Push and Pop items from stacks
// Removing the item returns the item for use
void stackPush(Stack s, int item);
int stackPop(Stack s);

// Check on the size of the queue
int stackSize(Stack s);



Implementation
What is our internal data structure going to be?

● We could use a linked list again
● We could use an array
● Whichever it is, it should be invisible to whoever includes the stack.h file

● For this example, let's use an array (just for a change)
● Our data will be stored in an array with a large maximum size
● We'll keep track of where the top is with an int



Array Implementation of a stack
A large array where only some of it is used

● Top is a particular index
● Top signifies where our data ends
● It also happens to be exactly the number of elements in the stack!

65 23 15 3 8

Top is 5 Undefined data . . . we might use 
these cells if the stack grows larger



stack.c
// Struct representing the stack using an array
struct stackInternals {
    int stack[MAX_STACK_SIZE];
    int top;
};

// create a new stack
stack stackCreate() {
    stack s = malloc(sizeof(struct stackInternals));
    s->top = 0;
    return s;
}



Push and Pop
These should only interact with the top of the stack

● Push should add an element after the end of the stack
● It should then move the top index to that new element

● Pop should return the element on the top of the stack
● It should then move the top index down one



Push
Push a new element "82" onto the stack
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Push code
// Add an element to the top of the stack
void stackPush(stack s, int item) {
    // check to see if we've used up all our memory
    if(s->top == MAX_STACK_SIZE) {
        printf("Maximum stack size reached, cannot push.\n");
        exit(1);
    }
    s->stackData[s->top] = item;
    s->top++;
}



Pop
Pop removes the top element from the stack
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Pop code
// Remove an element from the top of the stack
int stackPop(stack s) {
    // check to see if the stack is empty
    if(s->top <= 0) {
        printf("Stack is empty, cannot pop.\n");
        exit(1);
    }
    s->top--;
    return s->stackData[s->top];
}



What if this were a linked list?
Implementation should be invisible to the including code

● Let's try to implement the same functions with a linked list
● We'll add elements to the end
● We'll also remove elements from the same end
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Linked List Implementation
struct stackInternals {
    struct node *top;
};
struct node {
    struct node *next;
    int data;
};

stack stackCreate() {
    stack s = malloc(sizeof(struct stackInternals));
    s->top = NULL;
    return s;
}



Push and Pop with a Linked List
All of our changes will apply to the top of the list

● Push adds an element to the top of the list
● Top will then point at that element

● Pop removes the top element of the list and returns it
● Top will then point at the next element



Push
Add a node to the top of the list
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Push Code
// Add an element on top of the stack
void stackPush(stack s, int item) {
    struct node *n = malloc(sizeof (struct node));
    if (n == NULL) {
        printf("Cannot allocate memory for a node.\n");
        exit(1);
    }
    n->data = item;
    n->next = s->top;
    s->top = n;
}



Pop
Remove the node from the top of the list
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Pop code
// Remove the top element from the stack
int stackPop(stack s) {
    if(s->top == NULL) {
        printf("Stack is empty, cannot pop.\n");
        exit(1);
    }
    // keep a pointer to the node so we can free it
    struct node *n = s->top;
    int item = n->data;
    s->top = s->top->next;
    free(n);
    return item;
}



Hidden Implementations
Neither Implementation needs to change the Header

● The main function doesn't know the difference!
● The structures and implementations are hidden from the header file and 

the rest of the code that uses it
● If we want or need to, we can change the underlying implementation 

without affecting the main code



What did we learn today?
Abstract Data Types

● Complete implementation of the Queue using a Linked List
● Partial implementation of a Stack using an Array
● Showing that we can also implement the Stack using a Linked List
● Hidden implementations mean they can change if we want!

We're finished for new content for COMP1511

● Next week's lectures will be a recap and strategies for the exam


