Exercise 1. A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction (AND) of disjunctions (OR) of literals (a Boolean variable or its negation). A HORN formula is a CNF formula where each clause contains at most one positive literal. For a CNF formula \(F \) and an assignment \(\tau : S \to \{0,1\} \) to a subset \(S \) of its variables, the formula \(F[\tau] \) is obtained from \(F \) by removing each clause that contains a literal that evaluates to 1 under \(S \), and removing all literals that evaluate to 0 from the remaining clauses.

HORN-Backdoor Detection

Input: A CNF formula \(F \) and an integer \(k \).
Parameter: \(k \)
Question: Is there a subset \(S \) of the variables of \(F \) with \(|S| \leq k \) such that for each assignment \(\tau : S \to \{0,1\} \), the formula \(F[\tau] \) is a HORN formula?

Example: \((\neg a \lor b \lor c) \land (b \lor \neg c \lor \neg d) \land (a \lor b \lor \neg e) \land (\neg b \lor c \lor \neg e)\) with \(k = 1 \) is a Yes-instance, certified by \(S = \{b\} \).

- Show that HORN-Backdoor Detection is FPT using the fact that Vertex Cover is FPT.

Hint.
- Show the following: if two distinct positive literals occur in a same clause, then a HORN-backdoor must contain at least one of the corresponding variables.
- Construct a parameterized reduction to Vertex Cover based on these pairwise conflicts.

Exercise 2. Show that Weighted Circuit Satisfiability \(\in XP \).

Hint.
- There are \(n^k \) assignments of weight \(k \), where \(n \) is the number of input gates.

Exercise 3. Recall that a \(k \)-coloring of a graph \(G = (V,E) \) is a function \(f : V \to \{1,2,\ldots,k\} \) assigning colors to \(V \) such that no two adjacent vertices receive the same color.

Multicolor Clique

Input: A graph \(G = (V,E) \), an integer \(k \), and a \(k \)-coloring of \(G \)
Parameter: \(k \)
Question: Does \(G \) have a clique of size \(k \)?

- Show that Multicolor Clique is W[1]-hard.

Hint: Reduce from Clique, and create \(k \) copies of \(V \), each one being an independent set in \(G' \). Add edges to enforce constraints that a clique of size \(k \) in \(G' \) corresponds to a clique of size \(k \) in \(G \), and vice-versa.

Solution. The proof is by a parameterized reduction from Clique.

Construction. Let \((G = (V,E),k)\) be an instance for Clique. We construct an instance \((G' = (V',E'),k',f)\) for Multicolor Clique as follows. For each \(v \in V \), create \(k \) vertices \(v(1),\ldots,v(k) \) and add them to \(V' \). For every
pair \(u(i), v(j) \in V' \) with \(i \neq j \), add \(u(i)v(j) \) to \(E' \) if and only if \(uv \in E \). Set \(k' := k \). Set \(f(v(i)) = i \) for each \(v \in V \) and \(i \in \{1, \ldots, k\} \).

Equivalence. \(G \) has a clique of size \(k \) if and only if \(G' \) has a clique of size \(k \).

\((\Rightarrow)\): Let \(S = \{s_1, \ldots, s_k\} \) be a clique in \(G \). Then \(S' = \{s_1(1), s_2(2), \ldots, s_k(k)\} \) is a clique in \(G' \) since \(s_is_j \in E \) implies \(s_i(s_j(j)) \in E' \) in our construction.

\((\Leftarrow)\): Let \(S' \) be a clique of size \(k \) in \(G' \). Since for each \(i \in \{1, \ldots, k\} \), \(\{v_i : v \in V\} \) is an independent set in \(G' \), \(S' \) contains exactly one vertex from each color class of \(f \). Denote \(S' = \{s'_1(1), \ldots, s'_k(k)\} \). Then, \(S = \{s_1, \ldots, s_k\} \) is a clique in \(G \).

Parameter. \(k' \leq k \).

Running time. The construction can clearly be done in FPT time, and even in polynomial time.

Exercise 4. A set system \(S \) is a pair \((V, H)\), where \(V \) is a finite set of elements and \(H \) is a set of subsets of \(V \). A set cover of a set system \(S = (V, H) \) is a subset \(X \) of \(H \) such that each element of \(V \) is contained in at least one of the sets in \(X \), i.e., \(\bigcup_{Y \in X} Y = V \).

Set Cover

- **Input:** A set system \(S = (V, H) \) and an integer \(k \)
- **Parameter:** \(k \)
- **Question:** Does \(S \) have a set cover of cardinality at most \(k \)?

- Show that Set Cover is W[2]-hard.

Hint. Reduce from Dominating Set:
- add an element for each vertex and
- add a set for each vertex, containing all the vertices in its closed neighborhood.

Exercise 5. A hitting set of a set system \(S = (V, H) \) is a subset \(X \) of \(V \) such that \(X \) contains at least one element of each set in \(H \), i.e., \(X \cap Y \neq \emptyset \) for each \(Y \in H \).

Hitting Set

- **Input:** A set system \(S = (V, H) \) and an integer \(k \)
- **Parameter:** \(k \)
- **Question:** Does \(S \) have a hitting set of size at most \(k \)?

- Show that Hitting Set is W[2]-hard.

Hint: Exploit a duality between sets and elements in set covers and hitting sets.

Solution sketch. Reduce from Set Cover. Let \((S = (V, H), k)\) be an instance for Set Cover. Construct an instance \((S' = (V', H'), k)\) for Hitting Set:
- \(V' := H \)
- \(H' := \{\{h \in H : v \in h\} : v \in V\} \)