COMP1917: 01_Numbers In, Numbers Out

Sim Mautner

simm@cse.unsw.edu.au
July 26, 2016

References

- Moffat, Chapter 2.

Variables and Types

- Variables are used to store data. \rightarrow boxes
- Each variable has a type. \rightarrow size/structure of the box
- For now, we are using 3 data types:

char	character	'A', 'e', '\#'
int	integer	$2,17,-5$
float	floating point number	$3.14159,2.71828$

Variables

- Declare

The first time a variable is mentioned, we need to specify its type.

- Initialise

Before using a variable we need to assign it a value.

- Assign

To give a variable a value.

```
int num; // Declare
num = 5; // Initialise (also Assign)
num = 27; // Assign
```


Variables

- We can also Declare and Initialise in the same step:

$$
\begin{aligned}
& \text { int num }=5 ; / / \text { Declare and Initialise } \\
& \ldots \\
& \text { num }=27 ; / / \text { Assign }
\end{aligned}
$$

Variable Names (and other Identifiers)

- Must be made up of letters, digits and underscores (' - ')
- The first character must be a letter
- Are case sensitive (num1 and Num1 are different)
- Restrictions: Keywords like:
if, while, do, int, char, float
cannot be used as identifiers

Output using printf()

- No variables:
printf("Hello World\n");
- A single variable:
int num = 5;
printf("num is \%d\n", num);
- More than one variable:
int num1 = 5;
int num2 = 17;
printf("num1 is \%d and num2 is \%d\n", num1, num2);
- Note: The order in which the variables are listed, is the order in which they will appear.
int num1 = 5;
int num2 = 17;
printf("num2 is \%d and num1 is \%d\n", num2, num1);

Output using printf()

Placeholders:

- char uses \%c
- int uses \%d
- float uses \%f
- double uses \%lf

Try It Yourself:

(1) Copy the code from the end of the previous slide into a C program and run it.
(2) Make the appropriate changes so that it declares, initialises and prints a char, float and double.

Input using scanf()

- Example:

```
int num = 0;
scanf("%d\n", &num);
printf("num = %d\n", num);
```

- Notice that the variable is still initialised. (Not necessary, but good practice.)
- Notice the \& before the variable name. Don't forget it!!

Input using scanf()

- Multiple variables (space separated):

```
int num1 = 0 ;
int num2 \(=0\);
scanf("\%d \%d\n", \&num1, \&num2);
printf("num1 \(=\% d\) and num2 \(=\% d \backslash n "\), num1, num2);
```

- Multiple variables (comma separated):

$$
\begin{aligned}
& \text { int num1 }=0 ; \\
& \text { int num2 }=0 ;
\end{aligned}
$$

$$
\operatorname{scanf}(" \% d, \% d \backslash n ", \quad \text { \&num1, \&num2) ; }
$$

$$
\text { printf("num1 }=\% \mathrm{~d} \text { and num2 }=\% \mathrm{~d} \backslash \mathrm{n} ", \text { num1, num2); }
$$

- Notice the space or comma between the variables.

Input using scanf()

Try It Yourself:

- Create a C program using the code from the previous slide.
- Using what you know about placeholders for printf() (earlier this lecture) and $\operatorname{scanf}()$, make the changes required so that it scans in and prints out a character (char).

Programming Task

Write a program to:
(1) Read in a number.
(2) Compute the cube of that integer.
(3) Display the result on the screen.

Programming Task

Process:

(1) Step 1: Think about the problem.
(2) Step 2: Break it down into steps (and each step into smaller steps).
(3) Step 3: Convert the basic steps into code.
(9) Step 4: Compile the program.
(3) Step 5: Test the program on a range of data.

Arithmetic Operators

Name	Symbol	Example	Conditions
Add	+	$\mathrm{a}+\mathrm{b}$	none
Subtract	-	$\mathrm{a}-\mathrm{b}$	none
Multiply	$*$	$\mathrm{a} * \mathrm{~b}$	none
Divide	$/$	a / b	ignores remainder for integer division
Modulus	$\%$	$\mathrm{a} \% \mathrm{~b}$	remainder of a / b

```
int result = 50 / 3;
int remainder = 50 % 3;
printf("50 divided by 3 equals %d remainder %d\n",
    result, remainder);
```


printf() with floats

\%d decimal integer
\%5d decimal integer at least 5 chars wide
\%f floating point number
\%5f floating point number at least 5 chars wide
$\% .3 \mathrm{f}$ floating point number 3 decimal places
$\% 5.3 \mathrm{f}$ floating point number at least 5 chars 3 decimal places

Math Equations

- sqrt(), $\sin (), \cos (), \log (), \exp ()$
- \#include <math.h>
- Compile with -lm

Math Equations: Example

```
#include <stdio.h>
#include <math.h>
int main(int argc, char *argv[]) {
    int num = 0;
    scanf("%d", num);
    double result = sqrt(num);
    printf("The square root is: %.3lf\n");
    return 0;
}
```

