COMP1917: 01 _Numbers In, Numbers Out

Sim Mautner

simm@cse.unsw.edu.au

July 26, 2016

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out

References

o Moffat, Chapter 2.

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out

Variables and Types

@ Variables are used to store data. — boxes
e Each variable has a type. — size/structure of the box

@ For now, we are using 3 data types:
char character ‘A, ‘e, T
int integer 2,17, -5
float floating point number 3.14159, 2.71828

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out July 26, 2016

3/1

Variables

@ Declare
The first time a variable is mentioned, we need to specify its type.

o Initialise
Before using a variable we need to assign it a value.

@ Assign
To give a variable a value.

int num; // Declare
num = 5; // Initialise (also Assign)

num = 27; // Assign

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out July 26, 2016

4/1

Variables

@ We can also Declare and Initialise in the same step:

int num = 5; // Declare and Initialise

num = 27; // Assign

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out

Variable Names (and other Identifiers)

Must be made up of letters, digits and underscores (‘)
The first character must be a letter

Are case sensitive (numl and Numl are different)

Restrictions: Keywords like:
if, while, do, int, char, float

cannot be used as identifiers

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out

July 26, 2016

6/1

Output using printf ()

No variables:

printf ("Hello World\n");

A single variable:

int num = 5;

printf("num is %d\n", num);

More than one variable:

int numl = 5;

int num2 17;

printf ("numl is %d and num2 is %d\n", numl, num2);

Note: The order in which the variables are listed, is the order in
which they will appear.

int numl = 5;

int num2 17;

printf ("num2 is %d and numl is %d\n", num2, numl);

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out July 26, 2016

7/1

Output using printf ()

Placeholders:
@ char uses %c
@ int uses %d
o float uses %f
@ double uses %1f

Try It Yourself:

@ Copy the code from the end of the previous slide into a C program
and run it.

© Make the appropriate changes so that it declares, initialises and prints
a char, float and double.

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out July 26, 2016 8/1

Input using scanf ()

o Example:
int num = 0;
scanf ("%d\n", &num) ;
printf ("num = %d\n", num);

o Notice that the variable is still initialised. (Not necessary, but good
practice.)

o Notice the & before the variable name. Don't forget it!!

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out July 26, 2016 9/1

Input using scanf ()

e Multiple variables (space separated):

int numl = O;

int num2 = 0;

scanf ("%d %d\n", &numl, &num?2);

printf ("numl = %d and num2 = Jd\n", numl, num2);
e Multiple variables (comma separated):

int numl = 0;

int num2 = 0;

scanf ("%d, %d\n", &numl, &num2);

printf ("numl = %d and num2 = Jd\n", numl, num2);

@ Notice the space or comma between the variables.

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out July 26, 2016 10/1

Input using scanf ()

Try It Yourself:
@ Create a C program using the code from the previous slide.

e Using what you know about placeholders for printf () (earlier this
lecture) and scanf (), make the changes required so that it scans in
and prints out a character (char).

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out July 26, 2016 1/1

Programming Task

Write a program to:
© Read in a number.
@ Compute the cube of that integer.

© Display the result on the screen.

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out

July 26, 2016

12/1

Programming Task

Process:
@ Step 1: Think about the problem.
@ Step 2: Break it down into steps (and each step into smaller steps).
© Step 3: Convert the basic steps into code.
@ Step 4: Compile the program.
© Step 5: Test the program on a range of data.

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out July 26, 2016 13/1

Arithmetic Operators

Name | Symbol | Example | Conditions
Add + a+b none

Subtract - a-b none
Multiply a*b none
Divide / a/b ignores remainder for integer division
Modulus % a%b | remainder of a/b

int result = 50 / 3;

int remainder = 50 % 3;

printf ("50 divided by 3
result, remainder);

Sim Mautner (UNSW)

COMP1917: 01_Numbers In, Numbers Out

equals %d remainder %d\n",

July 26, 2016 14 /1

printf () with floats

%d decimal integer
%5d decimal integer at least 5 chars wide
%f floating point number

%5f floating point number at least 5 chars wide
%.3f floating point number 3 decimal places
%5.3f floating point number at least 5 chars 3 decimal places

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out July 26, 2016 15/1

Math Equations

@ sqrt(), sin(), cos(), log(), exp()
@ #include <math.h>

o Compile with -1m

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out July 26, 2016 16 /1

Math Equations: Example

#include <stdio.h>
#include <math.h>

int main(int argc, char *argv([]) {

int num = 0;
scanf ("%d", num);
double result = sqrt(num);

printf ("The square root is: %.31f\n");
return O;

Sim Mautner (UNSW) COMP1917: 01_Numbers In, Numbers Out

