
Propositional logic 2

We are going to talk about propositional logic, Boolean algebras and related
topics in the next fwew notes. Hopefully, some of the confusion in these abstract
concepts will be cleared up.

1. The �rst important point is the di�erence between syntax and semantics.
Syntax is the symbolic structure which is precisely de�ned and is (in princi-
ple) easily checked by a computer programme. Semantics is about assigning
meaning to the syntactic structures. This is more subtle. Is the correspon-
dence between the symbols and their assigned meaning correct, consistent,
complete...? These are di�cult questions. But for propositional logic the
answers are known to be �yes�. Let us start with a recap of the de�nition of
a formula.

2. Start with a set of letters p, q, r, . . . sometimes with subscripts which will
be called propositional variables. They stand for atomic sentences. You can
think of these as statements which can be assigned a truth value true (T) or
false (F). We then introduce logical operators ∨,∧, and ¬.

3. We can now recursively de�ne a formula of propositional logic.

(a) Every propositional variable p is a formula. These are called atomic
formulas.

(b) If φ is formula then ¬φ is formula. Atomic formulas p, q, . . . , and their
negations ¬p,¬q, . . . , are called literals.

(c) If φ1 and φ2 are formulas then so are φ1 ∧ φ2, φ1 ∨ φ2.
(d) Finally, we need parentheses to remove ambiguities. So we posit if φ is

formula then (φ) is also a formula.

4. Study this recursive de�nition carefully. You will come across this type of
de�nition frequently in computer science. The de�nition gives a recipe for
building legitimate formulas. For example, we will reject ∨p as a formula
because it dos not con�rm to the recipe.

Remember what the de�nition is doing. Let us start with a �nite set Σ =
{p1, p2, . . . , pn} ∪ {¬,∨,∧, (,)}. Σ is our alphabet. The set of legal formulas
F is a subset of Σ∗. The recursive de�nition of a formula also de�nes this
subset. You can use the de�nition to write an algorithm to check whether a
given word in Σ∗ is formula or not.

1

You can also use the recursive nature of the de�nition to prove theorems
about formulas. Suppose you want to prove that some assertion is true for
all formulas. You prove it �rst for atomic formulas. Then you prove that if
the assertion is true for φ1, φ2 it is true for ¬φ1 and φ1∨φ2 and you are done!
This proof trick is called structural induction. You are using induction on
the structure of the formulas.

Take a few moments to think about this. It is important!

5. The rules of building formulas tell you whether a word or string is a formula.
For example, p ∨ ¬q is a formula but ∨p¬q is not. It is like checking the
syntax in a programming language a ∗ b (= a× b) is an expression but ∗ab is
not (in most programming languages).

6. We actually de�ne φ⇒Ψ to be ¬φ ∨Ψ.

7. We know by de Morgan's laws that ¬(φ ∨ Ψ) = ¬φ ∧ ¬Ψ. As words in the
language of formulas they are certainly di�erent so what is the meaning of
the equality?

8. There are two possible approaches: the axiomatic approach and the semantic
approach. The axiomatic approach identi�es certain formulas like the ones
above. It is like something you have seen for natural numbers: a+ b = b+ a.
Although as expressions they are di�erent they denote the `same thing'.

9. In the axiomatic approach we write down some formulas as axioms. Then
we lay down some rules deduction. Whatever new formulas you can derive
from the rules is called a theorem. We will not follow this approach although
variants of this approach are used in powerful tools like theorem provers.

10. In the second approach we build `models' for the propositional variables. In
these models each variable is assign a `truth value', that is, each variable is
assigned a value true (T or 1) or false (F or 0). We also give the rules for
determining truth value of compound formulas from its parts. This is called
a valuation. You have already seen it in the lecture notes and the previous
supplementary notes. Important note: any axiom in the �rst approach (for
example, φ ∨ ¬φ) must be a tautology.

11. Entailment. The expression φ, ψ |= θ means that whenever formulas φ and
ψ evaluate to true θ has value true. Note that we only look at the rows truth
table where both φ and ψ come out true. The other rows (where at least
one of them is false) do not matter as far as entailment is concerned. That
is why we say φ and ψ entail θ.

12. |= θ means that > |= θ. The symbol > is considered to be always true. So
|= θ simply says that θ is tautology.

13. We can generalize to any number of formulas on the left side

φ1, φ2, . . . , φn |= θ

2

This is equivalent to both

|= (φ1 ∧ φ2 ∧ . . . ∧ φn)→ θ and |= φ1 → (φ2 . . . (φn → θ . . .)

What this `equivalence' means is that if any one of the entailment holds then
all hold.

14. Let us look at some examples of entailment. Suppose we are given

φ, ψ |= θ1 ∨ θ2

Then we have only this much information:

φ ψ θ1 θ2
T T T T
T T T F
T T F T

Can you see why? All we are given is that when both φ and ψ are true
then θ1 ∨ θ2 must be true. The table precisely re�ects that. But it also says
something that is not there. For example, we can add the row

T F T T

it is an allowed valuation. What are the valuations that are not allowed?
There is only one disallowed valuation:

T T F F

What can you infer from the table ? Can we say that θ1, θ2 |= φ1? The
simplest way to do this is to ask for what valuations does the entailment
fail. The answer is :v(θ1) = v(θ2) = T and v(φ1) = F . This is an allowed
valuation for the original entailment φ, ψ |= θ1 ∨ θ2. So we cannot infer
that θ1, θ2 |= φ. How about ¬θ1,¬θ2 |= ¬φ ∨ ¬φ2? Again this fails only if
v(θ1) = v(θ2) = F and v(φ1) = v(φ2) = T . This is disallowed as we have
seen. So we can infer the last entailment.

Manas Patra

3

