Declarative / procedural

Theorem proving (like resolution) is a general domain-independent method of reasoning

Does not require the user to know how knowledge will be used

will try all logically permissible uses

Sometimes have ideas about how to use knowledge, how to search for derivations

do not want to use arbitrary or stupid order

Want to communicate to ATP procedure guidance based on properties of domain

- perhaps specific method to use
- · perhaps merely method to avoid

Example: directional connectives

In general: control of reasoning

KR & R © Brachman & Levesque 2005

Procedural Control

DB + rules	
Can often separate (Horn) clauses into two components: • database of facts – basic facts of the domain – usually ground atomic wffs • collection of rules – extend vocabulary in terms of basic facts	
 usually universally quantified conditionals Both retrieved by unification matching 	
Example: MotherOf(jane,billy) FatherOf(john,billy) FatherOf(sam, john) ParentOf(x,y) \Leftarrow MotherOf(x,y) ParentOf(x,y) \Leftarrow FatherOf(x,y) ChildOf(x,y) \Leftarrow ParentOf(y,y)	
 Control Issue: how to use rules	

Rule formulation Consider AncestorOf in terms of ParentOf Three logically equivalent versions: 1. AncestorOf(x, y) \Leftarrow ParentOf(x, y) AncestorOf(x,y) \Leftarrow ParentOf(x,z) \land AncestorOf(z,y) 2. AncestorOf(x,y) \Leftarrow ParentOf(x,y) AncestorOf(x,y) \leftarrow ParentOf(z,y) \land AncestorOf(x,z) **3**. AncestorOf(x,y) \Leftarrow ParentOf(x,y) AncestorOf(x, y) \leftarrow AncestorOf(x, z) \land AncestorOf(z, y) Back-chaining goal of AncestorOf(sam,sue) will ultimately reduce to set of ParentOf(-,-) goals find child of Sam 1.get ParentOf(sam,z): searches downward from Sam 2.get ParentOf(*z*,sue): find parent of Sue searches upward from Sue 3.get ParentOf(-,-): find parent relations searches in both directions Search strategies are not equivalent if more than 2 children per parent, (2) is best KR & R © Brachman & Levesque 2005 Procedural Control

Algorithm design		
Example: Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21,		
Version 1: Fibo $(0, 1)$ Fibo $(1, 1)$ Fibo $(s(s(n)), x) \leftarrow$ Fibo $(n, y) \land$ Fibo $(s(n), z)$ \land Plus (y, z, x)		
Requires <u>exponential</u> number of Plus subgoals		
Version 2: Fibo $(n, x) \leftarrow F(n, 1, 0, x)$ F $(0, c, p, c)$ F $(s(n), c, p, x) \leftarrow Plus(p, c, s) \land F(n, s, c, x)$		
Requires only linear number of Plus subgoals		

Procedural Control

KR & R © Brachman & Levesque 2005

Ordering goals

Commit		
Need to allow for backtracking in goals		
AmericanCousinOf(x, y) :-		
CousinOf(x,y), American(x)		
for goal AmericanCousinOf(x ,sally), may need to try American(x) for various values of x		
But sometimes, given clause of the form		
G := T, S		
goal T is needed only as a <u>test</u> for the applicability of subgoal S		
In other words: if T succeeds, commit to S as the <u>only</u> way of achieving goal G .		
so if S fails, then G is considered to have failed		
- do not look for other ways of solving T		
- do not look for other clauses with G as head		
In Prolog: use of cut symbol		
Notation: $G := T_1, T_2,, T_m, !, G_1, G_2,, G_n$		
attempt goals in order, but if all T_i succeed, then commit to G_i		
KR & R © Brachman & Levesque 2005 Procedural Control		

lf-then-else

Sometimes inconvenient to separate clauses in terms of unification, as in G(zero, -) :- method 1 $G(\operatorname{succ}(n), -)$:- method 2 For example, might not have distinct cases: NumberOfParentsOf(adam, 0) NumberOfParentsOf(eve, 0) NumberOfParentsOf(x, 2) want: 2 for everyone except Adam and Eve Or cases may split based on computed property: Expt(a, n, x): Even(n), (what to do when n is even) Expt(a, n, x) := Even(s(n)), (what to do when n is odd) want: check for even numbers only once Solution: use ! to do if-then-else G := P, !, Q.G := R.To achieve G: if P then use Q else use R $\operatorname{Expt}(a, n, x) := \operatorname{Even}(n), !, \text{ (for even n)}$ $\operatorname{Expt}(a, n, x) := (for odd n)$ NumberOfParentsOf(adam, 0) :- ! NumberOfParentsOf(eve, 0) :- ! NumberOfParentsOf(x, 2) KR & R © Brachman & Levesque 2005 Procedural Control

Negation as failure

Procedurally: can distinguish between – can solve goal $\neg G$ – cannot solve <i>G</i>		
Use $not(G)$ to mean goal that succeeds if G fails, and fails if G succeeds		
Roughly		
not (G) :- G, !, fail not (G)	/* fail if <i>G</i> succeeds */ /* otherwise succeed */	
Only terminates when failure is <u>finite</u> no more resolvents vs. infinite branch		
Useful when DB + rules is complete		
NoParents(x) :- not (ParentOf(z,x))		
or when method already exists for complement		
Composite(n) :- not (PrimeNum(n))		
Declaratively: same reading as \neg , but complications with <u>new</u> variables in <i>G</i>		
[not (ParentOf(z, x)) \square	NoParents(x)] 4	
VS. $[\neg ParentOf(z,x) \supset Nol$	Parents(x)] 8	
KH & H © Brachman & Levesque 2005	Procedural Control	

Dynamic DB		
Sometimes useful to think of DB as a snapshot of the world that can be changed dynamically assertions, deletions		
then useful to consider three procedural interpretations for rules like		
$ParentOf(x,y) \Leftarrow MotherOf(x)$	<i>x</i> , <i>y</i>)	
1. If-needed		
Whenever have a goal matching Pa by solving $MotherOf(x,y)$	arentOf(x,y), can solve it	
ordinary back-chaining, as ir	n Prolog	
2. If-added		
Whenever something matching Mo DB, also add ParentOf(<i>x</i> , <i>y</i>) forward-chaining	therOf(x , y) is added to the	
3. If-removed		
Whenever something matching MotherOf(x , y) is removed from the DB, also remove ParentOf(x , y)		
keeping track of <u>dependencies</u> in DB		
Interpretations (2) and (3) suggest demons procedures that monitor DB and fire when certain conditions are met		
KR & R © Brachman & Levesque 2005	Procedural Control	

The Planner language

