6. Kernelization

COMP6741: Parameterized and Exact Computation

Serge Gaspers¹²

¹School of Computer Science and Engineering, UNSW Australia ²Optimisation Resarch Group, NICTA

Semester 2, 2015

Outline

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- Mernelization algorithms
- A smaller kernel for VERTEX COVER
- More on Crown Decompositions
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

Outline

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- 2 Kernelization algorithms
- 3 A smaller kernel for VERTEX COVER
- 4 More on Crown Decompositions
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

Vertex cover

A vertex cover of a graph G=(V,E) is a subset of vertices $S\subseteq V$ such that for each edge $\{u,v\}\in E$, we have $u\in S$ or $v\in S$.

Vertex Cover

Input: A graph G = (V, E) and an integer k

Parameter: k

Question: Does G have a vertex cover of size at most k?

Outline

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- Kernelization algorithms
- 3 A smaller kernel for VERTEX COVER
- 4 More on Crown Decompositions
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

(Degree-0)

If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

(Degree-0)

If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

Proving correctness. A simplification rule is sound if for any instance, it produces an equivalent instance. Two instances I, I' are equivalent if they are both YES-instances or they are both No-instances.

Lemma 1

(Degree-0) is sound.

(Degree-0)

If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

Proving correctness. A simplification rule is sound if for any instance, it produces an equivalent instance. Two instances I, I' are equivalent if they are both YES-instances or they are both No-instances.

Lemma 1

(Degree-0) is sound.

Proof.

First, suppose (G-v,k) is a YES-instance. Let S be a vertex cover for G-v of size at most k. Then, S is also a vertex cover for G since no edge of G is incident to v. Thus, (G,k) is a YES-instance.

Now, suppose (G,k) is a YES-instance. For the sake of contradiction, assume (G-v,k) is a No-instance. Let S be a vertex cover for G of size at most k. But then, $S\setminus\{v\}$ is a vertex cover of size at most k for G-v; a contradiction. \square

(Degree-1)

If $\exists v \in V$ such that $d_G(v) = 1$, then set $G \leftarrow G - N_G[v]$ and $k \leftarrow k - 1$.

(Degree-1)

If $\exists v \in V$ such that $d_G(v) = 1$, then set $G \leftarrow G - N_G[v]$ and $k \leftarrow k - 1$.

Lemma 1

(Degree-1) is sound.

Proof.

Let u be the neighbor of v in G. Thus, $N_G[v] = \{u, v\}$.

If S is a vertex cover of G of size at most k, then $S \setminus \{u, v\}$ is a vertex cover of $G - N_G[v]$ of size at most k - 1, because $u \in S$ or $v \in S$.

If S' is a vertex cover of $G-N_G[v]$ of size at most k-1, then $S'\cup\{u\}$ is a vertex cover of G of size at most k, since all edges that are in G but not in $G-N_G[v]$ are incident to v.

S. Gaspers (UNSW) Kernelization Semester 2, 2015 6

(Large Degree)

If $\exists v \in V$ such that $d_G(v) > k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

(Large Degree)

If $\exists v \in V$ such that $d_G(v) > k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

Lemma 1

(Large Degree) is sound.

Proof.

Let S be a vertex cover of G of size at most k. If $v \notin S$, then $N_G(v) \subseteq S$, contradicting that $|S| \le k$.

(Number of Edges)

If $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$ then return No

(Number of Edges)

If $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$ then return No

Lemma 1

(Number of Edges) is sound.

Proof.

Assume $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$.

Suppose $S \subseteq V$, $|S| \le k$, is a vertex cover of G.

We have that S covers at most k^2 edges.

However, $|E| \ge k^2 + 1$.

Thus, S is not a vertex cover of G.

S. Gaspers (UNSW) Kernelization Semester 2, 2015 6

Outline

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- 2 Kernelization algorithms
- 3 A smaller kernel for VERTEX COVER
- 4 More on Crown Decompositions
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

Preprocessing algorithm for VERTEX COVER

VC-preprocess

Input: A graph G and an integer k.

Output: A graph G' and an integer k' such that G has a vertex cover of size at most k if and only if G' has a vertex cover of size at most k'.

```
G' \leftarrow Gk' \leftarrow k
```

repeat

Execute simplification rules (Degree-0), (Degree-1), (Large Degree), and (Number of Edges) for (G', k')

until no simplification rule applies

 $\mathbf{return}\ (G',k')$

Effectiveness of preprocessing algorithms

- How effective is VC-preprocess?
- We would like to study preprocessing algorithms mathematically and quantify their effectiveness.

First try

• Say that a preprocessing algorithm for a problem Π is nice if it runs in polynomial time and for each instance for Π , it returns an instance for Π that is strictly smaller.

First try

- Say that a preprocessing algorithm for a problem Π is nice if it runs in polynomial time and for each instance for Π , it returns an instance for Π that is strictly smaller.
- ullet executing it a linear number of times reduces the instance to a single bit
- ullet such an algorithm would solve Π in polynomial time
- For NP-hard problems this is not possible unless P = NP
- We need a different measure of effectiveness

Measuring the effectiveness of preprocessing algorithms

- We will measure the effectiveness in terms of the parameter
- How large is the resulting instance in terms of the parameter?

Effectiveness of VC-preprocess

Lemma 2

For any instance (G, k) for VERTEX COVER, VC-preprocess produces an equivalent instance (G', k') of size $O(k^2)$.

Proof.

Since all simplification rules are sound, (G=(V,E),k) and (G'=(V',E'),k') are equivalent.

By (Number of Edges), $|E'| \le (k')^2 \le k^2$.

By (Degree-0) and (Degree-1), each vertex in V' has degree at least 2 in G'.

Since $\sum_{v \in V'} d_{G'}(v) = 2|E'| \le 2k^2$, this implies that $|V'| \le k^2$.

Thus, $|V'|+|E'|\subseteq O(k^2)$.

S. Gaspers (UNSW) Kernelization Semester 2, 2015 12

Outline

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- 2 Kernelization algorithms
- 3 A smaller kernel for VERTEX COVER
- 4 More on Crown Decompositions
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

Kernelization: definition

Definition 3

A kernelization for a parameterized problem Π is a **polynomial time** algorithm, which, for any instance I of Π with parameter k, produces an **equivalent** instance I' of Π with parameter k' such that $|I'| \leq f(k)$ and $k' \leq f(k)$ for a computable function f.

We refer to the function f as the size of the kernel.

Note: We do not formally require that $k' \leq k$, but this will be the case for many kernelizations.

VC-preprocess is a quadratic kernelization

Theorem 4

VC-preprocess is a $O(k^2)$ kernelization for VERTEX COVER.

Can we obtain a kernel with fewer vertices?

A dominating set of a graph G=(V,E) is a set of vertices $S\subseteq V$ such that $N_G[S]=V$.

Degree-5 Dominating Set

Input: A graph G=(V,E) with maximum degree at most 5 and an

integer k

Parameter: k

Question:

 κ

Does G have a dominating set of size at most k?

Design a linear kernel for DEGREE-5 DOMINATING SET.

Exercise¹

A dominating set of a graph G=(V,E) is a set of vertices $S\subseteq V$ such that $N_G[S]=V$.

Degree-5 Dominating Set

Input: A graph G=(V,E) with maximum degree at most 5 and an

integer k

Parameter: k

Question:

Does G have a dominating set of size at most k?

Design a linear kernel for DEGREE-5 DOMINATING SET.

Hint: How many vertices can a YES-instance have at most, as a function of k?

S. Gaspers (UNSW) Kernelization Semester 2, 2015

Solution sketch

Simplification rule:

If $|V| > 6 \cdot k$, then return No.

POINT LINE COVER

Input: A set of points P in the plane \mathbb{R}^2 , and an integer k.

Parameter: k.

Question: Is there a set L of at most k lines in \mathbb{R}^2 such that each point in

P lies on at least one line in L?

Example: $(P = \{(-1,-2),(0,0),(1,-1),(1,1),(1,2),(1,3),(1,4),(2,4)\}, k=2)$ is a YES-instance since the lines y=1 and y=2x cover all the points.

Show that Point Line Cover has a polynomial kernel.

POINT LINE COVER

Input: A set of points P in the plane \mathbb{R}^2 , and an integer k.

Parameter: k.

Question:

Is there a set L of at most k lines in \mathbb{R}^2 such that each point in

P lies on at least one line in L?

Show that Point Line Cover has a polynomial kernel.

Hints:

- (1) Show that the algorithm can restrict its attention to a polynomial number of candidate lines (aim for $O(|P|^2)$).
- (2) Design a simplification rule for the case where one candidate line covers many points in P.
- (3) Design a simplification rule that solves Point Line Cover when |P| is large compared to t.

A cluster graph is a graph where every connected component is a complete graph.

Cluster Editing

Input: Graph G = (V, E), integer k

Parameter: k

k

Question: Is it possible to edit (add or delete) at most k edges of G so that

it becomes a cluster graph?

- **9** Show that G is a cluster graph iff G contains no induced P_3 (path with 3 vertices).
- ② Design a kernel for CLUSTER EDITING with $O(k^2)$ vertices.

A cluster graph is a graph where every connected component is a complete graph.

Cluster Editing

Input: Graph G = (V, E), integer k

Parameter: k

Question: Is it possible to edit (add or delete) at most k edges of G so that

it becomes a cluster graph?

- **9** Show that G is a cluster graph iff G contains no induced P_3 (path with 3 vertices).
- ② Design a kernel for Cluster Editing with $O(k^2)$ vertices.

Hints for 2: design simplification rules for (1) a vertex that does not occur in any P_3 , (2) an edge that occurs in many P_3 s, and (3) a non-edge that occurs in many P_3 s

Outline

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- Kernelization algorithms
- 3 A smaller kernel for VERTEX COVER
- 4) More on Crown Decompositions
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

Integer Linear Program for VERTEX COVER

The VERTEX COVER problem can be written as an Integer Linear Program (ILP). For an instance (G=(V,E),k) for VERTEX COVER with $V=\{v_1,\ldots,v_n\}$, create a variable x_i for each vertex $v_i,\ 1\leq i\leq n$. Let $X=\{x_1,\ldots,x_n\}$.

$$\mathsf{ILP}_{\mathsf{VC}}(G) = \begin{bmatrix} & & & \\ & & \\ & x_i + x_j \geq 1 & & \text{for each } \{v_i, v_j\} \in E \\ & & \\ & & x_i \in \{0, 1\} & & \text{for each } i \in \{1, \dots, n\} \end{bmatrix}$$

Then, (G,k) is a YES-instance iff the objective value of $ILP_{VC}(G)$ is at most k.

S. Gaspers (UNSW) Kernelization Semester 2, 2015

LP relaxation for VERTEX COVER

$$\mathsf{LP_{VC}}(G) = \begin{cases} & \mathsf{Minimize} \sum_{i=1}^n x_i \\ & x_i + x_j \geq 1 \\ & x_i \geq 0 \end{cases} \qquad \text{for each } \{v_i, v_j\} \in E \\ & x_i \geq 0 \end{cases}$$

Note: the value of an optimal solution for the Linear Program $\mathsf{LP}_{\mathsf{VC}}(G)$ is at most the value of an optimal solution for $\mathsf{ILP}_{\mathsf{VC}}(G)$

Properties of LP optimal solution

• Let $\alpha: X \to \mathbb{R}_{\geq 0}$ be an optimal solution for $\mathsf{LP}_{\mathsf{VC}}(G)$. Let

$$V_{-} = \{v_i : \alpha(x_i) < 1/2\}$$

$$V_{1/2} = \{v_i : \alpha(x_i) = 1/2\}$$

$$V_{+} = \{v_i : \alpha(x_i) > 1/2\}$$

Properties of LP optimal solution

• Let $\alpha: X \to \mathbb{R}_{\geq 0}$ be an optimal solution for $\mathsf{LP}_{\mathsf{VC}}(G)$. Let

$$V_{-} = \{v_i : \alpha(x_i) < 1/2\}$$

$$V_{1/2} = \{v_i : \alpha(x_i) = 1/2\}$$

$$V_{+} = \{v_i : \alpha(x_i) > 1/2\}$$

Lemma 5

For each $i, 1 \leq i \leq n$, we have that $\alpha(x_i) \leq 1$.

Lemma 6

 V_{-} is an independent set.

Lemma 7

$$N_G(V_-) = V_+.$$

Properties of LP optimal solution II

Lemma 8

For each $S \subseteq V_+$ we have that $|S| \leq |N_G(S) \cap V_-|$.

Proof.

For the sake of contradiction, suppose there is a set $S \subseteq V_+$ such that $|S| > |N_G(S) \cap V_-|$.

Let $\epsilon = \min_{v_i \in S} \{ \alpha(x_i) - 1/2 \}$ and $\alpha' : X \to \mathbb{R}_{\geq 0}$ s.t.

$$\alpha'(x_i) = \begin{cases} \alpha(x_i) & \text{if } v_i \notin S \cup (N_G(S) \cap V_-) \\ \alpha(x_i) - \epsilon & \text{if } v_i \in S \\ \alpha(x_i) + \epsilon & \text{if } v_i \in N_G(S) \cap V_- \end{cases}$$

Note that α' is an improved solution for $\mathsf{LP}_{\mathsf{VC}}(G)$, contradicting that α is optimal.

Properties of LP optimal solution III

Theorem 9 (Hall's marriage theorem)

A bipartite graph $G=(V\uplus U,E)$ has a matching saturating $S\subseteq V$

 \Leftrightarrow

for every subset $W \subseteq S$ we have $|W| \leq |N_G(W)|$. ¹

 $^{^1}$ A matching M in a graph G is a set of edges such that no two edges in M have a common endpoint. A matching saturates a set of vertices S if each vertex in S is an end point of an edge in M.

Properties of LP optimal solution III

Theorem 9 (Hall's marriage theorem)

A bipartite graph $G=(V\uplus U,E)$ has a matching saturating $S\subseteq V$

 \Leftarrow

for every subset $W \subseteq S$ we have $|W| \leq |N_G(W)|$. ¹

Consider the bipartite graph $B=(V_- \uplus V_+, \{\{u,v\} \in E: u \in V_-, v \in V_+\}).$

Lemma 10

There exists a matching M in B of size $|V_+|$.

Proof.

The lemma follows from the previous lemma and Hall's marriage theorem.

 $^{^1\}mathrm{A}$ matching M in a graph G is a set of edges such that no two edges in M have a common endpoint. A matching saturates a set of vertices S if each vertex in S is an end point of an edge in M

Crown Decomposition: Definition

Definition 11 (Crown Decomposition)

A crown decomposition (C,H,B) of a graph G=(V,E) is a partition of V into sets C,H, and B such that

- ullet the crown C is a non-empty independent set,
- the head $H = N_G(C)$,
- the body $B = V \setminus (C \cup H)$, and
- there is a matching of size |H| in $G[H \cup C]$.

By the previous lemmas, we obtain a crown decomposition $(V_-,V_+,V_{1/2})$ of G if $V_-\neq\emptyset$.

S. Gaspers (UNSW) Kernelization Semester 2, 2015

Crown Decomposition: Examples

27 / 41

Crown Decomposition: Examples

crown decomposition $(\{a, e, g\}, \{b, d, f\}, \{c\})$

has no crown decomposition

Using the crown decomposition

Lemma 12

Suppose that G=(V,E) has a crown decomposition (C,H,B). Then,

$$\mathit{vc}(G) \leq k \quad \Leftrightarrow \quad \mathit{vc}(G[B]) \leq k - |H|,$$

where vc(G) denotes the size of the smallest vertex cover of G.

Using the crown decomposition

Lemma 12

Suppose that G = (V, E) has a crown decomposition (C, H, B). Then,

$$\mathit{vc}(G) \leq k \quad \Leftrightarrow \quad \mathit{vc}(G[B]) \leq k - |H|,$$

where vc(G) denotes the size of the smallest vertex cover of G.

Proof.

- (\Rightarrow) : Let S be a vertex cover of G with $|S| \leq k$. Since S contains at least one vertex for each edge of a matching, $|S \cap (C \cup H)| \geq |H|$. Therefore, $S \cap B$ is a vertex cover for G[B] of size at most k |H|.
- (\Leftarrow) : Let S be a vertex cover of G[B] with $|S| \le k |H|$. Then, $S \cup H$ is a vertex cover of G of size at most k, since each edge that is in G but not in G' is incident to a vertex in H.

Nemhauser-Trotter

Corollary 13 ([Nemhauser, Trotter, 1974])

There exists a smallest vertex cover S of G such that $S \cap V_- = \emptyset$ and $V_+ \subseteq S$.

Crown reduction

(Crown Reduction)

If solving $\mathsf{LP}_{VC}(G)$ gives an optimal solution with $V_- \neq \emptyset$, then return $(G - (V_- \cup V_+), k - |V_+|).$

Crown reduction

(Crown Reduction)

If solving $\mathsf{LP}_{VC}(G)$ gives an optimal solution with $V_- \neq \emptyset$, then return $(G - (V_- \cup V_+), k - |V_+|).$

(Number of Vertices)

If solving $\mathsf{LP}_{VC}(G)$ gives an optimal solution with $V_- = \emptyset$ and |V| > 2k, then return No.

Crown reduction

(Crown Reduction)

If solving $\mathsf{LP}_{VC}(G)$ gives an optimal solution with $V_- \neq \emptyset$, then return $(G - (V_- \cup V_+), k - |V_+|)$.

(Number of Vertices)

If solving $\mathsf{LP}_{VC}(G)$ gives an optimal solution with $V_- = \emptyset$ and |V| > 2k, then return No.

Lemma 14

(Crown Reduction) and (Number of Vertices) are sound.

Proof.

(Crown Reduction) is sound by previous Lemmas.

Let α be an optimal solution for $\mathsf{LP}_{VC}(G)$ and suppose $V_- = \emptyset$. The value of this solution is at least |V|/2. Thus, the value of an optimal solution for $\mathsf{ILP}_{\mathsf{VC}}(G)$ is at least |V|/2. Since G has no vertex cover of size less than |V|/2, we have a No-instance if k < |V|/2.

Linear vertex-kernel for VERTEX COVER

Theorem 15

VERTEX COVER has a kernel with 2k vertices and $O(k^2)$ edges.

This is the smallest known kernel for VERTEX COVER.

See http://fpt.wikidot.com/fpt-races for the current smallest kernels for various problems.

Outline

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- Kernelization algorithms
- 3 A smaller kernel for VERTEX COVER
- More on Crown Decompositions
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with $|V| \ge 3k + 1$. There is a polynomial time algorithm that either

- ullet finds a matching of size k+1 in G, or
- finds a crown decomposition of G.

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with $|V| \ge 3k + 1$. There is a polynomial time algorithm that either

- ullet finds a matching of size k+1 in G, or
- finds a crown decomposition of G.

To prove the lemma, we need Kőnig's Theorem

Theorem 17 ([Kőnig, 1916])

In every bipartite graph the size of a maximum matching is equal to the size of a minimum vertex cover.

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size k+1 in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \ge k + 1$, we are done.

S. Gaspers (UNSW) 33 / 41 Kernelization Semester 2, 2015

Lemma 16 (Crown Lemma)

Let G=(V,E) be a graph without isolated vertices and with $|V| \geq 3k+1$. There is a polynomial time algorithm that either

- ullet finds a matching of size k+1 in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \ge k+1$, we are done.

Note that $I := V \setminus V(M)$ is an independent set with $\geq k+1$ vertices.

Semester 2, 2015 33

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with $|V| \geq 3k + 1$. There is a polynomial time algorithm that either

- finds a matching of size k+1 in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \ge k + 1$, we are done.

Note that $I := V \setminus V(M)$ is an independent set with $\geq k+1$ vertices.

Consider the bipartite graph B formed by edges with one endpoint in V(M) and the other in I.

S. Gaspers (UNSW) Semester 2, 2015 Kernelization

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with $|V| \ge 3k + 1$. There is a polynomial time algorithm that either

- ullet finds a matching of size k+1 in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \ge k + 1$, we are done.

Note that $I := V \setminus V(M)$ is an independent set with $\geq k+1$ vertices.

Consider the bipartite graph ${\cal B}$ formed by edges with one endpoint in ${\cal V}(M)$ and the other in ${\cal I}.$

Compute a minimum vertex cover X and a maximum matching M' of B.

S. Gaspers (UNSW) Kernelization Semester 2, 2015 33 / 41

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with $|V| \ge 3k + 1$. There is a polynomial time algorithm that either

- ullet finds a matching of size k+1 in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \ge k + 1$, we are done.

Note that $I := V \setminus V(M)$ is an independent set with $\geq k+1$ vertices.

Consider the bipartite graph B formed by edges with one endpoint in V(M) and the other in ${\cal I}.$

Compute a minimum vertex cover X and a maximum matching M' of B.

We know: $|X| = |M'| \le |M| \le k$. Hence, $X \cap V(M) \ne \emptyset$.

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with $|V| \ge 3k + 1$. There is a polynomial time algorithm that either

- ullet finds a matching of size k+1 in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \ge k + 1$, we are done.

Note that $I := V \setminus V(M)$ is an independent set with $\geq k+1$ vertices.

Consider the bipartite graph B formed by edges with one endpoint in V(M) and the other in I.

Compute a minimum vertex cover X and a maximum matching M' of B.

We know: $|X| = |M'| \le |M| \le k$. Hence, $X \cap V(M) \ne \emptyset$.

Let $M^* = \{e \in M' : e \cap (X \cap V(M)) \neq \emptyset\}.$

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with $|V| \ge 3k + 1$. There is a polynomial time algorithm that either

- ullet finds a matching of size k+1 in G, or
- finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If $|M| \ge k + 1$, we are done.

Note that $I := V \setminus V(M)$ is an independent set with $\geq k+1$ vertices.

Consider the bipartite graph B formed by edges with one endpoint in V(M) and the other in ${\cal I}.$

Compute a minimum vertex cover X and a maximum matching M' of B.

We know: $|X| = |M'| \le |M| \le k$. Hence, $X \cap V(M) \ne \emptyset$.

Let $M^* = \{e \in M' : e \cap (X \cap V(M)) \neq \emptyset\}.$

We obtain a crown decomposition with crown $C=V(M^*)\cap I$ and head $H=X\cap V(M)=X\cap V(M^*).$

Exercise

A k-coloring of a graph G=(V,E) is a function $f:V\to\{1,2,...,k\}$ such that $f(u)\neq f(v)$ if $uv\in E.$

SAVING COLORS

Input: Graph G, integer k

Parameter: *k*

Question: Does G have a (n-k)-coloring?

Design a kernel for SAVING COLORS with O(k) vertices.

34 / 41

Exercise

A k-coloring of a graph G=(V,E) is a function $f:V \to \{1,2,...,k\}$ such that $f(u) \neq f(v)$ if $uv \in E$.

SAVING COLORS

Input: Graph G, integer k

Parameter: *k*

Question: Does G have a (n-k)-coloring?

Design a kernel for SAVING COLORS with O(k) vertices.

Hint: Get rid of vertices v with $N_G[v] = V$ and consider the dual of G, i.e., the graph $\overline{G} = (V, \{uv : u, v \in V \text{ and } uv \notin E\})$. Use the Crown Lemma with \overline{G} and k-1.

Lemma 17 (Crown Lemma)

Let G=(V,E) be a graph without isolated vertices and with $|V| \geq 3k+1$. There is a polynomial time algorithm that either

- finds a matching of size k+1 in G, or
- finds a crown decomposition of G.

Outline

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- 2 Kernelization algorithms
- 3 A smaller kernel for VERTEX COVER
- 4 More on Crown Decompositions
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

35 / 41

Kernels and Fixed-parameter tractability

Theorem 18

Let Π be a decidable parameterized problem.

 Π has a kernelization algorithm $\Leftrightarrow \Pi$ is FPT.

Kernels and Fixed-parameter tractability

Theorem 18

Let Π be a decidable parameterized problem.

 Π has a kernelization algorithm $\Leftrightarrow \Pi$ is FPT.

Proof.

(⇒): An FPT algorithm is obtained by first running the kernelization, and then any brute-force algorithm on the resulting instance.

 (\Leftarrow) : Let A be an FPT algorithm for Π with running time $O(f(k)n^c)$.

If f(k) < n, then A has running time $O(n^{c+1})$. In this case, the kernelization algorithm runs A and returns a trivial YES- or No-instance depending on the answer of A.

Otherwise, $f(k) \ge n$. In this case, the kernelization algorithm outputs the input instance.

After computing a kernel ...

- ... we can use any algorithm to compute an actual solution.
- Brute-force, faster exponential-time algorithms, parameterized algorithms, often also approximation algorithms

Kernels

- A parameterized problem may not have a kernelization algorithm
 - Example, Coloring² parameterized by k has no kernelization algorithm unless P = NP.
 - A kernelization would lead to a polynomial time algorithm for the NP-complete 3-Coloring problem
- Kernelization algorithms lead to FPT algorithms ...
- ... FPT algorithms lead to kernels

 $^{^2}$ Can one color the vertices of an input graph G with k colors such that no two adjacent vertices receive the same color?

Exercise

An edge clique cover of a graph G is a set of cliques in G so that each edge of G is contained in at least one of these cliques.

```
EDGE CLIQUE COVER
```

Input: graph G, integer k

Parameter: k

Question: Does G have an edge clique cover with k cliques?

Design a kernel for EDGE CLIQUE COVER with $O(2^k)$ vertices.

Exercise

An edge clique cover of a graph G is a set of cliques in G so that each edge of G is contained in at least one of these cliques.

EDGE CLIQUE COVER

Input: graph G, integer k

Parameter: *k*

Question: Does G have an edge clique cover with k cliques?

Design a kernel for EDGE CLIQUE COVER with $O(2^k)$ vertices.

Hint: consider 2 vertices that are contained in exactly the same cliques.

Outline

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- Kernelization algorithms
- 3 A smaller kernel for VERTEX COVER
- 4 More on Crown Decompositions
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

Further Reading

- Chapter 2, Kernelization in Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Chapter 4, Kernelization in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- Chapter 7, Data Reduction and Problem Kernels in Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.
- Chapter 9, Kernelization and Linear Programming Techniques in Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.

41 / 41