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Vertex cover

A vertex cover of a graph G = (V| E) is a subset of vertices S C V such that for
each edge {u,v} € E, we have u € S orv € S.

VERTEX COVER
Input: A graph G = (V, E) and an integer k
Parameter: k&
Question: Does GG have a vertex cover of size at most k7?7
a
b c

S. Gaspers (UNSW) Kernelization Semester 2, 2015 4 /41



Outline

© Vertex Cover
o Simplification rules
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Simplification rules for VERTEX COVER

(Degree-0)

If 3v € V such that dg(v) = 0, then set G < G — v.
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Simplification rules for VERTEX COVER

(Degree-0)

If 3v € V such that dg(v) = 0, then set G < G — v.

Proving correctness. A simplification rule is sound if for any instance, it
produces an equivalent instance. Two instances I, I are equivalent if they are
both YEs-instances or they are both NoO-instances.

(Degree-0) is sound. I
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Simplification rules for VERTEX COVER

(Degree-0)
If 3v € V such that dg(v) = 0, then set G < G — v.

Proving correctness. A simplification rule is sound if for any instance, it
produces an equivalent instance. Two instances I, I are equivalent if they are
both YEs-instances or they are both NoO-instances.

(Degree-0) is sound.

Proof.

First, suppose (G — v, k) is a YEs-instance. Let S be a vertex cover for G — v of
size at most k. Then, S is also a vertex cover for G since no edge of (G is incident
to v. Thus, (G, k) is a YES-instance.

Now, suppose (G, k) is a YEs-instance. For the sake of contradiction, assume

(G — v, k) is a No-instance. Let S be a vertex cover for G of size at most k. But
then, S\ {v} is a vertex cover of size at most k for G — v; a contradiction. O

4
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Simplification rules for VERTEX COVER

If 3v € V such that dg(v) = 1, then set G < G — Ng[v] and k + k — 1.
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Simplification rules for VERTEX COVER

(Degree-1)
If 3v € V such that dg(v) = 1, then set G < G — Ng[v] and k + k — 1.

(Degree-1) is sound. \

Proof.

Let u be the neighbor of v in G. Thus, N¢[v] = {u,v}.

If S'is a vertex cover of G of size at most k, then S\ {u,v} is a vertex cover of
G — Ng[v] of size at most k — 1, because u € S or v € S.

If S” is a vertex cover of G — Ng[v] of size at most k& — 1, then S’ U {u} is a
vertex cover of GG of size at most k, since all edges that are in G but not in

G — Ng|v] are incident to v. O
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Simplification rules for VERTEX COVER

(Large Degree)
If 3v € V such that dg(v) > k, then set G <~ G —wv and k < k — 1.
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Simplification rules for VERTEX COVER

(Large Degree)
If 3v € V such that dg(v) > k, then set G <~ G —wv and k < k — 1.

(Large Degree) is sound.

Let S be a vertex cover of G of size at most k. If v ¢ S, then Ng(v) C S,
contradicting that |S| < k. O]
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Simplification rules for VERTEX COVER

(Number of Edges)
If de(v) < k for each v € V and |E| > k? then return No
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Simplification rules for VERTEX COVER

(Number of Edges)

If de(v) < k for each v € V and |E| > k? then return No

(Number of Edges) is sound. l

Assume dg(v) < k for each v € V and |E| > k2.

Suppose S C V, |S| <k, is a vertex cover of G.

We have that S covers at most k2 edges.

However, |E| > k% + 1.

Thus, S is not a vertex cover of G. ]
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@ Preprocessing algorithm
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Preprocessing algorithm for VERTEX COVER

VC-preprocess

Input: A graph G and an integer k.

Output: A graph G’ and an integer k' such that G has a vertex cover of size at

most k if and only if G’ has a vertex cover of size at most £'.

G+ G

E + k

repeat
Execute simplification rules (Degree-0), (Degree-1), (Large Degree), and
(Number of Edges) for (G', k')

until no simplification rule applies

return (G, k')
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Effectiveness of preprocessing algorithms

@ How effective is VC-preprocess?

@ We would like to study preprocessing algorithms mathematically and quantify
their effectiveness.
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@ Say that a preprocessing algorithm for a problem II is nice if it runs in
polynomial time and for each instance for I, it returns an instance for II that
is strictly smaller.
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@ Say that a preprocessing algorithm for a problem II is nice if it runs in
polynomial time and for each instance for I, it returns an instance for II that
is strictly smaller.

@ — executing it a linear number of times reduces the instance to a single bit

@ — such an algorithm would solve IT in polynomial time

@ For NP-hard problems this is not possible unless P = NP

@ We need a different measure of effectiveness
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Measuring the effectiveness of preprocessing algorithms

@ We will measure the effectiveness in terms of the parameter

@ How large is the resulting instance in terms of the parameter?
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Effectiveness of VC-preprocess

For any instance (G, k) for VERTEX COVER, VC-preprocess produces an
equivalent instance (G', k') of size O(k?).

| \

Proof.
Since all simplification rules are sound, (G = (V, E), k) and (G’ = (V', E'), k)
are equivalent.

By (Number of Edges), || < (k')? < k2.

By (Degree-0) and (Degree-1), each vertex in V' has degree at least 2 in G.
Since Y, oy da(v) = 2|E’| < 2k?, this implies that [V'| < k2.

Thus, |V'| + |E'| C O(K?). O
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© Kernelization algorithms
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Kernelization: definition

Definition 3

A kernelization for a parameterized problem II is a polynomial time algorithm,
which, for any instance I of II with parameter k, produces an equivalent instance
I’ of IT with parameter k" such that |I’| < f(k) and &’ < f(k) for a computable
function f.

We refer to the function f as the size of the kernel.

Note: We do not formally require that k&’ < k, but this will be the case for many
kernelizations.
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VC-preprocess is a quadratic kernelization

Theorem 4

VC-preprocess is a O(k?) kernelization for VERTEX COVER.

Can we obtain a kernel with fewer vertices?
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Exercise

A dominating set of a graph G = (V, E) is a set of vertices S C V such that
Ng[S]=V.

DEGREE-5 DOMINATING SET
Input: A graph G = (V, E) with maximum degree at most 5 and an
integer k
Parameter: &
Question: Does G have a dominating set of size at most k7?

Design a linear kernel for DEGREE-5 DOMINATING SET.
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Exercise

A dominating set of a graph G = (V, E) is a set of vertices S C V such that
Ng[S]=V.

DEGREE-5 DOMINATING SET
Input: A graph G = (V, E) with maximum degree at most 5 and an
integer k
Parameter: &
Question: Does G have a dominating set of size at most k7?

Design a linear kernel for DEGREE-5 DOMINATING SET.
Hint: How many vertices can a YES-instance have at most, as a function of k7
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Solution sketch

Simplification rule:
If [V| > 6k, then return No.
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Exercise

PoinTt LINE COVER

Input: A set of points P in the plane R?, and an integer k.
Parameter: k.
Question: Is there a set L of at most k lines in R? such that each point in

P lies on at least one line in L?

Y
Example: (P - {(71‘72)(0‘0>(171)
(1,1),(1,2),(1,3),(1,4),(2,4)},k = 2) is a
Y Es-instance since the linesy = 1 and y = 2z
cover all the points. X :
X
X

Show that POINT LINE COVER has a polynomial kernel.
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Exercise

PoinTt LINE COVER

Input: A set of points P in the plane R?, and an integer k.
Parameter: k.
Question: Is there a set L of at most k lines in R? such that each point in

P lies on at least one line in L?

Show that POINT LINE COVER has a polynomial kernel.

Hints:

(1) Show that the algorithm can restrict its attention to a polynomial number of
candidate lines (aim for O(|P|?)).

(2) Design a simplification rule for the case where one candidate line covers many
points in P.

(3) Design a simplification rule that solves POINT LINE COVER when |P| is large
compared to t.
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Exercise

A cluster graph is a graph where every connected component is a complete graph.

CLUSTER EDITING

Input: Graph G = (V, E), integer k
Parameter: &
Question: Is it possible to edit (add or delete) at most % edges of G so that

it becomes a cluster graph?

@ Show that G is a cluster graph iff G contains no induced P; (path with 3
vertices).

@ Design a kernel for CLUSTER EDITING with O(k?) vertices.
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Exercise

A cluster graph is a graph where every connected component is a complete graph.

CLUSTER EDITING

Input: Graph G = (V, E), integer k
Parameter: &
Question: Is it possible to edit (add or delete) at most % edges of G so that

it becomes a cluster graph?

@ Show that G is a cluster graph iff G contains no induced P; (path with 3
vertices).

@ Design a kernel for CLUSTER EDITING with O(k?) vertices.

Hints for 2: design simplification rules for (1) a vertex that does not occur in any
P5, (2) an edge that occurs in many Pss, and (3) a non-edge that occurs in many
PgS
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e A smaller kernel for VERTEX COVER
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Integer Linear Program for VERTEX COVER

The VERTEX COVER problem can be written as an Integer Linear Program (ILP).

For an instance (G = (V, E), k) for VERTEX COVER with V' = {vy,...,v,},
create a variable z; for each vertex v;, 1 <i <n.
Let X ={z1,...,2,}.

ILPyc(G)= i=1
zi+a; >1 for each {v;,v;} € E
x; € {0,1} for each ¢ € {1,...,n}

Then, (G, k) is a YEs-instance iff the objective value of ILPyc(G) is at most k.

S. Gaspers (UNSW) Kernelization
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LP relaxation for VERTEX COVER

MinimizeZmi
i=1
zi+a; >1 for each {v;,v;} € E
x; >0 foreach i € {1,...,n}

LPvc(G)=

Note: the value of an optimal solution for the Linear Program LPyc(G) is at
most the value of an optimal solution for ILPyc(G)
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Properties of LP optimal solution

o Let a: X — R>( be an optimal solution for LPyc(G). Let

Vo = {v; : afx;) < 1/2}
Vl/g = {"1)1' . Oé(.’Ei) = 1/2}
Vi =A{v;:a(z;) >1/2}
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Properties of LP optimal solution

o Let a: X — R>( be an optimal solution for LPyc(G). Let

Vo = {v; : afx;) < 1/2}
V1/2 = {’Ui . Oé(fEl) = 1/2}
Vi ={vi:alzx;) >1/2}

For each i,1 < i < n, we have that a(x;) < 1.

V_ is an independent set.
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Properties of LP optimal solution Il

Lemma 8
For each S C V. we have that |S| < |[Ng(S)NV_|.

Proof.

For the sake of contradiction, suppose there is a set S C V. such that
|S] > |Ng(S)NV_|.
Let € = min,,es{a(x;) —1/2} and &/ : X — R s.t.

a(x;) if v; € SU(Ng(S)NV2)
() = alx;) —e ifv, €8
alxz;)+e ifv; € Ng(S)NV_

Note that o’ is an improved solution for LPyc(G), contradicting that « is
optimal. N
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Properties of LP optimal solution Il

Theorem 9 (Hall's marriage theorem)

A bipartite graph G = (V WU, E) has a matching saturating S C V
=

for every subset W C S we have |W| < |Ng(W)|. !

LA matching M in a graph G is a set of edges such that no two edges in M have a common
endpoint. A matching saturates a set of vertices S if each vertex in S is an end point of an edge
in M.
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Properties of LP optimal solution Il

Theorem 9 (Hall's marriage theorem)

A bipartite graph G = (V WU, E) has a matching saturating S C V
=

for every subset W C S we have |W| < |Ng(W)|. !

Consider the bipartite graph B = (V_ WV, {{u,0} € E:ueV_jveVi}).

There exists a matching M in B of size |V, |.

The lemma follows from the previous lemma and Hall's marriage theorem. ]

LA matching M in a graph G is a set of edges such that no two edges in M have a common
endpoint. A matching saturates a set of vertices S if each vertex in S is an end point of an edge
in M.
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Crown Decomposition: Definition

Definition 11 (Crown Decomposition)
A crown decomposition (C, H, B) of a graph G = (V. E) is a partition of V' into
sets C, H, and B such that

@ the crown C' is a non-empty independent set,

o the head H = N¢(C),

@ the body B=V\ (CUH), and

@ there is a matching of size |H| in G[H U (.

By the previous lemmas, we obtain a crown decomposition (V_,V,,V; 5) of G if

V_ £ 0.
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Crown Decomposition: Examples
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Crown Decomposition: Examples

e f g e
b d b d
a a
crown decomposition has no crown decomposition

({a,e, 9}, {b,d, f},{c})
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Using the crown decomposition

Suppose that G = (V, E) has a crown decomposition (C, H, B). Then,

ve(G) <k & vo(G[B)) <k |H,

where vc(G) denotes the size of the smallest vertex cover of G.
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Using the crown decomposition

Suppose that G = (V, E) has a crown decomposition (C, H, B). Then,

ve(G) <k & vo(G[B)) <k |H,

where vc(G) denotes the size of the smallest vertex cover of G.

| A

Proof.
(=): Let S be a vertex cover of G with |S| < k. Since S contains at least one
vertex for each edge of a matching, |[S N (C'U H)| > |H|. Therefore, SN B is a
vertex cover for G[B] of size at most k — |H|.

(<): Let S be a vertex cover of G[B] with |S| <k — |H|. Then, SU H is a
vertex cover of GG of size at most k, since each edge that is in G but not in G’ is
incident to a vertex in . my

28 / 41

S. Gaspers (UNSW) Kernelization Semester 2, 2015



Nemhauser-Trotter

Corollary 13 (

There exists a smallest vertex cover S of G such that SNV_ ={ and V.. C S.
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Crown reduction

(Crown Reduction)

If solving LPy-«(G) gives an optimal solution with V_ # (), then return
(G = (V-UVy), k= [V4)).
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Crown reduction

(Crown Reduction)

If solving LPy-«(G) gives an optimal solution with V_ # (), then return
(G = (V-UVy), k= [V4)).

(Number of Vertices)

If solving LPy ¢ (G) gives an optimal solution with V_ = ) and |V | > 2k, then
return NO.
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Crown reduction

(Crown Reduction)

If solving LPy-«(G) gives an optimal solution with V_ # (), then return
(G — (V2 U Vi), k— V2.

(Number of Vertices)

If solving LPy ¢ (G) gives an optimal solution with V_ = ) and |V | > 2k, then
return NO.

_

(Crown Reduction) and (Number of Vertices) are sound.

(Crown Reduction) is sound by previous Lemmas.
Let « be an optimal solution for LPy ¢ (G) and suppose V_ = (). The value of this
solution is at least |V/|/2. Thus, the value of an optimal solution for ILPyc(G) is
at least |V|/2. Since G has no vertex cover of size less than [V|/2, we have a
No-instance if k < |V]/2. O
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Linear vertex-kernel for VERTEX COVER

VERTEX COVER has a kernel with 2k vertices and O(k?) edges.

This is the smallest known kernel for VERTEX COVER.
See http://fpt.wikidot.com/fpt-races for the current smallest kernels for
various problems.
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@ More on Crown Decompositions
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Crown Lemma

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with |V| > 3k + 1.
There is a polynomial time algorithm that either

o finds a matching of size k + 1 in G, or

@ finds a crown decomposition of 5.
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Crown Lemma

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with |V'| > 3k + 1.
There is a polynomial time algorithm that either

o finds a matching of size k + 1 in G, or

@ finds a crown decomposition of 5.

To prove the lemma, we need Konig's Theorem

In every bipartite graph the size of a maximum matching is equal to the size of a
minimum vertex cover.

Semester 2, 2015 33 /41
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Crown Lemma

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with |V | > 3k + 1.
There is a polynomial time algorithm that either

o finds a matching of size k + 1 in G, or

@ finds a crown decomposition of 5.

Proof.
Compute a maximum matching M of G. If [M| > k + 1, we are done.
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Crown Lemma

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with |V | > 3k + 1.
There is a polynomial time algorithm that either

o finds a matching of size k + 1 in G, or

o finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If [M| > k + 1, we are done.
Note that 7 := V \ V(M) is an independent set with > % + 1 vertices.

33 /41
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Crown Lemma

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with |V | > 3k + 1.
There is a polynomial time algorithm that either

o finds a matching of size k + 1 in G, or

o finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If [M| > k + 1, we are done.

Note that 7 := V \ V(M) is an independent set with > % + 1 vertices.

Consider the bipartite graph B formed by edges with one endpoint in V(M) and
the other in .
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Crown Lemma

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with |V | > 3k + 1.
There is a polynomial time algorithm that either

o finds a matching of size k + 1 in G, or

o finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If [M| > k + 1, we are done.

Note that 7 := V \ V(M) is an independent set with > % + 1 vertices.

Consider the bipartite graph B formed by edges with one endpoint in V(M) and

the other in 1.
Compute a minimum vertex cover X and a maximum matching M’ of B.
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Crown Lemma

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with |V | > 3k + 1.
There is a polynomial time algorithm that either

o finds a matching of size k + 1 in G, or

o finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If [M| > k + 1, we are done.

Note that 7 := V \ V(M) is an independent set with > % + 1 vertices.

Consider the bipartite graph B formed by edges with one endpoint in V(M) and
the other in .

Compute a minimum vertex cover X and a maximum matching M’ of B.

We know: | X| = |M'| < |M| < k. Hence, X NV (M) # 0.

33 /41
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Crown Lemma

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with |V | > 3k + 1.
There is a polynomial time algorithm that either

o finds a matching of size k + 1 in G, or

o finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If [M| > k + 1, we are done.

Note that 7 := V \ V(M) is an independent set with > % + 1 vertices.

Consider the bipartite graph B formed by edges with one endpoint in V(M) and
the other in .

Compute a minimum vertex cover X and a maximum matching M’ of B.

We know: | X| = |M'| < |M| < k. Hence, X NV (M) # 0.

Let M* ={ee M':en (X NV(M)) # 0}
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Crown Lemma

Lemma 16 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with |V | > 3k + 1.
There is a polynomial time algorithm that either

o finds a matching of size k + 1 in G, or

o finds a crown decomposition of G.

Proof.

Compute a maximum matching M of G. If [M| > k + 1, we are done.

Note that 7 := V \ V(M) is an independent set with > % + 1 vertices.

Consider the bipartite graph B formed by edges with one endpoint in V(M) and
the other in 1.

Compute a minimum vertex cover X and a maximum matching M’ of B.

We know: | X| = |M'| < |M| < k. Hence, X NV (M) # 0.

Let M* ={ee M':en (X NV(M)) # 0}

We obtain a crown decomposition with crown C'= V' (M*) N I and head
H=XNV(M)=XnNV(M*). O
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Exercise

A k-coloring of a graph G = (V, E) is a function f : V — {1,2,..., k} such that
fu) # f(v) if uv € E.

SAVING COLORS
Input: Graph G, integer k
Parameter: &
Question:  Does G have a (n — k)-coloring?

Design a kernel for SAVING COLORS with O(k) vertices.
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Exercise

A k-coloring of a graph G = (V, E) is a function f : V — {1,2,..., k} such that
fu) # f(v) if uv € E.

SAVING COLORS
Input: Graph G, integer k
Parameter: &
Question:  Does G have a (n — k)-coloring?

Design a kernel for SAVING COLORS with O(k) vertices.

Hint: Get rid of vertices v with Ng[v] = V' and consider the dual of (i, i.e., the
graph G = (V. {uv : u,v € V and uwv ¢ E}). Use the Crown Lemma with G and
kE—1.

Lemma 17 (Crown Lemma)

Let G = (V, E) be a graph without isolated vertices and with |V| > 3k + 1.
There is a polynomial time algorithm that either

@ finds a matching of size k + 1 in G, or

@ finds a crown decomposition of G.
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© Kernels and Fixed-parameter tractability
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Kernels and Fixed-parameter tractability

Theorem 18

Let 1T be a decidable parameterized problem.
IT has a kernelization algorithm < 11 is FPT.

S. Gaspers (UNSW) Kernelization Semester 2, 2015 36 / 41



Kernels and Fixed-parameter tractability

Theorem 18

Let 1T be a decidable parameterized problem.
IT has a kernelization algorithm < 11 is FPT.

Proof.

(=): An FPT algorithm is obtained by first running the kernelization, and then
any brute-force algorithm on the resulting instance.

(<): Let A be an FPT algorithm for T with running time O(f(k)n®).

If f(k) < n, then A has running time O(n°"!). In this case, the kernelization
algorithm runs A and returns a trivial YES- or NoO-instance depending on the
answer of A.

Otherwise, f(k) > n. In this case, the kernelization algorithm outputs the input
instance. ]

| A

V.
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After computing a kernel ...

@ ... we can use any algorithm to compute an actual solution.

@ Brute-force, faster exponential-time algorithms, parameterized algorithms,
often also approximation algorithms
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@ A parameterized problem may not have a kernelization algorithm
o Example, COLORING? parameterized by & has no kernelization algorithm

unless P = NP.
o A kernelization would lead to a polynomial time algorithm for the

NP-complete 3-COLORING problem
o Kernelization algorithms lead to FPT algorithms ...

o ... FPT algorithms lead to kernels

2Can one color the vertices of an input graph G with k colors such that no two adjacent
vertices receive the same color?
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Exercise

An edge clique cover of a graph G is a set of cliques in GG so that each edge of G
is contained in at least one of these cliques.

EpGE CLIQUE COVER
Input: graph G, integer k
Parameter: &
Question: Does GG have an edge clique cover with k cliques?

Design a kernel for EDGE CLIQUE COVER with O(2"%) vertices.

S. Gaspers (UNSW) Kernelization Semester 2, 2015 39 /41



Exercise

An edge clique cover of a graph G is a set of cliques in GG so that each edge of G
is contained in at least one of these cliques.

EpGE CLIQUE COVER
Input: graph G, integer k
Parameter: &
Question: Does GG have an edge clique cover with k cliques?

Design a kernel for EDGE CLIQUE COVER with O(2"%) vertices.

Hint: consider 2 vertices that are contained in exactly the same cliques.
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@ Further Reading
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Further Reading

o Chapter 2, Kernelization in
Marek Cygan, Fedor V. Fomin, tukasz Kowalik, Daniel Lokshtanov, Daniel
Marx, Marcin Pilipczuk, MichatPilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

o Chapter 4, Kernelization in
Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

@ Chapter 7, Data Reduction and Problem Kernels in

Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford
University Press, 2006.

o Chapter 9, Kernelization and Linear Programming Techniques in
Jorg Flum and Martin Grohe. Parameterized Complexity Theory. Springer,
2006.
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