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while i < m do
ri=rxn
i=i4+1

od

We would like to show {¢} Pow {r = n™}.
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Finding a proof

Consider the following code:

Pow

r:=1;

i:=0;

while i < m do
ri=rxn
i=i4+1

od

We would like to show {¢} Pow {r = n™}.
@ What should o be? m>0An>0

@ What should the intermediate assertions be?



Determining a precondition

Here are some valid Hoare triples:
o {(x=5)A(y=10)}z:=x/y{z <1}
o {(x<y)A(y>0)}z:=x/y{z <1}
o {(y #0) A (x/y <1)}z:=x/y{z <1}

All are valid, but the third one is the most useful:
@ it has the weakest precondition of the three

@ it can be applied in the most scenarios (e.g. x =2 Ay = —1)



Weakest precondition

Given a program P and a postcondition i the weakest
precondition of P with respect to ), wp(P, ), is a predicate ¢
such that

{} P{¢b} and If {(p'} P{y} then ¢’ — ¢



Weakest precondition

Given a program P and a postcondition i the weakest
precondition of P with respect to ), wp(P, ), is a predicate ¢
such that

{} P{¢b} and If {<p'} P{y} then ¢’ — ¢

We can compute wp based on the structure of P...
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Example

Determining wp: Assighment

wp(x = e,1) = ile/x]

{2+y>0}x:=2{x+y >0}




Determining wp: Sequence

wp(P; S, ¢) = wp(P, wp(S,1))

Example
Let © be the weakest precondition of:

{e}x=x+1, y:=x+y{y >4}

What should ¢ be?
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Determining wp: Sequence

wp(P; S, ) = wp(P, wp(S, 1))

Example
Let © be the weakest precondition of:

{ptx=x+1;, y:=x+y{y >4}

What should ¢ be? x+y >3
o wp(y =x+y,y>4) = (x+y>4)
o wp(x =x+1x+y>4) = (x+1+y>4) = x+y>3
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wp(if b then P else Q fi, )
= (b — wp(P,%)) A (=b — wp(Q, 1))
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wp(if x > 0then z:=yelse z:=0— y fi, z > 5)
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wp(if b then P else Q fi, )
= (b — wp(P,1)) A (=b — wp(Q, ¥))
= (bAwp(P,1)) V (=b A wp(Q, 1))

Example
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A ((x<0)—=wp(z:=0-y,z>5))




Determining wp: Conditional

wp(if b then P else Q fi, )
= (b — wp(P,1)) A (=b — wp(Q, ¥))
= (bAwp(P,1)) V (=b A wp(Q, 1))

Example

wp(if x > 0then z:=yelse z:=0— y fi, z > 5)
=((x>0) = wp(z:=y,z>05))
A ((x<0) = wp(z:=0—-y,z>D5))
=((x>0) = (y>5)) A ((x<0) = (y <-5))




Determining wp: Loops

wp(while b do P od, 1)) =7

Loops are problematic:
@ wp calculates a triple for a single program statement block.
@ Loops consist of a block executed repeatedly

@ Weakest precondition for 1 loop may be different from
weakest precondition for 100 loops...
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{¢} while b do P od {v}

Instead: Find a loop invariant / such that
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Handling loops

{¢} while b do P od {v}

Instead: Find a loop invariant / such that
o v — |
o {INb}P{l}
e IN-b—Y

NB

Finding (good) loop invariants is generally hard!
= Active area of research

(establish)
(maintain)

(conclude)




Back to the example

Pow

{init: (m>0) A (n > 0)}
r:=1,
i:=0;

while / < mdo

ri=rxn;
i=i+1
od

{r=nm

What would be a good invariant?

Inv:
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od
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Back to the example

ri=rxn;
i=i+1
od

while / < mdo

Pow

{init: (m>0) A (n > 0)}
r:=1,
i:=0;

{Inv}

_ {InvA (i < m)}
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{Inv}
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Back to the example

ri=rxn;
i=i+1
od

while / < mdo

Pow

{init: (m>0) A (n>0)}
r:=1, {(r =n°) A (0 < m) Ainit}
i:=0;

{Inv}

_ {InvA (i < m)}
{(r*xn=nTY)A(i+1<m)Ainit}
{(r=n"YA>i+1<m)Ainit}
{Inv}

{InvA (i > m)}

{r=rm

What would be a good invariant?

Inv:

r:ni/\igm/\init




Back to the example

Pow

{init: (m>0) A (n > 0)}
{(1=n°) A (0 < m)Ainit}
r=1; {(r=n° A (0 < m)Ainit}

i:=0;
{Inv}
while / < mdo {InvA (i < m)}
{(r*xn=nTY)A(i+1<m)Ainit}
ri=rx*n; {(r=n"YA>i+1<m)Ainit}
i=i+1 {Inv}
od {InvA (i > m)}
{r=n"}

What would be a good invariant?

Inv: r=n" A i<m A init




@ init

%

Proof obligations

init:  (m >
Inv: (r=

0) A (n > 0)
n') A (i < m) Ainit

(1 =n% A (0 < m)Ainit



Proof obligations

init: (m>0)A(n>0)
Inv: (r=n)A(i <m)Ainit

e init — (1=n"A(0<m)Ainit
elnvAa(i<m) — (rxn=nTHA(Gi+1<m)Ainit



Proof obligations

init: (m>0)A(n>0)

Inv: (r :_n’) A (i < m) Alinit

(1 =n% A (0 < m)Ainit
m) — (rxn=nT)A(+1<m)Ainit
m) — r=n"
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Termination

Hoare triples for partial correctness:

{e} P{y}
Asserts 1 holds if P terminates.

What if we wanted to make the stronger statement 1 holds and P
terminates?



Termination

Hoare triples for partial correctness:

{e} P{y}
Asserts 1 holds if P terminates.

What if we wanted to make the stronger statement 1 holds and P
terminates?

Hoare triples for total correctness:

[p] P Y]

Asserts:
If © holds at a starting state, and P is executed;
then P will terminate and % will hold in the resulting state.
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Warning

Termination is hard!
@ Algorithmic limitations (e.g. Halting problem)

@ Mathematical limitations

Example
COLLATZ
while n > 1 do
if %2 =0
then
n:=n/2
else
n:=3xn+1
fi
od




Total correctness

How can we show:

[(m>0)A(n>0)]Pow[r=n"]?



Total correctness

How can we show:

[(m>0)A(n>0)]Pow[r=n"]?

Use Hoare Logic for total correctness:
@ (ass), (seq), (cond), and (cons) rules all the same
e Modified (loop) rule



Rules for total correctness

Pleidix —elg ™

el Ply]  [¥]QIp]

(7P Q] (sea)

[prelPlY]  [on—gl QY]
[¢]if g then P else Q fi[¢]

(if)

N 2 e

(cons)

[ P¥']



Terminating while loops

{¢} while b do P od {¢}
Partial correctness:
Find an invariant / such that:
o p—1 (establish)
o {INb}P{l} (maintain)
o (I AN=b) = (conclude)



Terminating while loops

[¢] while b do P od [¢/]

Partial correctness:
Find an invariant / such that:

o p—1 (establish)
o [/ Ab|P[I] (maintain)
o (IN=b) = (conclude)

Show termination:
Find a variant v such that:

o (INb)—v>0 (positivity)
o [INbAv=N]P[v<N| (progress)



Loop rule for total correctness

[prgn(v=MN]PlpA(v<N)] (prg)—(v>0)

[¢] while g do P od [p A —g]

(loop)



Termination for Pow

Pow

{init: (m > 0) A (n > 0)}
{(1 = n%) A (0 < m) Ainit}
ro=1; {(r=n% A (0 < m)Ainit}

i 0;
{Inv}
while i < m do {InvA (i < m) }
{(ren=n"A>(i+1<m)Ainit }
ri=rxn; {(r=n"*)A(i+1<m)Ainit }
i=i+1 {Inv }
od {Inv A (i > m)}
{r=nm}

What is a suitable variant?
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Termination for Pow

Pow
{init: (m > 0) A (n > 0)}
{(1 = n%) A (0 < m) Ainit}
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Termination for Pow

Pow
{init: (m > 0) A (n > 0)}
{(1 = n%) A (0 < m) Ainit}
ro=1; {(r=n% A (0 < m)Ainit}
i 0;
{Inv}
while i < m do {InvA(i<m)A(v=N)}
{(resn=n"AG(+1<m)AinitA(v=N)}
ri=rxn; {(r=n*Y)A(i+1<m)AinitA(v=N)}
i=i+1 {InvA (v < N)}
od {Inv A (i > m)}
{r=nm}

What is a suitable variant? v := (m — i)



Additional proof obligations

init:  (m>0)A(n>0)

Inv: (: NA (i < m) Ainit
elnvA(i<m) — (v>0)
o [v=N]i:=i+1[v<N]
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Operational semantics

We gave Hoare Logic a denotational semantics:

@ Programs given an abstract mathematical denotation (relation
on Env)

@ Validity of Hoare triples defined in terms of this denotation
(inclusion of relational images)

Operational semantics is an alternative approach:

@ Define/construct a reduction relation between programs,
(start) states, and (end) states

@ Validity defined in terms of the reduction relation



More formally

As before let PROGRAMS be the set of valid £ programs, and ENV
be the set of states/environments (functions that map variables to
numeric values).

The Operational semantics of Hoare logic involves defining a
relation || PROGRAMS x ENV x ENV recursively (on the
structure of a program).

Intuitively (P,n,n") €, written [P,n] || n, means that the
program P reduces to the state ' when executed from state 7.



Rules for constructing |

[e]"=n Pl dn  [QnT4n"
[x:=e,n] I n[x — n] [P Q.n] U 0"
[B) = true  [Po) 4o/ [b]" = false  [Q.n] 4o
[if b then P else Q fi,n] | [if b then P else Q fi,n] | 7/

ﬂb]]n = true [Pl I 7 [while b do P od, 7]/] b
[while b do P od,7] || "

[6]" = false
[while bdo P od,n] | n




Validity

Under Operational semantics, we say {¢} P {1} is valid, written

Fos {v} P{v},

v, € ENv. (€ (@) A([Pnl b))  — 0 € ().



Validity

Under Operational semantics, we say {¢} P {1} is valid, written

Fos {v} P{v},

v, € ENv. (€ (@) A([Pnl b))  — 0 € ().

Theorem

Fos{e} P{y} ifand only if |={p} P{y}
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Non-determinism

Non-determinism involves the computational model branching into
one of several directions.

@ Behaviour is unspecified: any branch can happen (decision
made at run-time)

@ Purely theoretical concept

@ “Dual” of parallelism (one of many branches vs all of many
branches); not quantum either
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Non-determinism

Why add non-determinism?

@ More general than deterministic behaviour

@ In many computation models non-determinism represents
“magic” behaviour:

o Always choosing the “best” branch, leading to faster
computation (e.g. P vs NP)
o Error/exception handling

@ Useful for abstraction (abstracted code is easier to reason
about)

@ Mathematically easier to deal with



L": a simple language with non-determinism

We relax the Conditional and Loop commands in L to give us
non-deterministic behaviour.

The programs of L are defined as:

Assign: x := e, where x is a variable and e is an expression

Predicate: ¢, where ¢ is a predicate

Sequence: P; Q, where P and Q are programs
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L": a simple language with non-determinism

We relax the Conditional and Loop commands in L to give us
non-deterministic behaviour.

The programs of L are defined as:

Assign:
Predicate:
Sequence:

Choice:

Loop:

x := e, where x is a variable and e is an expression
©, where ¢ is a predicate
P; @, where P and @ are programs

P+ Q, where P and @ are programs; intuitively,
make a non-deterministic choice between P and @

P*, where P is a program; intuitively, loopfor a
non-deterministic number of iterations

P:(x=e)|p|P,;Py|PL+P]| P}



L": a simple language with non-determinism

P:(x:=¢€)|o|P1,Py|PL+Py| P

NB

L can be defined in LT by defining:
o if bthen P else Q fi = (b; P) + (—b; Q)
@ while bdo P od = (b; P)*; b




Example

A program in LT that non-deterministically checks if

(xVy)A

Example

(mx VvV =z) A (—y V z) is satisfiable:
SAT
(x:=0) + (x:=1);
(v = 0) + (v = 1)
(z:=0)+(z:=1);




Example
Example

A program in LT that non-deterministically checks if
(x Vy)A(—=xV=z)A(—y V z) is satisfiable:

SAT
(x:=0)+(x:=1);
(v :=0) + (y = 1);

(z:=0) + (z:=1)
if(x=1)V(y =1)) A
(x=0)V (z=0)) A

)V
(y=0)Vv(z=1))




Example

Example

A program in LT that non-deterministically checks if
(x Vy)A(—=xV=z)A(—y V z) is satisfiable:

SAT
(x :=0)+ (x :=1);
(y :=0)+(y:=1);
(z:=0)+(z:=1);
if(x=1)V(y=1)A
(x=0)V(z=0))A
(y=0)Vv(z=1))
then
r=1
else
fi




Proof rules

Hoare logic rules are cleaner:

{er P{y}  {o}Q{¥}
{p} P+ Q{v}

(choice)

{o} P{p} oo
() P igy (oo



Semantics

Denotational semantics are cleaner:

o [P+ @] = [P]U[C]
o P1=1P



Semantics

Denotational semantics are cleaner:

o [P+ @] = [P]U[C]
o P1=1P

Operational semantics are cleaner:

B L)) R/ _Qudn
[P+Qnn [P+Qn o
[P*,n] U Pl o [P014n"

[P+, n] I 0"
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Looking forward (beyond this course)

A program P refines a program Q (equivalently, Q is an
abstraction of P), written P J Q, if

[PI < [Q]

The goal of refinement calculus is to start from a very abstract
specification, Py, and to calculate refinements

PPCPCPRLC. .-

until something resembling code (e.g. L) is reached.



Refinement calculus
Built around the same semantics: programs are relations.
o~

represents the most abstract program that takes states satisfying ¢
to states satisfying 1: namely, (@) x (¥).

Rules introduce the language constructs:

° (ple/x] ) Cx:=e (assign)
°o (p~ypng)Cg (guard)
° (p ) E(p~ )i (¥~ p) (seq)
° (¢~ Y)E(p~ )+ (p~1) (choice)
° (p @) E(p~ o) (star)
° (p ) E(¢ ~¢)ifo— ¢ and P — (cons)



