GSOE9210 Engineering Decisions

Victor Jauregui

vicj@cse.unsw.edu.au
www.cse.unsw.edu.au/~gs9210

Victor Jauregui

Engineering Decisions

Decisions under certainty and ignorance

Decision problem classes

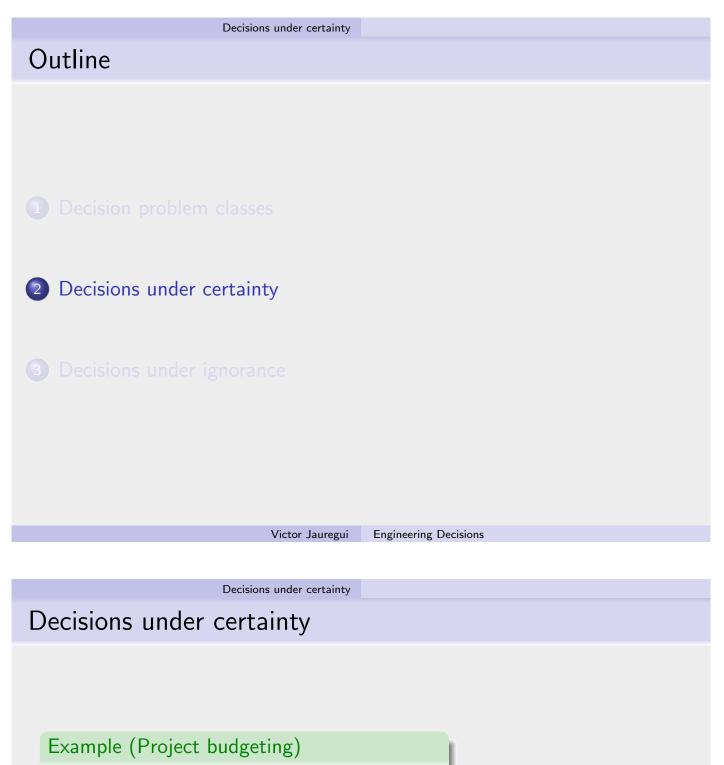
2 Decisions under certainty

3 Decisions under ignorance

Decision problem classes	
Outline	
1 Decision problem classes	
Victor Jauregui	Engineering Decisions
Decision problem classes	
Decision problem classes	

Decision problems can be classified based on an agent's epistemic state:

- Decisions under *certainty*: the agent knows the actual state
- Decisions under *uncertainty*:
 - Decisions under *ignorance* (full uncertainty): the agent believes multiple states/outcomes are possible; likelihoods unknown
 - Decisions under *risk*: the agent believes multiple states/outcomes are possible; likelihood information available



You are a lead software engineer in a major software company. Your R & D team has proposed three possible projects, A, B, and C, each with a different life-time. The net profits over the life of the projects are listed in the adjacent table.

	profit (\$M)
А	20
В	13
С	17

• Which project would you choose?

Complex outcomes

Project life-time cash-flows:		cashfl	ow (S Year	\$M)
• A: three years, big initial set-up costs		1	2	3
• B: one year immediate return	Α	-10	5	25
• C: three years, small initial set-up costs	В	13	0	0
	С	-5	10	12

New perspective:

- Outcomes described by vectors: *e.g.*, for A: (-10, 5, 25).
- What is more important: maximising total return, preserving cash, *etc*.?
- Which project would you choose?

Victor Jauregui

Composite outcomes: Net Present Value (NPV)

Decisions under certainty

• The Net Present Value (NPV) of a project is the value of the project at present

Engineering Decisions

- Cash flows in the future are worth less than in the present
- Model this by a discount rate for each period; assume discount rate of 20%

$$NPV(A) = -10 + \frac{5}{1.2} + \frac{25}{1.2^2} = 11.5$$

$$NPV(B) = -5 + \frac{10}{1.2} + \frac{12}{1.2^2} = 11.7$$

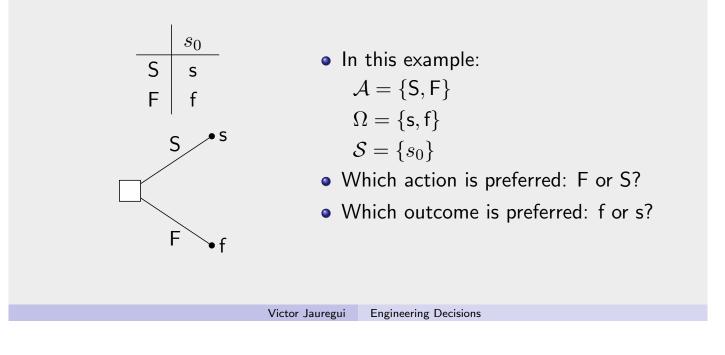
• More generally:

$$v(x_1, x_2, x_3) = x_1 + \frac{x_2}{1+\gamma} + \frac{x_3}{(1+\gamma)^2}$$

Decisions under certainty

Example (School fund-raising)

A school committee is looking to hold a fund-raiser. It has a choice between holding a fête or a sports day.



Decisions under certainty

Decisions under certainty: value functions

Example (School fund-raising)

A school committee is looking to hold a fund-raiser. It has a choice between holding a fête or a sports day. It expects to make \$150 for a fête but only \$120 for a sports day.

	s_0	V
S F	\$120	\$120
F	\$150	\$150
	S	• \$120
	F	•\$150

Value function over *outcomes*: v: Ω → ℝ
In this example: v(s) = \$120 v(f) = \$150

• Value function over *actions*; *i.e.*, $V : \mathcal{A} \to \mathbb{R}$; here $V(\mathcal{A}) = v(\omega)$, where $\omega = \omega(\mathcal{A}, s_0)$

Rational decisions

- Decision theory seeks to model *normative* (*i.e.*, *rational*) decision-making: *i.e.*, decisions ideal rational agents *ought* to make
- Which principles govern rational decision-making?

Rationality Principle 1 (Elimination)

Faced with two possible alternatives, rational agents should never choose the less preferred one.

- The principle of elimination says that rational agents should eliminate less preferred actions from consideration
- A rational decision rule should satisfy this principle

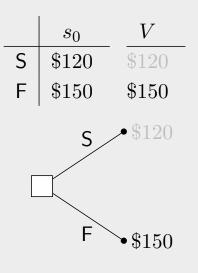
Victor Jauregui Engineering Decisions

Decisions under certainty

Rational decisions under certainty

Corollary

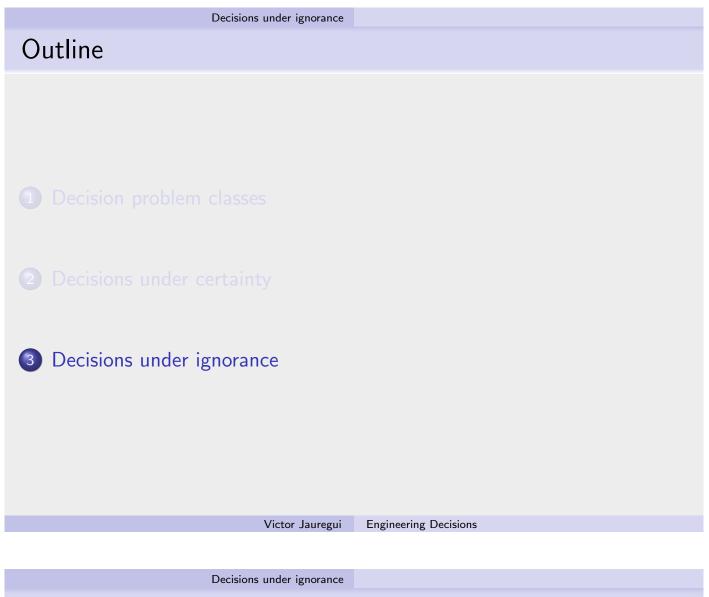
Given a value function $V : \mathcal{A} \to \mathbb{R}$ over actions, rational agents should prefer action A to B iff V(A) > V(B).



Since F is preferred to S
 (V(F) > V(S)), S is eliminated (by
 elimination), hence the rational choice
 is the remaining option: F

Corollary

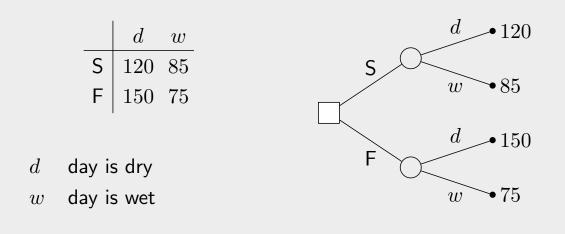
A rational agent should not choose actions which are not preference maximal; *i.e.*, they should choose only actions that are preference maximal.

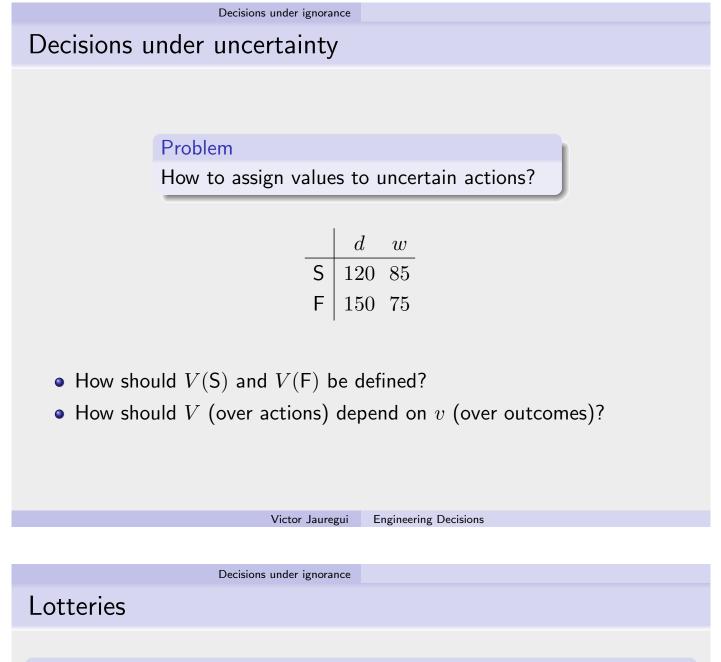


Decisions under uncertainty

Example (Uncertain school fund-raising)

Proceeds of the school fund-raiser depend on the weather; on a dry day (d) the school expects to make \$150 for a fête (F) but only \$120 for a sports day (S). However, on a wet day (w) the sports day will net \$85 and the fête only \$75.





Definition (Lottery)

A *lottery* over a finite set of states S, and outcomes, or *prizes*, Ω , is a function $\ell : S \to \Omega$. The lottery ℓ is written:

$$\ell = [s_1 : \omega_1 | s_2 : \omega_2 | \dots | s_n : \omega_n]$$

where for each $s_i \in \mathcal{S}$, $\omega_i = \ell(s_i)$.

Example (Dry or wet?)

The uncertain situation in which the weather on a given future day is unknown represented by the lottery:

$$\ell_{\mathsf{S}} = [d:\$120|w:\$85]$$

 \bullet \$120

• \$85

d

w

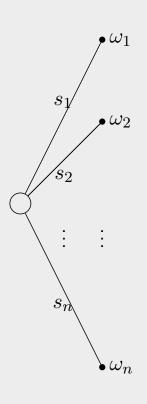
Decision problems and lotteries

 $[s_1:\omega_1|s_2:\omega_2|\dots|s_n:\omega_n]$

- Each uncertain action corresponds to a lottery
- Choosing an action corresponds to choosing among the lotteries on offer

Problem

The problem of evaluating actions amounts to the problem of determining how to compare and/or evaluate lotteries.



Victor Jauregui Engineering Decisions

Decisions under ignorance

Decisions under uncertainty: ignorance

Example (Raffle)

There are four raffle tickets in a hat. Each ticket is either blue or red, but you don't know how many of each there are. Blue tickets win \$3; red ones lose (\$0). The cost of entering the raffle is \$1.

Exercises

- Draw the decision tree and table for this problem
- Should you draw a ticket in the raffle?
- What if you knew there were three blue tickets? Four? None?
- How many blue tickets would there have to be to make it worth entering?
- If there were n blue tickets $(0 \le n \le 4)$, what would the prize have to be to make it worthwhile entering?

Decisions under ignorance

Definition (Decision rule)

A *decision rule* is a way of choosing, for each decision problem, an action or set of actions.

Rational decision rules under ignorance:

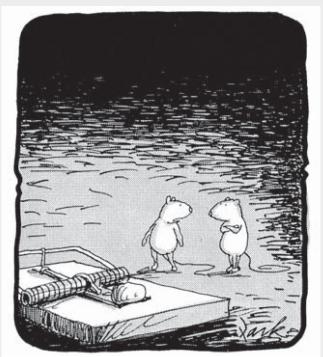
- Optimistic *MaxiMax* rule: "nothing ventured, nothing gained"
- Wald's pessimistic *Maximin* rule: "its better to be safe than sorry"
- Hurwicz's mixed optimistic-pessimistic rule: use an optimism index α
- Savage's miniMax Regret rule; least opportunity loss

Decisions under ignorance

• Laplace's principle of insufficient reason rule

Victor Jauregui	Engineering	Decisions
-----------------	-------------	-----------

MaxiMax



"Modern technology being what it is, there's a good chance it won't work anyway."

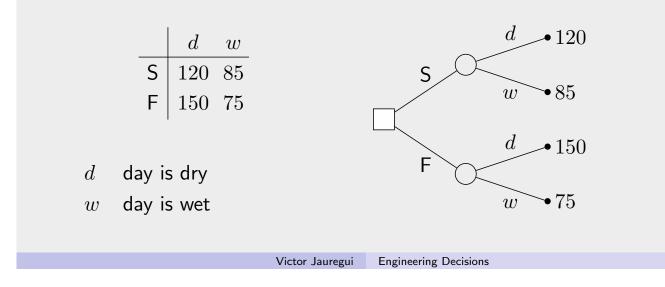
MaxiMax associates with each action the state which yields the most preferred outcome (*i.e.*, preference maximal)

The *MaxiMax* decision rule selects the action(s) which yield a preference-maximal outcome among these

Decisions under uncertainty

Example (Uncertain school fund-raising)

Proceeds of the school fund-raiser depend on the weather; on a dry day (d) the school expects to make \$150 for a fête (F) but only \$120 for a sports day (S). However, on a wet day (w) the sports day will net \$85 and the fête only \$75.



MaxiMax (MM): aim for the best

	s_1	s_2	s_3	V
A_1	6	0	4	6
A_2	2	5	1	5
A_3	4	3	2	4

- For each action find the best possible outcome of all possible cases/states; *i.e.*, for each row find the maximum value:
 V_{MM}(A) = M(A) = max{v(ω(A, s)) | s ∈ S}
- Choose the actions/rows with maximal value: A₁

Decisions under ignorance

- Equivalently: find the maximum value of the entire table, choose the row/action with this value
- $r_{MM}(\omega) = \arg \max\{M(\mathsf{A}) \mid \mathsf{A} \in \mathcal{A}\}$

MaxiMax

	s_1	s_2
A	10	0
В	9	9

- Which action is better?
- How could ties be broken?

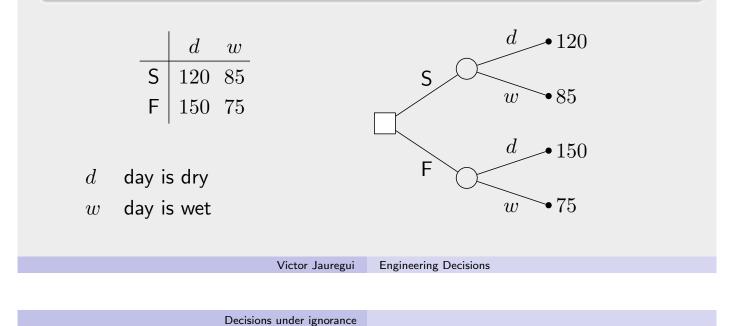
		s_1	s_2	s_3	V
	A ₁	6	0	4	6
	A_2	2	6	1	6
	A ₂ A ₃	4	3	2	4
	Victor Jauregui	En	gineerir	ng Decis	sions
	Decisions under ignorance				
Risk attitudes					

- MaxiMax is a decision rules for extreme risk takers
- Some agents may *prefer* risks if the favourable outcomes are sufficiently desirable
- *MaxiMax* would be a rational decision rule decision-makers with risk-taking attitudes/preferences
- In many cases it is wise to be *risk averse* (dislike risk): *i.e.*, avoid, reduce, or protect against risk
- What might a risk averse decision rule look like?

Decisions under uncertainty

Example (Uncertain school fund-raising)

Proceeds of the school fund-raiser depend on the weather; on a dry day (d) the school expects to make \$150 for a fête (F) but only \$120 for a sports day (S). However, on a wet day (w) the sports day will net \$85 and the fête only \$75.



Maximin (Mm): best in the worst case

• Assume the worst case/state will occur for each action

- For each action find the worst possible outcome under all possible cases/states; *i.e.*, for each row find the minimum value:
 V(A) = m(A) = min{v(ω(A,s)) | s ∈ S}
- m(A) is sometimes called the *security level* of action A
- Choose the action/row with the maximum of these: A₃
- $r_{Mm}(\omega) = \arg \max\{m(\mathsf{A}) \mid \mathsf{A} \in \mathcal{A}\}$

Maximin

	s_1	s_2
А	10	0
В	1	1

- Which action is better?
- How could ties be broken?

	s_1	s_2	s_3	V
A_1	6	0	4	0
A_2	2		2	2
A_3	4	3	2	2

Victor Jauregui

Engineering Decisions

Decisions under ignorance

Hurwicz's optimism index

	s_1	s_2	s_3	 M	m	$\alpha M + (1 - \alpha)m$
A_1	6	0	4	6	0	$\frac{9}{2}$
A_2	2	5	1	5	1	$\frac{8}{2}$
A_3	4	3	2	4	2	$\frac{7}{2}$

- For each action/row, find the minimum (m) and maximum (M) values
- Calculate a weighted sum based on the *optimism index* α (e.g., $\alpha = \frac{3}{4}$); *i.e.*, $V(A) = \alpha M(A) + (1 \alpha)m(A) = \frac{3}{4}M + \frac{1}{4}m$.
- Choose the row/action that maximises this value: A_1

Exercise

What happens when $\alpha = 1$? $\alpha = 0$?

MaxiMax and Maximin

	s_1		_	s_1	s_2	_		s_1	s_2
	100		А	100	4		А	a_1	a_2
В	99	99	В	5	5		В	b_1	b_2

Compare problems above:

- MaxiMax and Maximin choose the same action for any values of a₁, a₂, b₁, b₂, provided a₁ > b₁ ≥ b₂ > a₂ is preserved; since M(A) = a₁ > M(B), m(B) > a₂ = m(A) remain unchanged; *i.e.*, the actual numbers are irrelevant for the rules
- In this case the differences $a_1 b_1$ and $b_2 a_2$ are irrelevant provided M(A) > M(B) and m(B) > m(A)

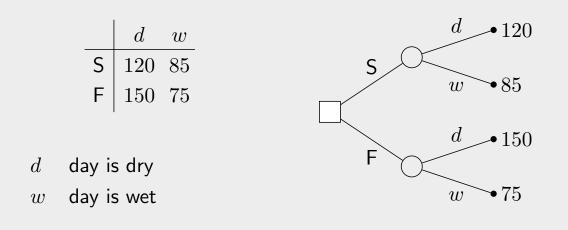
Victor Jauregui Engineering Decisions

Decisions under uncertainty

Decisions under ignorance

Example (Uncertain school fund-raising)

Proceeds of the school fund-raiser depend on the weather; on a dry day (d) the school expects to make \$150 for a fête (F) but only \$120 for a sports day (S). However, on a wet day (w) the sports day will net \$85 and the fête only \$75.



Regret

Definition (Regret)

The *regret*, or *opportunity loss*, of an outcome in a given state is the difference between the outcome's value and that of the best possible outcome for that state.

Consider the fund-raising problem discussed earlier:

	d	w		d	w	M_R
S	120	85	S	30	0	30
F	150	75	F	0	10	10
M_s	150	85		I		

- The maximum regret for the sports day is 30 but only 10 for the fête
- The action which minimises the maximum regret is F

	Victor Jauregui							isions			
Decisions under ignorance											
miniMax Regret											
	1					1					
		s_1	s_2	s_3			s_1	s_2	s_3		
	A_1	6	0	4		A_1	0	5	0	5	
	A_2	2	5	1		A_2	4	0	3	4	
	A_3	4	3	4 1 2		A_3	2	2	2	2	
		6	5	4		I					
• For each column/state s, find its maximum value (M_s)											
• Construct the regret table: $R(\omega) = M_s - v(\omega)$											

- For each action/row find the maximum regret: $V(\mathsf{A}) = \max\{R(\omega(\mathsf{A},s)) \mid s \in \mathcal{S}\}$
- $\bullet\,$ Choose the row/action that minimises the regret: ${\sf A}_3$

Laplace's insufficient reason

	s_1	s_2	s_3	
A_1	6	0	4	$\frac{6}{3} + 0 + \frac{4}{3} = 3\frac{1}{3}$
A_2	2	5	1	$\frac{2}{3} + \frac{5}{3} + \frac{1}{3} = 2\frac{2}{3}$
A_3	4	3	2	$\frac{4}{3} + \frac{3}{3} + \frac{2}{3} = 3$

- Assume each state is equally likely
- For each row/action calculate the mean value: $V(\mathsf{A}) = \frac{1}{n}v(\omega(\mathsf{A}, s_1)) + \dots + \frac{1}{n}v(\omega(\mathsf{A}, s_n))$
- Choose the row/action with maximum value: A_1

Decisions under ignorance

Exercise

How could you simplify this decision rule?

Victor Jauregui Eng

Engineering Decisions

Decision rules

	s_1	s_2	s_3	s_4	V
$\begin{array}{c} A_1\\ A_2\\ A_3\\ A_4 \end{array}$	2	2	0	1	
A_2	1	1	1	1	
A_3	0	4	0	0	
A_4	1	3	0	0	

• For a value function V on actions, a decision rule r_V is defined by:

$$r_V(p) = \arg \max\{V(\mathsf{A}) \mid \mathsf{A} \in \mathcal{A}\}$$

• On the decision problem above, which rules agree (*i.e.*, choose the same actions)?

$$V_{MM}(\mathsf{A}) = \max\{v(\omega(\mathsf{A}, s)) \mid s \in \mathcal{S}\}$$

$$V_{Mm}(\mathsf{A}) = \min\{v(\omega(\mathsf{A}, s)) \mid s \in \mathcal{S}\}$$

$$V_{mMR}(\mathsf{A}) = \max\{R(\mathsf{A}, s) \mid s \in \mathcal{S}\}$$