COMP2121: Microprocessors and
Interfacing

Interrupts

http://www.cse.unsw.edu.au/~cs2121
Lecturer: Hui Wu
Term 2, 2019

Overview

* Interrupt System Specifications
» Multiple Sources of Interrupts

* Interrupt Priorities

* Polling

* AVR Interrupts

* Interrupt Vector Table

* System Reset

* Watchdog Timer

* Timer/Counter(

* External Interrupts

* Interrupt Service Routines

Major Components of any Computer

Computer
/
Memory
(where g]clao\yi::es (where
programs, " programs,
Processor| gatalive |(Output L{"data live
when Devicesd | when not
running) \tunning)

How CPU Interacts with 1/0?

Two Choices:
* Interrupts.
U I/O devices generate signals to request services from CPU .
U Need special hardware to implement interrupts.
U Efficient.
¢ Asignal is generated only if the I/O device needs services from CPU.
* Polling
U Software queries I/O devices.
U No hardware needed.

U Not efficient.
++ CPU may waste processor cycles to query a device even if it does not
need any service.

Interrupt System Specifications (1/2)

1. Allow for asynchronous events to occur and be recognized.

2. Wait for the current instruction to finish before taking care
of any interrupt.

3. Branch to the correct interrupt handler, also called interrupt
service routine, to service the interrupting device.

4. Return to the interrupted program at the point it was
interrupted.

5. Allow for a variety of interrupting signals, including levels
and edges.

6. Signal the interrupting device with an acknowledge signal
when the interrupt has been recognized.

Interrupt System Specifications (2/2)

7. Allow programmers to selectively enable and disable all
interrupts.

8. Allow programmers to enable and disable selected
interrupts.

9. Disable further interrupts while the first is being serviced
10. Deal with multiple sources of interrupts.
11. Deal with multiple, simultaneous interrupts.

Interrupt Recognition and Ack (1/3)

INTERR-

UPTING
DEVICE

Pending
IRQ| | Signal Set Interrupt -
conditioning IRQ-FF 44‘: —
Reset !
T <
Set
INTE-FF | Interrupt
Reset Enable
)
CPU S

Interrupt signal to
sequence
controller

Interrupt ack from
sequence
controller

SEQUENCE
CONTROLLER

Disable interrupt
instruction

Enable interrupt
instruction

Return from
interrupt
instruction

Interrupt Recognition and Ack (2/4)

+ An Interrupt Request (IRQ) may occur at any time.

U It may have rising or falling edges or high or low levels.

U Frequently it is a active-low signal and multiple devices are wire-

ORed together.

 Signal Conditioning Circuit detects these different types of
signals.

e Interrupt Request Flip-Flop (IRQ-FF) remembers that an
interrupt request has been generated until it is acknowledged.

U When IRQ-FF is set, it generates a pending interrupt signal that goes
towards the Sequence Controller.

U IRQ-FF is reset when CPU acknowledges the interrupt with INTA

signal.

Interrupt Recognition and Ack (3/4)

+ The programmer has control over interrupting process by
enabling and disabling interrupts with explicit instructions
Q The hardware that allows this is Interrupt Enable Flip-Flop (INTE-
FF).

U When the INTE-FF is set, all interrupts are enabled and the pending
interrupt interrupt is allowed through the AND gate to the sequence
controller.

U The INTE-FF is reset in the following cases.
+« CPU acknowledges the interrupt.
% CPU is reset.

+ Disable interrupt instruction is executed.

Interrupt Recognition and Ack (4/4)

* An interrupt acknowledge signal is generated by the CPU
when the current instruction has finished execution and CPU has
detected the IRQ.

U This resets the IRQ-FF and INTE-FF and signals the interrupting
device that CPU is ready to execute the interrupting device routine.

* At the end of the interrupt service routine, CPU executes a
return-from-interrupt instruction.

O Part of this instruction’s job is to set the INTE-FF to reenable
interrupts.

U If the IRQ-FF is set during an interrupt service routine a pending
interrupt will be recognized by the sequence controller immediately after
the INTE-FF is set. This allows nested interrupts i.e. interrupts
interrupting interrupts.

10

Multiple Sources of Interrupts

IRQ
INTA
CPU Device 1 Device 2| e« Device n
Data
Address
Control

* Determine which of the multiple devices has generated the IRQ to be
able to execute its interrupt service routine.

QO Two approaches: Polled interrupts and vectored interrupts.

* Resolve simultaneous requests from interrupts with a prioritization

scheme.

11

Polled Interrupts

O The bit is reset after the register has been read.

* Software, instead of hardware, is responsible for
determining the interrupting device.

O The device must have logic to generate the IRQ signal and to set
an “I did it” bit in a status register that is read by CPU.

« IRQ signals the sequence controller to start executing an
interrupt service routine that first polls the device then
branches to the correct service routine.

12

Polled Interrupt Logic

IRQ
Logic to Logic to reset IRQ
generate IRQ when status register
is read
Logic to read status LOg.IC t (,), se't I
; “ did it” bit
register and reset “I i
did it” bit Status register
Data
Address
Control

13

Vectored Interrupts (I)

« CPU’s response to IRQ is to assert INTA.

* The interrupting device uses INTA to place information
that identifies itself, called vector, onto the data bus for
CPU to read.

O An vector is the address of an interrupt service routine.

» CPU uses the vector to execute the interrupt service
routine.

14

Vectored Interrupting Device
Hardware (I)

INTA
IRQ

Logic to Logic to reset
generate IRQ IRQ

Vector Information

l

Three-State Driver %

Data
Address

Control

15

Vector Interrupts (II)

IRQ 0
IRQ 1

IRQ 2
cru T

IRQn

* CPU has multiple IRQ input pins.

* CPU designers reserve specific memory locations for a vector
associated with each IRQ line.

* Individual disable/enable bit is assigned to each interrupting source.

16

Interrupt Priorities

* When multiple interrupts occurs at the same time,
which one will be serviced first?

* Two resolution approaches:
U Software resolution

¢ Polling software determines which interrupting source is
serviced first.

U Hardware resolution
+¢ Daisy chain.
+¢ Separate IRQ lines.
«¢ Hierarchical prioritization.

+¢+ Nonmaskable interrupts.

17

Daisy Chain Priority Resolution (1/2)

» CPU asserts INTA that is passed down the chain from
device to device. The higher-priority device is closer to
CPU.

* When the INTA reaches the device that generated the
IRQ, that device puts its vector on the data bus and not
passing along the INTA. So lower-priority devices do
NOT receive the INTA.

18

Daisy Chain Priority Resolution (2/2)

IRQ
INTA . INTA . INTA INTA .
CPU Device 1 » Device 2 ¢+ +—— Devicen
Data
Address
Control

19

Hardware Priority Resolution

» Separate IRQ Lines.

U Each IRQ line is assigned a fixed priority. For example,
IRQO has higher priority than IRQ1 and IRQ1 has higher
priority than IRQ2 and so on.

* Hierarchical Prioritization.

O Higher priory interrupts are allowed while lower ones are
masked.

* Nonmaskable Interrupts.
U Cannot be disabled.

U Used for important events such as power failure.

20

10

Transferring Control to
Interrupt Handler

Hardware needs to save the return address.
O Most processors save the return on the stack.

O ARM uses a special register, link register, to store the return
address.

Hardware may also save some registers such as program
status register.

O AVR does not save any register. It is programmer’s responsibility
to save program status register and conflicting registers.

The delay from the time the IRQ is generated by the
interrupting device to the time the interrupt handler starts
to execute is called interrupt latency.

21

Interrupt Handler

A sequence of code to be executed when the corresponding
interrupt is responded by CPU.

Consists of three parts: Prologue, Body and Epilogue.

Prologue:

O Code for saving conflicting registers on the stack.
Body:

U Code for doing the required task.

Epilogue:

U Code for restoring all saved registers from the stack.

U The last instruction is the return-from-interrupt instruction.

< reti in AVR.

22

11

Software Interrupt

Software interrupt is the interrupt generated by software
without a hardware-generated-IRQ.

Software interrupt is typically used to implement system calls
in OS.

Most processors provide a special machine instruction to
generate software interrupt.

O SWIin ARM.

AVR does NOT provide a software interrupt instruction.

U Programmers can use External Interrupts to implement software
interrupts.

23

Exceptions

Abnormalities that occur during the normal operation of
the processor.

O Examples are internal bus error, memory access error and
attempts to execute illegal instructions.

Some processors handle exceptions in the same way as
interrupts.

0 AVR does not handle exceptions.

24

12

Reset

Reset is an interrupt in most processors (including AVR).
It is a signal asserted on a separate pin.

Nonmaskable.

It does not do other interrupt processes, such as saving
conflict registers. It initialize the system to some initial

state.

AVR MCU Architecture
‘ Dala Bus Ebil
Frogram I* Halus %_.
Flash
Pragam (—‘ Coarkar ard Conlial
RMemory
u
IrEtrucian GEnerd
Regiskr Purposa il =Pl
s
Irehruclion iakch
.,
= 5
= 2
F] o armbyg
Gartrd Lines g 8 Compat ks
T E
°| F
S
Dala I
ool o]
1D Moduka n

13

Interrupts in AVR Microcontrollers (1/3)

* The number of interrupts varies with specific AVR devices.

* Two types of interrupts: Internal interrupts and external
interrupts.

a
a

Internal interrupts: Generated by on-chip I/O devices.
External interrupts: Generated by external I/O devices.

* For most internal interrupts, they don’t have an individual
enable/disable bit.

a

Program cannot enable/disable these interrupts.

» External interrupts have an individual enable/disable bit.

a
a

Program can enable/disable these interrupts.

An external interrupt can be rising edge-triggered, or falling edge-
triggered or low level-triggered).

« Special I/O registers (External Interrupt Control Registers EICRA

and EICRB in ATmega2560) to specify how each external interrupt
is triggered.

27

Interrupts in AVR (2/3)

» There is a global interrupt enable/disable bit, the I-bit, in
Program Status Register SREG.

a

a

a
a

Setting the I-bit will enable all interrupts except those with individual
enable/disable bit. Those interrupts are enabled only if both I and their
own enable/disable bit are set.

The I-bit is cleared when an interrupt occurs and is set by the
instruction reti.

Programmers can use sci and cli to set and clear the I-bit.

If the I-bit is enabled in the interrupt service routine, nested interrupts
are allowed.

* SREG is not automatically saved by hardware when entering
an interrupt service routine.

a

An interrupt service routine needs to save it and other conflict
registers on the stack at the beginning and restore them at the end.

28

14

Interrupts in AVR (3/3)

Reset is handled as a nonmaskable interrupt.

Each interrupt has a 4-byte interrupt vector, containing an
instruction to be executed after MCU has accepted the
interrupt.

Each interrupt vector has a vector number, an integer from
1 to n, the maximum number of interrupts.

The priority of each interrupt is determined by its vector
number.

U The lower the vector number, the higher priority.

All interrupt vectors, called Interrupt Vector Table, are
stored in a contiguous section in flash memory.

O Starts from address 0 by default.

O Can be relocated.

29
Interrupt Vectors in ATmega2560 (1/4)
Vector | Program
No. | Address® Source Interrupt Definition
1 [t | e | e P e
2 $0002 INTO External Interrupt Request 0
3 $0004 INT1 External Inferrupt Request 1
4 $0006 INT2 External Inferrupt Request 2
5 $0008 INT3 External Inferrupt Request 3
& §000A INT4 External Interrupt Request 4
7 §000C INTS External Inferrupt Request 5
8 B000E INT8E External Inerrupt Request 6
g $0010 INT7 External Interrupt Request 7
10 §0012 PCINTO Pin Change Interrupt Request 0
b $0014 PCINT1 Pin Change Interrupt Request 1
12 $0018% PCINT2 Pin Change Interrupt Request 2
13 50018 WDT Watchdog Time-out Interrupt
14 E001A TIMER2 COMPA Timer/Counter2 Compare Match A
15 §001C TIMER2 COMPB Timer/Counter2 Compare Maich B
30

15

Interrupt Vectors in ATmega2560 (2/4)

16 S001E TIMER2 QVF Timer/Counter2 Overflow

17 $0020 TIMER1 CAPT TimerCounter1 Capture Event
18 $0022 TIMER1 COMPA Timer/Counter! Compare Match A
19 50024 | TIMER1 COMPB Timer/Counter! Compare Match B
20 §0026 | TIMER1 COMPC Timer/Countert Compare Match C
21 $0028 TIMER1 OVF Timer/Counter1 Overflow

22 £002A | TIMERO COMPA Timer/Counterd Compare Match A
23 $002C | TIMERO COMPB Timer/Counter0 Compare match B
24 5002E TIMERD OVF Timer/Gounter0 Overflow

25 $0030 SPI, 8TC SPI Serial Transfer Complete
26 $0032 USARTO RX USARTO Rx Complete

27 $0034 LSART0 UDRE USARTO Data Register Empty
28 50036 USARTO TX USARTO Tx Complete

29 $0038 | ANALOG COMP Analog Comparator

31
Interrupt Vectors in ATmega2560 (3/4)
30 $003A ADC ADC Conversion Complete
N $003C EE READY EEPROM Ready
a2 $003E TIMER3 CAPT Timer/Countar3 Capture Event
a3 $0040 TIMER3 COMPA | Timer/Counterd Compare Match A
34 0042 TIMER3 COMPE | Timer/Counterd Compare Maich B
35 0044 TIMER3 COMPC | Timer/Counter3 Compare Maich C
36 30046 TIMER3 OVF Timer/Counterd Overflow
37 50048 USART1 RX USART1 Rx Complete
a8 2004A USART1 UDRE | USART{ Data Register Empty
39 0040 USART1 TX USART1 Tx Complete
40 B004E ™I 2-wire Serial Interface
41 $0050 SPM READY Store Program Memory Ready
42 $005213 TIMER4 CAPT Timer/Counterd Capture Event
43 0054 TIMER4 COMPA | Timer/Counter4 Compare Maich A
44 $0056 TIMER4 COMPB | Timer/Counter4 Compare Maich B
45 20058 TIMER4 COMPC | Timer/Counter4 Compare Match C
32

16

Interrupt Vectors in ATmega2560 (4/4)

46 S005A TIMER4 OVF Timer/Counter4 Overfiow

47 $005C TIMERS CAPT Timer/Counters Capture Event

48 $005E TIMERS COMPA | Timer/Counters Compare Match A
49 §00860 TIMERS COMPB | Timer/Counters Compare Match B
50 80082 TIMER5 COMPC | Timer/Counters Compare Match C
a1 E0064 TIMERS OVF Timer/Counters Overflow

52 $0066™% USART2 RX USART2 Rx Complete

53 | $0088™ | USART2 UDRE | USART2 Data Registar Empty

54 $008A1) USART2 TX USART2 Tx Completa

55 $008CH USART3 RX USART3 Rx Complete

56 | $006E") | USART3UDRE | USART3 Data Register Emply

57 500701 USART3 TX USART3 Tx Complete

33
Interrupt Vectors in ATmega2560 (2/3)

15 00013 TIMER1T OWF Timer/CGourtar! Owe flow

16 Ox001E TIMERO COMP Timer Counterd Compare Match

17 Qx00z0 | TIMERQ OWF Timer/Countsr Oveflow

18 Qx0022 SPI,STC SPI Serial Transter Complets

19 Ox2024 USaRTC, RX USARTS, Rx Camplete

20 OxD026 USaARTC, UDRE | USARTO Data Register Empty

21 Ox028 USARTD, TX USARTO, Tx Complets

22 Ox002A ADC ADC Conmversion Complete

23 D20 EE REALY EEPROM Heady

24 ox002E ANalLOG COMP | Analog Comparatar

25 o002® | TIMER1 COMPC | Timer'Countre! Compare Match C
34

17

Interrupt Vector Initialization in
ATmega2560 (1/5)

* Typically an interrupt vector contains a branch instruction
(jmp) that branches to the first instruction of the interrupt
handler, or reti (return from interrupt), indicating that this
interrupt is not handled.

35

Interrupt Vector Initialization in
ATmega2560 (2/5)

Address Labels Code Comments

00000 Jmp RESET ; Reset Handler

Dx0002 Jmp INTO ; IRQD Handler

00004 Jmp INT1 ; IRQ1 Handler

0x0006 Jmp INT2 ; IRQ2 Handler

0x0008 jmp INT3 ; IEQ3 Handler

0x000A jop INT4 ; IRQ4 Handler

Dx000C jmp INTS ; IRQ5 Handler

0x000E Jmp INT& ; IRQE Handler

0x0010 Jmp INTT ; IRQ7 Handler

0x0012 jmp BCINTO ; PCINTC Handler

0x0014 jmp BCINT1 ; PCINT1 Handler

0x0016 jmp BCINTZ ; PCINTZ Handler

0x0018 jmp WOT ; Watchdog Timeout Handler

0x001A jmp TIMZ COMPA ; Timer2 Compareh Handler

0x001C jmp TIMZ COMPR ; Timer2 CompareB Handler

36

18

Interrupt Vector Initialization in
ATmega2560 (3/5)

0x001E jmp TINZ_OVF ¢ Timerd Overflow Handler
0x0020 imp TIM1 CAET ; Timer]l Capture Handler

0x0022 imp TIM1_COMPFA ; Timerl Compareh Handler
0x0024 imp TIM1_COMEB ; Timerl CompareB Handler
0x0025 Jmp TIM1_COMPC ; Timer]l Comparel Handler
Ox0028 imp TIM1_OVF ; Timerl Overflow Handler
Dx0024 imp TING CCMEA ; Timer0 Compareh Handler
Dx002C imp TIMG_ COMPB : Timer0 CompareB Handler
0x002E imp TIMG OVF + Timer0 Overflow Handler
0x0030 jmp SPI_STC ; §PI Transfer Complete Handler
0x0032 jmp USARTO_REC ; USARTO RX Complete Handler
0x0034 jmp DSART_UDRE + USARTO,UDR Empty Handler
Ox0038 imp USARTC_THC ; USARTOD TX Complete Handler
Ox0038 imp ANR_COMP ; Analog Comparstor Handler
0x003A jmp ADC ; ADC Comversion Complete Handler
0x003C jmp EE_RDY ; EEFROM Ready Handler

Ox003E jmp TIM3_CAPT 7 Timer3d Capture Handler

Interrupt Vector Initialization in
ATmega2560 (4/5)

x0040 imp TIM3 COMPA ; Timer] Compareh Handler
x0042 imp TIN3 COMEB ; Timer] CompareB Hamdler
0044 imp TIN3_COMPC ; Timerd Comparel Handler
(x0046 imp TIM3 WF ; Timerd Overflow Handler
(x0048 Jmp [JSARTI_RXC ; USARTI RX Complate Handler
(xD0dA imp [JSART1_UDRE ; USARTL,UDR Empty Handler
0x004C Jmp USARTL_TXC ; USART1 TX Complete Handler
0x004E jmp THL i Z-wire Serial Handler
0x0050 jmp SPM ROT ; 8PN Ready Handler

00052 jmp TIM{_CAPT ; Timerd Capture Handler
00054 Jmp TIN_CCMPA ; Timerd Compareh Handler
0x0056 jmp TIM4_COMEB ; Timerd CompareB Handler
(%0058 imp TIN4_COMPC ; Timerd Comparel Handler
[x005A Jmp TING_OVF ; Timerd Overflow Handler
(x005C jmp TIN5 CRET ; Timer5 Capture Handler

(x005E jmp TIN5 COMPA ; Timer5 Compareh Handler

Interrupt Vector Initialization in

ATmega2560 (5/5)

0x0080 jmp TING COMPR ; Timer3 CompareB Handler
0x0062 jmp TIN5 COMPC ; Timer3 Comparel Handler
Dx00ed jmp TIN5 _OWF ; Timer3 Overflow Handler
x0066 jmp [SARTZ_RXC ; USARTZ RX Complete Handler
Ix0068 jmp USARTZ_UTRE ; USARTZ,UCR Empty Handler
Ix00&A imp USART2_TXC ; USARTZ TX Complete Handler
0x006C jmp USARTI_RXC ; USART3 RX Complete Handler
Ix006E jmp [SART3_UTRE ; USART3,UCR Empty Handler
00070 jmp USARTI_TXC ; USART3 TX Complete Handler

0x0072 RESET: 1di rlf, high{RAMEND) ; Main program start

00073 out SPH,rle ; 8et Stack Pointer to top of RAM
020074 1di r16, low{RAMEND)

%0073 nut SPL,rl6

00076 sai ; Enable interrupts

00077 <instr> oo

39

An Example (1/2)

.include "m2560def.inc"

.cseg

.org 0x0000 ; Reset vector is at address 0x0000

jmp RESET ; Jump to the start of Reset interrupt handler

.org INTOaddr ; INTOaddr is the address of INTO defined in m2560def.inc
jmp IRQO ; Jump to the start of the interrupt handler of IRQO

.org INT1addr ; INT1addr is the address of INT1 defined in m2560def.inc
reti ; Return to the breakpoint where INT1 occurred

.org 0x0072 ; Next instruction start at 0x0072
IRQO: push r0 ; Save r0
push rl ; Save r1
; Body of the interrupt handler of INTO
pop rl ; Restore rl
pop r0 ; Restore r0
reti ; Return to the breakpoint where INTO occurred

40

20

An Example (2/2)

RESET: Idi r16, high(RAMEND) ; Interrupt handler for RESET

out SPH, r16 ; Set the stack pointer SP to the top of data memory
Idi r16, low(RAMEND)

out SPL,r16

sei ; Enable interrupts

main: ; Main program starts here

loopforever: rimp loopforever ; Infinite loop

41

RESET in ATmega2560 (1/2)

A RESET interrupt is used to restore the microcontroller to an
initial state.

ATmega2560 microcontroller has five sources of reset:

* Power-on Reset

U The MCU is reset when the supply voltage is below the Power-on Reset
threshold (VPOT).

* External Reset

U The MCU is reset when a low level is present on the RESET pin for
longer than the minimum pulse length.

* Watchdog Reset

O The MCU is reset when the Watchdog Timer period expires and the
Watchdog is enabled.

42

21

RESET in ATmega2560 (2/2)

* Brown-out Reset

O The MCU is reset when the supply voltage VCC is below the Brown-out
Reset threshold (VBOT) and the Brown-out Detector is enabled.

* JTAG AVR Reset

0 The MCU is reset as long as there is a logic one in the Reset Register, one
of the scan chains of the JTAG system.

For each RESET, there is a flag (bit) in MCU Control Register
MCUCSR.

® These bits are used to determine the source of the RESET interrupt.

43

RESET Logic in ATmega2560

DeTA BUS

MCU Statuss
Register (MCUSR)

= [

T

ERRE

P:waﬁon Resst & i
Gircuit

Y Brown-out
BODLEVEL [2.0]| Raset Circuit

Pull-up Resstor
= SPIKE o A \ 0 —
ﬁ Raaet Ciout H 1 } s “
|
JTAG Reset Watchdog
FAegster Timer
Walchdog
Dscillator

Clodk oK Delay Counters
Genaraior TIMECUT

CKSEL[34)
SUT[1:0]

WORF

I

INTERNAL RESET

COUNTER RESET

44

MCU Status Register in ATmega2560 (1/3)

Bit 7 B] 4 3 2 1 0

wasss o= = = n?mm_l_lw MCUSR
ReadWrite R R R Aw R RW AW RW

Initial Value a (]] See Bit Descrption

Bit 4 — JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG
Reset Register selected by the JTAG instruction AVR_RESET. This bit
is reset by a Power-on Reset, or by writing a logic zero to the flag.

Bit 3 —- WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-
on Reset, or by writing a logic zero to the flag.

45

MCU Status Register in ATmega2560 (2/3)

Bit

o35 j0xss)
ReadWrite
Inigal Vatue

4 3 2 1 0

| JTRF WDRF BORF EXTRF PORF IMCUSR
e

AW Rw AW RW Rw

See Bit Descraption

(=] NN R
o TRIf™
= my I fm

Bit 2 — BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a
Power-on Reset, or by writing a logic zero to the flag.

Bit 1 — EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a
Power-on Reset, or by writing a logic zero to the flag.

46

23

MCU Status Register in ATmega2560 (3/3)

Bit

w35 (0x55)
ReadWrite
Inial Value

4 3 2 1 0

| JTRE WDRF BORF EXTRF PORF IMCUSR
=

Aw R RW AW RW

See Bit Descrption

o mff -
o TOgigm
(=il WE

Bit 0 — PORF: Power-on Reset Flag This bit is set if a Power-on
Reset occurs. The bit is reset only by writing a logic zero to the flag.
To make use of the Reset Flags to identify a reset condition, the user
should read and then

47
Watchdog Timer in ATmega2560
* Used to detect software crash.
* (Can be enabled or disabled by properly updating WDCE bit and
WDE bit in Watchdog Timer Control Register WDTCR.
* 10 different periods determined by WDP3, WDP2, WDP1 and WDPO
bits in WDTCR.
* Ifenabled, it generates a Watchdog Reset interrupt when its period
expires.
* So program needs to reset it before its period expires by executing
instruction WDR.
e When its period expires, Watchdog Reset Flag WDRF in MCU
Control Register MCUCSR is set.
U This flag is used to determine if the watchdog timer has generated a RESET
interrupt.
48

24

Watchdog Timer Logic

Watchdog Timer

128 kHz
QSCILLATOR

WATCHDOG
RESET

WATCHDOG
PRESCALER
= == |=]=
s EREEEEE
S[2|3) g2 e I g e
SR bl
) YYYY L

WDP1
WDP2
WDP3

WDIF

WDIE

WDPO

MCU RESET

INTERRUPT

49
Watchdog Timer Perio
g T Period
Table 12-2. Watchdog Timer Prescale Select
Number of WDT Oscillator Typical Time-out at
WDP3 | WDP2 | WDP1 | WDPO Cycles Ve =5.0V
4] 4] 0 0 2K (2048) cycles 16ms
] [¢] 0 1 4K (4096) cycles 32ms
1] 0 1 0 BK (8192) cycles 64ms
0 0 1 1 16K (16384) cycles 0.1255
0 1 0 0 32K (32768) cycles 0.255
0 1 0 1 B4K (85538) cycles 0.55
0 1 1 0 128K (131072) cycles 1.0s
0 1 1 1 256K (262144) cycies 20s
1 [¢] 0 Q 512K (524288) cycles 40s
1 0 0 1 1024K (104B576) cycles B8.0s
1 0 ¥ 0
1 0 1 1
d : 0 0 Reserved
1 1 0 1
1 1 1 0
1 1 1 1
50

25

Watchdog Timer Control Register (1/4)

Bit 7 B 5 4 3 2 1 0

(B0} WOIF WDIE WDP3 | WDCE WDE WDPZ | WDP1 WDFD | WDTCSR
ReadWrite AW AW AW AW AW RW RW RW

Initial Value 0] 0 1} x 0 1] v}

Bit 7 - WDIF: Watchdog Interrupt Flag

This bit is set when a time-out occurs in the Watchdog Timer and
the Watchdog Timer is configured for interrupt. WDIF is cleared by
hardware when executing the corresponding interrupt handling
vector. Alternatively, WDIF is cleared by writing a logic zero to the
flag. When the I-bit in SREG and WDIE are set, the Watchdog
Time-out Interrupt is executed.

51

Watchdog Timer Control Register (2/4)

Bit 7 & 5 4 3 2 1 0

(Do) WDIF WDIE WDP3 WDCE WDE WOP2 WDP1 WDP0 | WDTCSH
ReadWrite AW AW AW Fl-W ;’W AW RAW AW

Initial Valus 0] 0 a X a 4] o

Bit 6 - WDIE: Watchdog Interrupt Enable

When this bit is written to one and the I-bit in the Status Register
is set, the Watchdog Interrupt is enabled. If WDE is cleared in
combination with this setting, the Watchdog Timer is in Interrupt
Mode, and the corresponding interrupt is executed if time-out in
the Watchdog Timer occurs. If WDE is set, the Watchdog Timer
is in Interrupt and System Reset Mode. The first time-out in the
Watchdog Timer will set WDIF. Executing the corresponding
interrupt vector will clear WDIE and WDIF automatically by
hardware (the Watchdog goes to System Reset Mode).

52

26

Watchdog Timer Control Register (3/4)

Bit 7 B B 4 3 2 1 0

(B0} WOIF WDIE WDP3 | WDCE WDE WDPZ | WDP1 'WDPO || WDTCSR
ReadWrita AW AW AW AW Rw RW R RW

Initial Value 0] 0 1} x 0 1] v}

Bit 4 - WDCE: Watchdog Change Enable

This bit is used in timed sequences for changing WDE and prescaler
bits. To clear the WDE bit, and/or change the prescaler bits, WDCE
must be set. Once written to one, hardware will clear WDCE after
four clock cycles.

Bit 3 - WDE: Watchdog System Reset Enable
WDE is overridden by WDRF in MCUSR. This means that WDE is

always set when WDREF is set. To clear WDE, WDRF must be
cleared first.

53
Watchdog Timer Control Register (4/4)
Bit 7 B 5 4 3 2 1 1]
(Do) WDIF WDIE WDP3 WDCE WDE WOP2 WDP1 WDP0 | WDTCSH
ReadWrita AW AW RW Fl-W ;-'W RW AW RW
Inifial Valse o 0 o a X a i} o
Bit 5, 2:0 - WDP3:0: Watchdog Timer Prescaler 3, 2, 1 and 0
The WDP3:0 bits determine the Watchdog Timer prescaling
when the Watchdog Timer is running.
54

27

Timer Interrupt (1/2)

Timer interrupt has many applications:

* Used to schedule (real-time) tasks (threads)
U Round-Robin scheduling
«¢ All tasks take turn to execute for some fixed period.

O Real-time scheduling

++ Some tasks must be started at a particular time and finished by a
deadline.

« Some tasks must be periodically executed.

* Used to implement a clock

O How much time has passed since the system started?

55

Timer Interrupt (2/2)

* Used to synchronize tasks.

U Task A can be started only if a certain amount of time has passed
since the completion of task B.

 Can be coupled with a wave-form generator to support
Pulse-Width Modulation (PWM).

O Details to be covered in the lecture about Analog Input and Output.

56

28

Timer(in ATmega2560

The 8-bit timer has the following features:

Glitch-free, Phase Correct Pulse Width Modulators (PWM).
10-bit Clock Prescaler.

The counter can count up or count down depending on the
specific operation mode.

One Overflow Interrupt source (TOV0) and two Compare Match
Interrupt sources (OCOA and OCOB).

U The timer can generate a Timer0 Overflow Interrupt TOVO when the
counter TCNTO overflows.

U The timer can generate two Timer/Counter0 Output Match Interrupts:
Timer/Counter Compare Match A interrupt and Timer/Counter Compare
Match B interrupt when TCNTO contains the same value as in Output
Compare Registers (OCROA and OCROB)

U TOVO and two Timer/Counter0 Output Match Interrupts can be
individually enabled/disabled.

57
Timer0 in ATmega2560—-Block Diagram
O
.u rt * r?ﬁl‘a;
A=
] o Feeeee ﬂ)
|
[rooos][woeem
P
58

29

Prescaler for Timer(

cl
Kosc clkrog

10-BIT T/C PRESCALER

TOSCH Cicar

clkpog/32
clky /1024

ASO

PSRO

Csoo
cso
Ccso02

TIMER/COUNTERQ CLOCK SCURCE
clkpy

59

Timer(0 Operation Modes (1/2)

Timer0 can operate in different operation modes.

An operation mode specifies the behaviour of the timer and
the Output Compare pins.

« The behaviour of Output Compare pins and PWM modes will be
covered in the lecture about Analog Input and Output.

A mode is defined by the combination of the Waveform
Generation mode (WGM2:0 in TCCROA and TCCROB
registers) and Compare Output mode (COMOx1:0 in TCCROA
and TCCROB registers) (x=A or B) bits. The COMO0x1:0 bits
control whether the output should be set, cleared, or toggled at
a Compare Match.

60

30

Timer(0 Operation Modes (2/2)

* The simplest operation mode is the normal mode
(WGMO02:0 = 000 in TCCROA and TCCROB registers),
which is typically used to generate an interrupt, either a
Timer Overflow Interrupt, or a Compare Match Interrupt.

* In the normal mode, the counting direction is always up
(incrementing). The counter simply overruns when it passes
its maximum 8-bit value OxFF and then restarts from 0x00.

O We focus on the normal mode now, and will learn the other modes in
the lecture about Analog Input and Output.

61
Timer(Registers (1/8)
/O registers for TimerO:
¢ Timer/Counter Register TCNTO.

U Contains the current timer/counter value.
U The value is increased or decreased by one every clock cycle based on
the specific operation mode.
Bit ¥] 5 4 3 2 1 o
0n26 (0xd8) TCNTOLT 0]] Toune
ReadWiie W AW R AW AW Aw W
Initial Valus 1] 0 a 0 0 0 [} 0

62

31

Timer(Registers (2/8)

* Output Compare Registers OCROA and OCROB.

U Each contains an 8-bit value set by the application program.

U TimerO continuously compares the value of OCROA (OCROB) with
the counter value of TCNTO.

O When the two values of TCNT0 and OCROA (OCROB) are equal, the
timer may generate a Timer/Counter Compare Match A interrupt
(Timer/Counter Compare Match B interrupt).

Bt 7 § 5 ’ 3 2 1 0
027 [0neT) OCROAT]] ochm
ReadWiite RW AW RW RW RW AW AW RW
Iniiel Value) 0 0 0 a 0 a 0
B 7 8 5 4 3 2 1 5
028 (0udB) OCROBIT]] ocros
ReadWite AW AW AW AW RW AW AV
Initial Value o 0 0 0 0 o] 0

Timer(Registers (3/8)

Timer/Counter Control Registers TCCROA and TCCROB.
U Contains control bits.

U Normal mode when WGM02:0=000.

4 By default, WGM02:0=000.

Bit] 5

7 4 3 2 1 [
Ooc24 {Oxdd) COMOAY | COMOAD | COMOE{1 | COMOBO ——mm TCCADA
ReadWrits RW RW AW AW R R RW RW
Enitial Valus a o 0 o

o o [
Bit 7 5 5 4 3 2 i [
0n25 (0xa5; [FOCUR | FOCIE = - WGMOZ | CS0Z _CSDt T]
ReadWria w w R R m‘ AW RW RW
nitial Valus [o 0]

] (] o 0

Timer(Registers (4/8)

» Bits CS02:0 select the clock for Timer0.
* No prescaling when CS02=001.

cso2 Ccso1 CS00 Description
0 0 0 No clock source (Timer/Counter stopped)
0 0 1 clkypf(No prescaling)
0 1 4] clkyp/8 (From prescaler)
4] 1 1 clkyo/64 (From prescaler)
1 0 0 clk,o/256 (From prescaler)
1 0 1 clkyp/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge
1 1 1 External clock source on T0 pin. Clock on rising edge

65

Bit
(OwBE}
ReadWrits

Initial Valse

Timer(Registers (5/8)

* Timer/Counter Interrupt Mask Register TIMSKO.
U Contains interrupt enable/disable bits.

U Bit 2 — OCIEOB: Timer/Counter Output Compare Match B Interrupt
Enable bit.

QO When the OCIEOB bit is written to one, and the I-bit in the Status Register

SREG is set, the Timer/Counter Compare Match B interrupt is enabled. The
corresponding interrupt is executed when a Compare Match in
Timer/Counter occurs.

2 1 0

T OCIEDS | OCIEGA | TOIED | TMsKo

= mfi =

= o =

o ofi e

AW AW RW
0] 1}

o o e
= mff i e

66

33

Timer(Registers (6/8)

* Timer/Counter Interrupt Mask Register TIMSKO.

U Bit 1 — OCIEOA: Timer/Counter0 Output Compare Match A Interrupt
Enable bit.

0 When the OCIEOA bit is written to one, and the I-bit in the Status Register
is set, the Timer/Counter0 Compare Match A interrupt is enabled. The
corresponding interrupt is executed if a Compare Match in Timer/CounterQ
oceurs.

U Bit 0 — TOIEO: Timer/Counter0O Overflow Interrupt Enable bit.

U When the TOIEO bit is written to one, and the I-bit in the Status Register is
set, the Timer/Counter0 Overflow interrupt is enabled. The corresponding
interrupt is executed if an overflow in Timer/Counter(occurs.

i 7 : 5 4 3 2 1 0
(0x6E) I N I N T T
ReadWris R A A R E AW AW AW
Inifia Value 0 0 0 0 0 0 0 0

67

Timer(Registers (7/8)

* Timer/Counter Interrupt Flag Register TIFRO.

O Contains interrupt flags.

U Bit 2 — OCFOB: Timer/Counter 0 Output Compare B Match Flag.

O The OCFOB bit is set when a Compare Match occurs between the
Timer/Counter and the data in OCROB — Output Compare Register0 B.
OCFOB is cleared by hardware when executing the corresponding interrupt
handler. Alternatively, OCFOB is cleared by writing a logic zero to the flag.
When the I-bit in SREG, OCIEOB (Timer/Counter Compare B Match
Interrupt Enable), and OCFOB are set, the Timer/Counter Compare Match
Interrupt is executed.

Bit

ox15 (0x3s) |
Read'Writa

Iniial Valss

2 1 0

[T o]

AW RW AW
o a 1]

o af i -
o T4 |m
o af) fn
o af |
o af i fuw

68

34

Timer(Registers (8/8)

* Timer/Counter Interrupt Flag Register TIFRO.

U Bit 1 — OCFO0A: Timer/Counter 0 Output Compare A Match Flag.

O The OCFOA bit is set when a Compare Match occurs between the
Timer/Counter0 and the data in OCROA — Output Compare Register0.
OCFO0A is cleared by hardware when executing the corresponding interrupt
handler. Alternatively, OCFOA is cleared by writing a logic zero to the flag.
When the I-bit in SREG, OCIEOA (Timer/Counter0 Compare Match
Interrupt Enable), and OCFOA are set, the Timer/Counter0 Compare Match
Interrupt is executed.

Bit 7 8 5 4 3 2 1 0

msioas [= = - — = oc TIFRO
FeadWrita) e G] G B e R

nifial Valus 0 0] 0 o 0 i 0

69

An Interrupt Handler Example (1/9)

* We design a program using AVR assembly language with the
following behavior:

Q Initially, 8 LEDs are set on.

O Every second, toggle the 8 LEDs, that is, if an LED is on, turn
it off, and if it is off, turn it on.

* Key question: How do we know if one second has passed?
U Answer: use Timer0 Overflow Interrupt.

U Need to know the interrupt period of Timer0O Overflow
Interrupt.

| |]

I i 1
First Second ~ Third .. |- Interrupt
interrupt interrupt interrupt period

Time

70

35

An Interrupt Handler Example (2/9)

* Assume the ATmega2560 microcontroller runs at a clock
frequency of 16M Hz, and the Timer0 prescalar value is set
to 8.

U The interrupt period = 256*8/16 = 128 us, i.e., every 128 us,
Timer(generates a Timer0 Overflow Interrupt.

O How many Timer0 Overflow Interrupts are generated each
second?

» 1,000,000/128 =7812.5 interrupts ~ 7812 interrupts
* We use PortC to drive 8 LEDs.

71
An Interrupt Handler Example (3/9)
.include "m2560def.inc"
.equ PATTERN = 0b11110000 ; define a pattern for 8 LEDs
.def temp =116
.def leds =r17 ;rl7 stores a LED pattern
; The macro clears a word (2 bytes) in the data memory
; The parameter @0 is the memory address for that word
.macro clear
1di YL, low(@0) ; load the memory address to Y pointer
1di YH, high(@0)
clr temp ; set temp to 0
st Y+, temp ; clear the two bytes at @0 in SRAM
stY, temp
.endmacro
72

36

An Interrupt Handler Example (4/9)

.dseg

SecondCounter: .byte 2 ; two-byte counter for counting seconds.

TempCounter: .byte 2 ; temporary counter used to determine if one second has passed
.cseg

.org 0x0000

jmp RESET

jmp DEFAULT ; no handling for IRQO.

jmp DEFAULT ; no handling for IRQ1.

.org OVFOaddr ; OVFOaddr is the address of Timer0O Overflow Interrupt Vector

jmp TimerOOVF ; jump to the interrupt handler for Timer0O overflow.

jmp DEFAULT ; default service for all other interrupts.
DEFAULT: reti ; no interrupt handling

73

An Interrupt Handler Example (5/9)

RESET: 1di temp, high(RAMEND) ; initialize the stack pointer SP
out SPH, temp
1di temp, low(RAMEND)
out SPL, temp
ser temp ; set Port C as output
out DDRC, temp

jmp main ; jump to main program

74

37

An Interrupt Handler Example (6/9)

TimerOOVF: ; interrupt subroutine to Timer0

in temp, SREG

push temp ; prologue starts

push YH ; save all conflicting registers in the prologue
push YL

push r25

push r24 ; prologue ends

; Load the value of the temporary counter

1ds r24, TempCounter

1ds 125, TempCounter+1

adiw r25:124, 1 ; increase the temporary counter by one

75
An Interrupt Handler Example (7/9)
cpi 124, low(7812) ; check if (125:124) = 7812
1di temp, high(7812) ;7812 =106/128
cpe 125, temp
brne NotSecond
com leds ; one second has passed, and toggle LEDs now
out PORTC, leds
clear TempCounter ; reset the temporary counter
; Load the value of the second counter
1ds r24, SecondCounter
1ds r25, SecondCounter+1
adiw 125:124, 1 ; increase the second counter by one
76

38

An Interrupt Handler Example (8/9)

sts SecondCounter, r24
sts SecondCounter+1, 125
rjmp EndIF
NotSecond: ; store the new value of the temporary counter
sts TempCounter, 124
sts TempCounter+1, r25
EndIF: pop r24 ; epilogue starts
pop 25 ; restore all conflicting registers from the stack
pop YL
pop YH
pop temp
out SREG, temp

reti ; return from the interrupt

An Interrupt Handler Example (9/9)

main: 1di leds, 0xFF ; main program starts here
out PORTC, leds ; set all LEDs on at the beginning
1di leds, PATTERN
clear TempCounter ; initialize the temporary counter to 0
clear SecondCounter ; initialize the second counter to 0
1di temp, 0b00000000
out TCCROA, temp
1di temp, 0b00000010
out TCCROB, temp ; set prescalar value to 8
1di temp, 1<<TOIEOQ ; TOIEO is the bit number of TOIEQ which is 0
sts TIMSKO, temp ; enable Timer0 Overflow Interrupt
sei ; enable global interrupt

loop: rjmp loop ; loop forever

External Interrupts

* The external interrupts are triggered by the INT7:0 pins or
any of the PCINT23:0 pins.
U We use the INT7:0 pins only for external interrupts.
* An external interrupt can be used to generate a software
interrupt.
* To enable an external interrupt INTX, the following two bits
must be set:
O The I bit in SREG, and
U The INTX bit in the EIMSK register.
* Each external interrupt can be triggered by a falling or
rising edge or a low level.
Q External Interrupt Control Registers EICRA (for
INT3:0) and EICRB (for INT7:4) specify how
external interrupts are triggered.

79
Registers for External Interrupts (1/4)
* EICRA - External Interrupt Control Register A

U EICRA contains bits for interrupt sense control (INT3:0).[

Bit 7 5 5 4 3 2 1 0

(0xE3) ISC31 | ISC30 | Isc21 | Isc20 | IsCit ISC10 | IsCot 1SCO0 EICRA

ReadWrits AW W W AW AW A oW W

Initial Valus 0 0 0 0 0 0 0 0

ISCn1 | ISCn0 Description

0 0 The low level of INTn generates an interrupt request

0 1 Any edge of INTn generates asynchronously an interrupt request

i 0 The falling edge of INTn generates asynchronously an interrupt request

1 1 The rising edge of INTn generates asynchronously an interrupt request
80

40

Registers for External Interrupts (2/4)

* EICRB — External Interrupt Control Register B
U EICRB contains bits for interrupt sense control (INT7:4).[]

Bit 7 i 5 4 3 2 1 0
(DxEA) :|_|_|_|_|_|_|1I:SC?1 ISC70 | ISCEI ISCE0 | ISCB1 ISC50 | IScA1 1SC40 EICRB
ReadWiits B AW W R I T AW RV
Initial Valus 0 0 o o 0 0 0 0

ISCn1 | ISCn0 Description

0 0 The low level of INTn generates an interrupt request

0 1 Any edge of INTn generates asynchronously an interrupt request

i 0 The falling edge of INTn generates asynchronously an interrupt request
1 1 The rising edge of INTn generates asynchronously an interrupt request

81

Registers for External Interrupts (3/4)

* EIMSK - External Interrupt Mask Register
U Bits 7:0 — INT7:0: External Interrupt Request 7 - 0 Enable
bits.
U When an INT7:0 bit is written to one and the I-bit in the
Status Register (SREG) is set to one, the corresponding
external pin interrupt is enabled.

i 7 8 5 4 3 2 1 0
W0(0aD) | N7 [INTE | NTS | INTA [INT3 | INTZ | INTI | INTO | EWMSK
ReadWite RW RW RW RW RW AW AW AW
Iniil Value 0 0 o 0 0 0 0 0

82

Registers for External Interrupts (4/4)

» EIFR — External Interrupt Flag Register

U INTF7:0: External Interrupt Flags 7 — 0.

U When an edge or logic change on the INT7:0 pin triggers an
interrupt request, INTF7:0 is set to one. If the I-bit in SREG
and the corresponding interrupt enable bit, INT7:0 in
EIMSK, are set to one, the AVR microcontroller will jump to
the interrupt vector. The flag is cleared when the interrupt
routine is executed. These flags are always cleared when
INT7:0 are configured as level interrupt.

Bi 7 B B ' 3 2 1 0
oacosc) [T] NTRE | INTES | NTEE | NTRR | NTRZ | OOFT] ONTRO | EFR
ReadWite N T R 7

Iital Valus i o 0 0 0 0 0 0

83

An Example of External Interrupts (1/6)

Write an AVR assembly program to control 8 LEDs using INTO
(External Interrupt 0) and INT1 (External Interrupt 1) as follows:
* IfPBO is pushed, the first 4 LEDs are on and the second 4
LEDs are off
* IfPBI is pushed, the first 4 LEDs are off and the second 4
LEDs are on

Board setting: connect PBO to PDO and PB1 to PD1 (Port D)

84

42

An Example of External Interrupts (2/6)

.include "m2560def.inc"
.def temp =r16
.equ HIGH_LEDS = 0b11110000
.equ LOW_LEDS = 0b00001111
.cseg
.org 0x0
jmp RESET ; interrupt vector for RESET
.org INTOaddr ; INTOaddr is the address of EXT_INTO
; (External Interrupt 0)
jmp EXT_INTO ; interrupt vector for External Interrupt O
.org INTladdr ; INT1laddr is the address of EXT_INT1
; (External Interrupt 1)
jmp EXT_INT1 ; interrupt vector for External Interrupt 1

85
An Example of External Interrupts (3/6)
RESET:
Idi temp, low(RAMEND) ; initialize stack pointer to point the high
; end of SRAM
out SPL, temp
Idi temp, high(RAMEND)
out SPH, temp
ser temp ; temp=0b11111111
out DDRC, temp ; Port Cis set to all outputs
clr temp ; temp=0b00000000
out PORTC, temp
out DDRD, temp ; Port D is set to all inputs
out PORTD, temp
86

43

An Example of External Interrupts (4/6)

Idi temp, (2 << I1SC10) | (2 << ISC0O0)
; The built-in constants ISC10=2 and ISC00=0 are their bit numbers in
; EICRA register
sts EICRA, temp ; temp=0b00001010, so both interrupts are
; configured as falling edge triggered interrupts
in temp, EIMSK
ori temp, (1<<INTO) | (1<<INT1) ; INTO=0 & INT1=1
out EIMSK, temp ; Enable External Interrupts 0 and 1
sei ; Enable the global interrupt
jmp main

87

An Example of External Interrupts (5/6)

EXT_INTO: ; Interrupt handler for External Interrupt O
push temp

in temp, SREG

push temp

Idi temp, HIGH_LEDS

out PORTC, temp

pop temp

out SREG, temp

pop temp

reti

88

44

An Example of External Interrupts (6/6)

EXT_INT1: ; Interrupt handler for External Interrupt 1
push temp

in temp, SREG

push temp

Idi temp, LOW_LEDS

out PORTC, temp

pop temp

out SREG, temp

pop temp

reti

main: ; main does nothing but increments a counter

clr temp

loop: inc temp

rimp loop ; An infinite loop must be at the end of the interrupt
; handler for RESET

89

Non-Nested Interrupts

* In AVR microcontrollers, by default, an interrupt handler
(service routine) cannot be interrupted by another interrupt.
U The global interrupt flag I is cleared when an interrupt occurs,

preventing an interrupt service routine from being interrupted by
another interrupt.

Interrupt

Main handler

program

90

45

Nested Interrupts

* In AVR microcontrollers, the interrupt handler of an interrupt
can be interrupted by another interrupt if the interrupt
handler sets the global interrupt flag I in SREG using the
instruction sei.

Main
program

Interrupt

handler 1
Interrupt

handler 2

Interrupt
handler 3

91
Reading Material
1. Chapter 8. Microcontrollers and Microcomputers.
2. Read the following sections in ATmega2560 Data
Sheet:
a. Overview
b. System Control and Reset.
c. Watchdog Timer.
d. Interrupts.
e. External Interrupts.
f. 8-bit Time/Counter0
92

46

