
NOTES ON THE RSA CRYPTO SYSTEM

ERIC MARTIN

1. Principle

I want to get personal data from you (e.g., your credit card number). You agree to send me the data but only if you can
encrypt it and are confident that nobody but me will know how to decrypt it. Assume that the data I want from you is
a natural number m (m for message).

• I send you a public key in the form of two natural numbers N and e (e for encrypt) and I ask you to encode your
message as me mod N and send me that number, say m̃.

• I let you know that I have a private key in the form of two natural numbers, the same number N and a second
number d (d for decrypt), I will compute m̃d mod N , and it will turn out that this will be precisely equal to m.

I can send you (N, e) by email, you do not have to be careful and keep it to yourself, anyone can know the public key,
so anyone can encode messages as you will. But you have to be confident that the private key is known only to me and
I will keep it in a safe place. Also, you have to be confident that it is just too hard to compute the private key from the
public key.

What conditions can we impose on N , e and d for the scheme to work?

• Take for N the product of two prime numbers p and q. Also, N should be greater than m. Set φ(N) = (p−1)(q−1)
(φ is known as Euler’s totient function).

• Take for e a number smaller than φ(N) which is relatively prime to φ(N); so this condition is satisfied by any
prime number smaller than φ(N).

• Take for d the (unique) number smaller than φ(N) such that ed = 1 mod φ(N) (the multiplicative inverse of e
modulo φ(N)).

It is easy to compute d from e and φ(N), hence for the scheme to be secure, it has to be very hard to compute p and q
from N (to factorise N).

2. Proof of correctness

We want to show that if the conditions stated above on N , e and d are satisfied, then m̃d = m mod N . First note that it
suffices to show that med = m mod N . It then suffices to show that both med = m mod p and med = m mod q; this is a
consequence of the Chinese reminder theorem, and here is the relevant part of its proof from which that claim follows. Set
x = med, and for a contradiction assume that x = m mod p and x = m mod q, but x 6= m mod pq. Let natural number
y < pq be such that x = y mod pq. Then x = y mod p and x = y mod q, hence m = y mod p and m = y mod q. But then
m− y is divisible by both p and q, so m− y is also divisible by pq which since |m− y| < N , implies that m = y, yielding
the desired contradiction.

Now let us prove that med = m mod p (the proof that med = m mod q is similar). If m = 0 mod p then med = 0 mod p and
we are done, so suppose m 6= 0 mod p. Then med is equal to med−1m, which is equal to mcφ(N)m for some natural number
c (because ed = 1 mod φ(N)), which is equal to (mp−1)c(q−1)m, which is equal to m modulo p if we can establish that
mp−1 is equal to 1 modulo p. But that immediately follows from Fermat’s little theorem, which states that mp = m mod p
holds as a consequence of p being prime (indeed, as p does not divide m by hypothesis, mp = kp+m for some integer k
implies that mp−1 = k′p+ 1 for some integer k′).

Let us remind the simplest proof of Fermat’s little theorem. It uses a combinatorial argument. There are mp se-

quences of length p of numbers from {1, . . . ,m}. Of those, m consist of nothing but the same numbers: (

p︷ ︸︸ ︷
1, . . . , 1),

Date: Session 2, 2015.



2 ERIC MARTIN

. . . , (

p︷ ︸︸ ︷
m, . . . ,m), so it suffices to show that we can put the remaining sequences in groups all of size p. Put two se-

quences in the same group if one can be obtained from the other by rotation, that is, if one is of the form (x1, . . . , xp)
then the other is (xi, . . . , xp, x1, . . . , xi−1) for some i ∈ {2, . . . , p}. Suppose for a contradiction that there is a group
of size less than p. We can then choose a minimal i ∈ {1, . . . , p} and a sequence (x1, . . . , xp) in that group with
(x1, . . . , xp) = (xi, . . . , xp, x1, . . . , xi−1). Since x1, . . . , xp are not all identical, i is greater than 2. As p is prime, (x1, . . . , xp)
cannot be the concatenation of p

i−1 copies of (x1, . . . , xi−1), so there has to exist j ∈ {2, . . . , i− 1} with (x1, . . . , xp) being

the concatenation of one or more copies of (x1, . . . , xi−1) and at the end, (x1, . . . , xj−1). But then (x1 . . . xj−1, x1 . . . xi−j)
is equal (x1, . . . , xi), and (x1, . . . , xp) is equal to (xi−j+1, . . . , xp, x1, . . . , xi−j), which contradicts the minimality of i.

3. Computation of d

Set φ(N) = n. We have assumed that e is relatively prime to n. Let us verify the existence and unicity of d. Since there
are exactly n natural numbers smaller than n modulo n, it suffices to verify that the n numbers 0e, 1e, 2e,. . . , (n−1)e are
all distinct modulo n. For a contradiction, suppose that there exists x, y ∈ {0, . . . , n− 1} with x < y and xe = ye mod n.
Then (y − x)e = kn for some integer k, which since e and n are relatively prime, has to be a multiple of e, contradicting
the fact that y − x belongs to {1, . . . , n− 1}.

Saying that ed = 1 mod n is equivalent to saying that there exists an integer x with nx + ed = 1. As gcd(n, e) = 1, this
is a particular case of Bézout’s identity, namely, the statement that for all nonzero integers a and b, there exists integers
x and y with ax+ by = gcd(a, b). Bézout’s identity can be proved as follows. Let nonzero integers a and b be given, and
let c be a nonzero integer of the form ax+ by with least absolute value. By changing the signs of x and y, we can assume
that c is positive. Of course, c ≤ min(a, b). Then c divides a, as otherwise a would be of the form ck + r with 0 < r < c,
hence r = a− ck = a− (ax+ by)k = a(1− x) + b(−yk), which contradicts the definition of c. Similarly, c divides b. Also,
if c′ divides both a and b, then c′ divides c, completing the verification that c = gcd(a, b).

Now given nonzero natural numbers a and b, the computation of gcd(a, b) and two integers x and y with gcd(a, b) = ax+by
can be achieved thanks to the extended Euclidean algorithm. Applied to a = n and b = e, this yields a number y such that
ey = 1 mod n, and d is the remainder of the division of y by n. Given (a, 0) as input, the extended Euclidean algorithm
returns (a, 1, 0), which is correct since a = a× 1 + 0× 0 and a = gcd(a, 0). Given (a, b) with b 6= 0 as input, the extended
Euclidean algorithm applies itself to (b, a mod b), which yields a triple of the form (c, x, y), and returns (c, y, x− ba/bcy).
So the extended Euclidean algorithm generalises the Euclidean algorithm, which for all natural numbers a and b with
b 6= 0, computes gcd(a, b) as gcd(b, a mod b) (Note that in case b > a, these algorithms swap both arguments, and then
the first argument is always greater than the second one in all recursive calls.) The Euclidean algorithm is correct because
a divisor of b is a divisor of a number of the form bk+ r iff it is a divisor of r. The extended Euclidean algorithm is correct
because of the following sequence of equalities:

xb+ y(a mod b) = xb+ y(a− ba/bcb) = ya+ (x− ba/bcy)b

4. Remarks on the implementation

To compute me and m̃d, we use the following equalities for modular exponentiation:

x2n mod p = (x2 mod p)n and x2n+1 mod p = ((x2 mod p)n × x) mod p

We randomly generate two numbers b1 and b2 with b2 ≥ 2b1. Then, using Eratosthenes’ sieve, we generate all prime
numbers at most equal to b2. We take q to be the largest one. By Bertrand’s postulate, a theorem which implies that for
all natural numbers n greater than 1, there exists a prime number in (n, 2n), we infer that q > b1. We then take for p the
largest prime number at most equal to b1. But the range of possible values for b2 makes the number N so generated too
small not to be easily factored, so that part of the implementation is only for illustration purposes. . .

We encode the sequence of ascii codes of a textual file. Every ascii code fits into a 3-digit number, so we split this sequence
into chunks by glueing together k 3-digit numbers, taking for k the largest number with 3k smaller than the number of
digits in the decimal representation of N , which guarantees that the resulting message is smaller than N ; for ascii codes
smaller than 100, we use leading 0s. Unless the number of characters in the file to encode is a multiple of k, the last chunk
of 3-digit numbers is incomplete and will start with one or more 000s; in the decoding phase, these leading 000s will be
printed out as any other character, which is fine as printing out the nul character is printing out nothing, so there is no
need to give a special treatment to the last chunk.

COMP9021 Principles of Programming


