COMP4418: Knowledge Representation—Solutions to Exercise Set 2 First-Order Logic

- 1. (i) All birds fly
 - (If an object x is a bird, then it flies.)
 - (ii) Everyone has a mother
 - (iii) There is someone who is everyone's mother
- 2. (i) $\forall x.(cat(x) \rightarrow mammal(x)))$
 - (ii) $\neg \exists x.(cat(x) \land reptile(x))$ or, equivalently, $\forall x.(cat(x) \rightarrow \neg reptile(x))$
 - (iii) $\forall x. \exists y. (computer_scientist(x) \rightarrow likes(x, y))$
- 3. (i) $\operatorname{CNF}(\forall x.(bird(x) \to flies(x)))$ $\equiv \forall x.(\neg bird(x) \lor flies(x)) \text{ (Remove } \rightarrow)$ $\equiv \neg bird(x) \lor flies(x) \text{ (Drop } \forall))$

(ii) $\operatorname{CNF}(\exists x.\forall y.\forall z.(person(x) \land ((likes(x, y) \land yneqz) \rightarrow \neg likes(x, z))))$ $\equiv \exists x.\forall y.\forall z.(person(x) \land (\neg (likes(x, y) \land y \neq z) \lor \neg likes(x, z)))$ (Remove \rightarrow) $\equiv \exists x.\forall y.\forall z.(person(x) \land (\neg likes(x, y) \lor y = z \lor \neg likes(x, z)))$ (De Morgan) $\equiv \forall y.\forall z.(person(x) \land (\neg likes(c, y) \lor y = z \lor \neg likes(c, z)))$ (Skolemisation c is a constant($\equiv person(c) \land (\neg likes(c, y) \lor y = z \lor \neg likes(c, z))$ (Drop \forall)

4. (i) $\operatorname{CNF}(\forall x.(P(x) \to Q(x)))$ $\equiv \forall x.(\neg P(x) \lor Q(x)) \text{ (Remove } \rightarrow)$ $\equiv \neg P(x) \lor Q(x) \text{ (Drop } \forall)$

 $\begin{aligned} \operatorname{CNF}(\neg \forall x.(\neg Q(y) \rightarrow \neg P(y))) \\ &\equiv \neg \forall x.(\neg \neg Q(y) \lor \neg P(y)) \text{ (Remove } \rightarrow) \\ &\equiv \exists x.\neg(\neg \neg Q(y) \lor \neg P(y)) \text{ (De Morgan)} \\ &\equiv \exists x.(\neg Q(y) \lor \neg P(y)) \text{ (Double Negation)} \\ &\equiv \exists x.(\neg Q(y) \land \neg \neg P(y)) \text{ (De Morgan)} \\ &\equiv \exists x.(\neg Q(y) \land P(y)) \text{ (Double Negation)} \\ &\equiv \neg Q(c) \land P(c) \text{ (Skolemisation)} \end{aligned}$

Proof:

 $\neg P(x) \lor Q(x)$ (Hypothesis) 1. 2. $\neg Q(c)$ (Negated Conclusion) 3. P(c)(Negated Conclusion) 4. $\neg P(c) \lor Q(c)$ $(1. \{x/c\})$ $\neg P(c)$ 2, 4 Resolution 5.6. 3, 5 Resloution

(ii) (Works exactly as in (i).)

 $CNF(\forall x.(P(x) \rightarrow Q(x)))$ $\equiv \forall x. (\neg P(x) \lor Q(x)) \text{ (Remove } \rightarrow)$ $\equiv \neg P(x) \lor Q(x) \text{ (Drop } \forall)$ $CNF(\neg \forall x. (\neg Q(x) \rightarrow \neg P(x)))$ $\equiv \neg \forall x. (\neg \neg Q(x) \lor \neg P(x)) \text{ (Remove } \rightarrow)$ $\equiv \neg \forall x. (Q(x) \lor \neg P(x))$ (Double Negation) $\equiv \exists x. \neg (Q(x) \lor \neg P(x)) \text{ (De Morgan)}$ $\equiv \exists x. (\neg Q(x) \land \neg \neg P(x)) \text{ (De Morgan)}$ $\equiv \exists x. (\neg Q(x) \land P(x))$ (Double Negation) $\equiv \neg Q(c) \land \neg P(c)$ (Skolemisation) Proof: 1. $\neg P(x) \lor Q(x)$ (Hypothesis) 2. $\neg Q(c)$ (Negated Conclusion) 3. P(c)(Negated Conclusion) 4. $\neg P(c) \lor Q(c)$ $(1. \{x/c\})$ 2, 4 Resolution 5. $\neg P(c)$ 6. □ 3, 5 Resloution (iii) $\operatorname{CNF}(\forall x.(P(x) \to Q(x)))$ $\equiv \forall x. (\neg P(x) \lor Q(x)) \text{ (Remove } \rightarrow)$ $\equiv \neg P(x) \lor Q(x) \text{ (Drop } \forall)$ $\operatorname{CNF}(P(a))$ $\equiv P(a)$ $CNF(\neg Q(a))$ $\equiv \neg Q(a)$ Proof: $\neg P(x) \lor Q(x)$ (Hypothesis) 1. 2. P(a)(Hypothesis) 3. $\neg Q(a)$ (Negated Conclusion) 4. $\neg P(a) \lor Q(a)$ $(1. \{x/a\})$ 5. $\neg Q(a)$ 2, 4 Resolution 6. 3, 5 Resolution (iv) $\operatorname{CNF}(\forall x.(P(x) \to Q(x)))$ $\equiv \forall x.(\neg P(x) \lor Q(x)) \text{ (Remove } \rightarrow)$ $\equiv \neg P(x) \lor Q(x) \text{ (Drop } \forall)$ $CNF(\exists x.P(x))$ $\equiv P(a)$ (Skolemisation) $CNF(\neg \exists x.Q(x))$ $\equiv \forall x. \neg Q(x)$ (De Morgan)

 $\equiv \neg Q(x) \text{ (Drop } \forall)$

Proof:					
1.	$\neg P(x) \lor Q(x)$	(Hypothesis)			
2.	P(a)	(Hypothesis)			
3.	$\neg Q(y)$	(Negated Conclusion)			
4.	$\neg P(a) \lor Q(a)$	$(1. \{x/a\})$			
5.	Q(a)	2, 4 Resolution			
6.	$\neg Q(a) (3. \{y/a\})$				
7.		5, 6 Resolution			

(v) $CNF(\forall x.(P(x) \rightarrow Q(x)))$ $\equiv \forall x. (\neg P(x) \lor Q(x)) \text{ (Remove } \rightarrow)$ $\equiv \neg P(x) \lor Q(x) \text{ (Drop } \forall)$

> $\operatorname{CNF}(\forall x.(Q(x) \to R(x)))$ $\equiv \forall x. (\neg Q(x) \lor R(x)) \text{ (Remove } \rightarrow)$ $\equiv \neg Q(x) \lor R(x) \text{ (Drop } \forall)$

 $\operatorname{CNF}(\neg \forall x. (P(x) \to R(x)))$ $\equiv \neg \forall x. (\neg P(x) \lor R(x)) \text{ (Remove } \rightarrow)$ $\equiv \exists x.(\neg(\neg P(x) \lor R(x)) \text{ (De Morgan)}$ $\equiv \exists x. (\neg \neg P(x) \land \neg R(x)) \text{ (De Morgan)}$ $\equiv \exists x.(P(x) \land \neg R(x))$ (Double Negation) $\equiv P(c) \land \neg R(c)$ (Skolemisation)

Proof:

Proof:				
1.	$\neg P(x) \lor Q(x)$	(Hypothesis)		
2.	$\neg Q(y) \lor R(y)$	(Hypothesis)		
3.	P(c)	(Negated Conclusion)		
4.	$\neg R(c)$	(Negated Conclusion)		
5.	$\neg P(c) \lor Q(c)$	$(1. \{x/c\})$		
6.	$\neg Q(c) \lor R(c)$	$(2. \{y/c\})$		
7.	$\neg P(c) \lor R(c)$	5, 6 Resolution		
8.	R(c)	3, 7 Resolution		
9.		4, 8 Resolution		

- 5. (i) (A) $\exists x. \forall y. (cs(x) \land likes(x, y))$
 - (B) os(Linux)
 - (C) $\exists z.likes(z,Linux)$
 - (ii) (A) $cs(c) \wedge likes(c, y)$ (Skolemisation and Drop \forall) (B) os(Linux)
 - (C) $\neg likes(z, Linux)$ (De Morgan and Drop \forall)

	1.	cs(c)	(Hypothesis A)
	2.	likes(c,y)	(Hypothesis A)
	3.	os(Linux)	(Hypothesis B)
(iii)	4.	$\neg likes(z, Linux)$	(Negated Consequence)
	5.	likes(c, Linux)	$(2. \{y/Linux\})$
	6.	$\neg likes(c, Linux)$	$(4. \{z/c\})$
	7.		5, 6 Resolution

- (iv) Yes. A, B, $\neg C$ in (ii) are Horn clauses so there must be an SLD resolution of the empty clause if there is a resolution of the empty clause and there is as we have seen in (ii). In fact, the resolution in (iii) is an SLD resolution of the empty clause.
- (v) $A, B \vdash C$