Functions and relations 2: supplementary notes

Relations

1. In a sense relations are all we study in mathematics. So let us start with
some familiar examples. Consider the natural numbers N. Let us say that
two numbers a and b are related if a < b. This is a relation between two
elements of N, a binary relation. There are also ternary relations, relations
among 3 objects of a set. Consider, for example, positive integers triples
(a,b, ¢) which can make up the sides of a right-angle triangle. We must have
c? = a? 4 b?. This defines a relation among the tree numbers.

2. Relations can be defined among members of different sets. See examples
in the slides and the textbooks. Formally an n-ary relation on the sets
Ay, As, ..., A, is a subset of A; X Ay X --- X A,. A relation is called unary
if n =1, binary if n = 2 and ternary if n = 3 and so on. Note that some of
the sets A; maybe identical.

3. We will mainly focus on binary relations an a set A. That means we will be
looking at subsets of A x A. Let R C A x A be a binary relation. A very
important example of binary relation is a graph which will be studied later.
We say a,b € A are related if (a,b) € R. Sometimes this is written as aRb.
Let us define some special properties of binary relations.

(a) The relation R is called reflexive if for all a € A, (a,a) € R. In words,
every member is related to itself. In the opposite direction a relation
R is called irreflezive if no member is related to itself: for any a € A,
(a,a) ¢ R.
Let A ={0,1,2} and R = {(0,0),(1,2),(2,3)}. R is neither reflexive
nor irreflexive. The important thing to look out for is that in both
definitions must be satisfied for all members.

(b) A relation is called symmetric if for all a,b € A, (a,b) € R implies
(b,a) € R. It is called asymmetric if for all a,b € A, (a,b) € R implies
(b,a) ¢ R. A relation may be neither symmetric nor asymmetric. Can
you come up with an example? Again the keyword for both properties
is ‘all’. Observe that in the above definitions we allow ¢ = b. So an
asymmetric relation must be irreflexive.

(c) A relation R is called antisymmetric if (a,b) € R and (b,a) € R implies
a = b. Note that there are two conditions in the antecedent. If both do



not hold then the antecedent is false. When you do propositional logic
you will see that by definition the formula p=-q is true if p is false or ¢
is true. The only case where it is false is p is true and ¢ is false.

(d) *A relation R is asymmetric if and only if it is antisymmetric and ir-
reflexive. Let us prove the ‘if’ part. Suppose R is antisymmetric and
irreflexive. Assume it is not asymmetric. Then there exist a,b € A such
that both (a,b) and (b,a) € R. Since R is antisymmetric a = b, that is,
(a,a) € R. But by hypothesis R is irreflexive. So our assumption must
be wrong, that is, R must be asymmetric.

4. A relation R is called transitive if (a,b) € R and (b, ¢) € R implies (a,c) € R.
Exercise. A relation R is transitive and irreflexive implies it is asymmetric.

Proof. Again we prove by contradiction. The idea is to show that if we assume
that assertion is false then it leads to a contradiction of the hypothesis. (in
this case: R is transitive and irreflexive). So assume that R is not asymmetric.
Then there must exist pairs (a,b) € R and (b,a) € R. Then transitivity part
of the hypothesis implies that (a,a) € R which contradicts the irreflexive
property in the hypothesis.

5. A relation is called a partial order if it is reflexive, antisymmetric and tran-
sitive. This is a very important type of relation and so many books have a
special symbol < for a generic partial order relation and we write a < b for
(a,b) € R. For a partial order < on a set A and for all a,b € A if it is the
case that either ¢« < b or b < a then the relation is called total. Let us look
at some examples of partial order.

(a) Divisibility. Let N4 denote the positive integers. Write m|n if m is a
factor of n (m divides n). If we let R = {(m,n) € R : m|n} then R
is partial order. Note that it is possible that neither m divides n nor
n divides m ((3,5) for example). So two numbers are ‘unrelated’ with
respect to the relation R. That is why the adjective ‘partial’.

(b) Let X be an alphabet. Consider the relations lex and lenlex on X*.
Both are total order relations.

(c) Let R be the set of real numbers. The standard relation = < y if x is
less than or equal to y is total order on R.

(d) Consider the power set pow(A) of A. For X|Y € pow(A) (they are
subsets of A) define X <Y if X CY.

(e) Let A be the set of all humans (dead or alive!). For z,y € A if we define
x = y if x is an ancestor of y then =< is a partial order assuming that
an individual is an ancestor of herself/himself.

6. Try to prove that the relations defined in the examples above are partial
orders. You have to show that all the three conditions are satisfied.



7. Let = be a partial order on A. For a,b € A define b > a if a < b. Thus = is
the reverse relation of <. Note that > is also a partial order. The reflexivity
and symmetry properties are easy. Let us look at transitivity. If ¢ > b and
b > a then by definition b < ¢ and a < b. So by transitivity of <, a < c.
Hence ¢ > a from the definition of >.

8. A function is a special kind of relation. See the supplementary notes on
functions.

You will see more relations and functions later in the course.
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