
DESN2000 Debugging Guide 1

🪲
DESN2000 Debugging Guide

Common Problems
No STLink device connected

Make sure you're logged into the IDE (should say "Hello NAME" in the top
bar instead of 'myST")

An upgrade window may appear saying that the st link is out of date

Click 'open in upgrade mode', wait a few seconds

Click 'upgrade' button down the bottom and wait for it to finish - once
finished you can try and run your program again

Failed to start GDB server Error in initialising ST-Link device
Make sure you're logged into the IDE (should say "Hello NAME" in the top
bar instead of 'myST")

An upgrade window may appear saying that the st link is out of date

Click 'open in upgrade mode', wait a few seconds

Click 'upgrade' button down the bottom and wait for it to finish - once
finished you can try and run your program again

Common Problems
No STLink device connected
Failed to start GDB server Error in initialising STLink device
Missing STLink drivers

Debugging Execution
Enabling Debugging
Adding Code
Intro to Debug mode, resume, suspend, and watch variables
Breakpoints
The Debugger SWO
The STLink Virtual COM Port

DESN2000 Debugging Guide 2

Missing ST-Link drivers
Go to this website here, or just download the zip file below and install the
drivers

Click the .msi file if you use windows

Click the .pkg file if you use mac

en.st-link-server-v211.zip

You may then get asked to upgrade your st link after you install the drivers -
follow the steps in the Failed to start GDB server Error in initialising ST
Link device

Debugging Execution
In this tutorial we will focuses on software debugging, with breakpoints, watch
lists, trace analysers, and so forth. STM32CubeIDE has a powerful integrated
debugger.

This tutorial is based off of Hammondʼs found here.

Enabling Debugging
Note: You may need to enable debugging via your CubeMX config. I had it
enabled already since itʼs included in the default configuration for my
development board. If you need to enable it, do this in the CubeMX view:

https://www.st.com/en/development-tools/st-link-server.html?dl=redirect
https://static.au.edusercontent.com/files/inaDXqcesDzCWoIVPsWoD2Of
https://01001000.xyz/2020-05-11-Tutorial-STM32CubeIDE-Getting-started/

DESN2000 Debugging Guide 3

💡 Save your config using File>Save and regenerate the code.

Adding Code
Have a play by debugging the code. But first, add something to debug, since
thereʼs not much going on here. Add a few snippets of code to calculate some
prime numbers.

Add a few lines of code to a few of those USER code blocks in main.c, as
detailed here:

// . . .

/* USER CODE BEGIN Includes */

#include <stdbool.h>

/* USER CODE END Includes */

// . . .

/* USER CODE BEGIN PD */

DESN2000 Debugging Guide 4

#define PRIMES_LEN 62

/* USER CODE END PD */

// . . .

/* USER CODE BEGIN PV */

uint16_t primes[PRIMES_LEN] = {0};

/* USER CODE END PV */

// . . .

/* USER CODE BEGIN 0 */

//check if a number is prime

bool is_prime(uint16_t v) {

 for(uint16_t i=2; i<(v/2 + 1); i++) {

 if(v % i == 0) return false;

 }

 return true;

}

/* USER CODE END 0 */

// . . . (inside int main())

 /* USER CODE BEGIN 2 */

 //calculate a list of primes:

 uint16_t prime_index = 0;

 for(uint16_t i = 2; i < 300; i++) {

 if(is_prime(i)) {

 primes[prime_index] = i;

 prime_index++;

 }

 }

 /* USER CODE END 2 */

DESN2000 Debugging Guide 5

Compile and execute this; there won't be any observable changes (except for
maybe the slightest delay before the LED starts blinking the first time).

First, look at the end result, then observe the looping calculation using a
breakpoint.

Intro to Debug mode, resume, suspend, and watch variables
To simply observe the end result, we launch the program using the Debug
mode, with the Debug button.

Firstly, STM32CubeIDE will change into its debug perspective. There may be a
popup asking about this.

Notice that the dev kit in front of you has the communication LED blinking
continuously, but the user LED isn't blinking yet. This is because the program is
not actually running yet. To run the program, press the 'Resume' key to get
started. The resume key, as well as the other debug control keys, will have
appeared due to the debug perspective activating.

Once you notice the dev boardʼs LED light is blinking, pause the execution by
pressing the suspend key:

DESN2000 Debugging Guide 6

Notice that the IDE immediately throws you somewhere in the C code for your
project, almost certainly in something to do with the HAL_Delay function. Thatʼs
where the program was when suspend was hit.

Get back home by going to the left Debug panel and selecting main() .

Note that the IDE highlights the function that is currently being executed 2 and
presents a list of variables in the current scope 3.

Examine the contents of the global variable by double-clicking it.

DESN2000 Debugging Guide 7

Or in a more convenient manner (since this is a big array) by right clicking on
the variable primes and selecting Add Watch Expression (and then pressing OK

DESN2000 Debugging Guide 8

That then adds it to the Expressions menu on the right:

Press the Red Stop button now in the top menu, and watch the execution of the
prime calculation loop.

Breakpoints
In addition to running and suspending execution, we can also ask the program
to suspend at a point of our choosing. This is known as creating a breakpoint.

In STM32CubeIDE, you do this by double-clicking on the red bar next to the line
numbers, which will cause a small blue breakpoint indicator dot to appear.

DESN2000 Debugging Guide 9

Now, without changing anything else, launch the debug mode again.

This time, when you hit resume, youʼll notice that the program executes and
then automatically halts when it reaches your breakpoint.

DESN2000 Debugging Guide 10

Now if press suspend again, it will loop and stop at this same function.

The first index of primes has changed, and itʼs highlighted the changed
variable.

Hitting resume again:

DESN2000 Debugging Guide 11

Now the second index of primes has changed, and the changed variable is
highlighted once more!

Keep pressing the resume button, and youʼll see it slowly calculate the array.

Now, letʼs quit the debugger and move on. You can delete the breakpoint again
by double-clicking the blue dot. Note that if you right-click on the red column,
you can also toggle and create breakpoints this way. This also brings up
advanced breakpoint options, including breakpoint conditions and breakpoint
types.

The Debugger SWO
If properly configured, you can output arbitrary strings directly to the debugger
via the programmer, rather than sending them via any other peripherals. Itʼs a
bit like a virtual UART that you can send data to.

This is a little involved to set up, and it can be worth simply using a UART if you
must send out strings of characters to help your debugging, but Iʼll step
through the basics here using STM32CubeIDE.

DESN2000 Debugging Guide 12

First, we must configure the reception clock rate. This is done via the debug
configuration menu.

Press this:

Go to the Debugger tab, Enable SWV Serial Wire Viewer), then change your
clock rate to the FCLK from earlier (remember when we chose the clock rate
for all of our components?

You may leave the SWO Clock dropdown set to its maximum.

DESN2000 Debugging Guide 13

Now press Apply/Close.

Add a test to send some characters. In the main loop, add the following:

 /* Infinite loop */

/* USER CODE BEGIN WHILE */

while (1)

{

/* USER CODE END WHILE */

DESN2000 Debugging Guide 14

/* USER CODE BEGIN 3 */

HAL_GPIO_TogglePin(LD2_GPIO_Port, LD2_Pin);

HAL_Delay(1000);

ITM_SendChar('!');

}

/* USER CODE END 3 */

ITM_SendChar is a special function that sends a character to the debuggerʼs serial
viewer. You shouldnʼt need to #include anything new or special to use this.

You can now launch the debug session as before. But, before you press Resume
to get it started, we need to enable a few more debugging options.

First, open the ITM data console through the Window menu.

This will bring up the ITM data console window. Now, enter the configuration
menu:

Enable ITM stimulus port 0

DESN2000 Debugging Guide 15

Press OK.

Port 0 will appear in the console view. Now press Start - this contacts your
microcontroller and adjusts some registers internally to enable this mechanism:

Now, and only now, can you press Resume. Youʼll notice your Port 0 terminal
slowly start filling with exclamation marks (since thatʼs the character weʼre
sending).

As you can imagine, this is pretty handy when your design might not have a
free UART for debugging.

DESN2000 Debugging Guide 16

Without too much difficulty, we can also spin up a custom printf function for
debugging. Thereʼs a few options for this, but the preferred approach is to
actually create a debug_printf function, like so:

Adding more to main.c , as detailed:

// . . .

/* USER CODE BEGIN Includes */

#include <stdbool.h>

#include <stdio.h>

#include <stdarg.h>

/* USER CODE END Includes */

// . . .

/* USER CODE BEGIN PD */

#define PRIMES_LEN 62

/* USER CODE END PD */

// . . .

/* USER CODE BEGIN PV */

uint16_t primes[PRIMES_LEN] = {0};

/* USER CODE END PV */

// . . .

/* USER CODE BEGIN 0 */

//check if a number is prime

bool is_prime(uint16_t v) {

 // . . .

}

// debug_printf sends a max of 256 characters to the ITM SWO

// It uses a _variable length argument_, same as normal printf

// Call this function as if it was printf

void debug_printf(const char *fmt, ...) {

DESN2000 Debugging Guide 17

 char buffer[256];

 va_list args;

 va_start(args, fmt);

 vsnprintf(buffer, sizeof(buffer), fmt, args);

 va_end(args);

 uint16_t i = 0;

 while(buffer[i] != '\0') {

 ITM_SendChar(buffer[i]);

 i++;

 }

}

/* USER CODE END 0 */

// . . . (inside int main())

 /* Infinite loop */

 /* USER CODE BEGIN WHILE */

 uint32_t count = 0;

 while (1)

 {

 /* USER CODE END WHILE */

 /* USER CODE BEGIN 3 */

 HAL_GPIO_TogglePin(LD2_GPIO_Port, LD2_Pin);

 HAL_Delay(1000);

 debug_printf("Hello debugger, this is iteration %d\r\n", c

 count++;

 }

 /* USER CODE END 3 */

Now we save, build, and debug that. Remember to Start the ITM trace before
pressing Resume !

DESN2000 Debugging Guide 18

The ST-Link Virtual COM Port
 The inbuilt STLink v2.1 interface that weʼve been using for programming and
debugging also includes a virtual COM port. The COM port uses drivers which
are included natively in most operating systems (including Windows and
Ubuntu Linux).

Running dmesg | grep tty in the terminal, we can see it has been made available
as /dev/ttyACM0 thus:

$ dmesg | grep tty

[30318.354183] cdc_acm 3-10.4:1.2: ttyACM0: USB ACM device

This is really handy for your user applications, as this virtual COM port is wired
directly onto one of the USART peripherals on the nucleo board! Recall from the
CubeMX view that pins PA2 and PA3 were automatically configured as a
USART for us.

A quick sanity check to make sure this makes sense by looking on the
schematic:

Sure looks like theyʼre connected to a USART (tracing it through the rest of the
schematic shows them connected to the STLink V2 programmer). So letʼs

DESN2000 Debugging Guide 19

quickly jump back into the CubeMX view and see how the port was set up:

Itʼs configured as asynchronous, at 38400 baud, 8 data bits, no parity, 1 stop
bit.

We could change these settings now if we wanted to. The virtual COM port
works the same as any other USB to serial adapter, and so any baud rate and
config can work with it.

Letʼs send some characters to it.

/* Infinite loop */

/* USER CODE BEGIN WHILE */

uint32_t count = 0;

while (1)

{

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

HAL_GPIO_TogglePin(LD2_GPIO_Port, LD2_Pin);

HAL_Delay(1000);

debug_printf("Hello debugger, this is iteration %d\r\

HAL_UART_Transmit(&huart2, (uint8_t*)"Hello world, thi

DESN2000 Debugging Guide 20

count++;

}

/* USER CODE END 3 */

We now build and download that, before running Minicom:

$ minicom -b 38400 -D /dev/ttyACM0

If we wanted, we could now make a usart_printf like our debug_printf from
earlier.

