12. Exponential Time Hypothesis
COMP6741: Parameterized and Exact Computation

Serge Gaspers1,2

1School of Computer Science and Engineering, UNSW Australia
2Data61, Decision Sciences Group, CSIRO

Semester 2, 2016
Outline

1. SAT and k-SAT
2. Subexponential time algorithms
3. ETH and SETH
4. Algorithmic lower bounds based on ETH
5. Algorithmic lower bounds based on SETH
6. Further Reading
SAT

Input: A propositional formula F in conjunctive normal form (CNF)

Parameter: $n = |\text{var}(F)|$, the number of variables in F

Question: Is there an assignment to $\text{var}(F)$ satisfying all clauses of F?

k-SAT

Input: A CNF formula F where each clause has length at most k

Parameter: $n = |\text{var}(F)|$, the number of variables in F

Question: Is there an assignment to $\text{var}(F)$ satisfying all clauses of F?

Example:

$$(x_1 \lor x_2) \land (\neg x_2 \lor x_3 \lor \neg x_4) \land (x_1 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$
Algorithms for SAT

- Brute-force: $O^*(2^n)$

... after 50 years of SAT solving (SAT association, SAT conference, JSAT journal, annual SAT competitions, ...)

- Fastest known algorithm for SAT: $O^*(2^n \cdot (1 - 1/O(\log m/n)))$
 - Where m is the number of clauses
 - [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]

However: no $O^*(1.9999^n)$ time algorithm is known.

- Fastest known algorithms for 3-SAT:
 - $O^*(1.3303^n)$ deterministic [Makino, Tamaki, Yamamoto, 2013]
 - $O^*(1.3071^n)$ randomized [Hertli, 2014]

Could it be that 3-SAT cannot be solved in $2^{o(n)}$ time?

Could it be that SAT cannot be solved in $O^*((2-\epsilon)^n)$ time for any $\epsilon > 0$?
Algorithms for SAT

- Brute-force: $O^*(2^n)$
- ... after > 50 years of SAT solving
 (SAT association, SAT conference, JSAT journal, annual SAT competitions, ...)

Could it be that 3-SAT cannot be solved in $2^{o(n)}$ time?

Could it be that SAT cannot be solved in $O^*((2-\epsilon)^n)$ time for any $\epsilon > 0$?
Algorithms for SAT

- Brute-force: $O^*(2^n)$

... after > 50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions, ...)

- fastest known algorithm for SAT: $O^*(2^n \cdot (1 - 1/O(\log m/n)))$, where m is the number of clauses [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]

- However: no $O^*(1.9999^n)$ time algorithm is known

- fastest known algorithms for 3-SAT: $O^*(1.3303^n)$ deterministic [Makino, Tamaki, Yamamoto, 2013] and $O^*(1.3071^n)$ randomized [Hertli, 2014]
Algorithms for SAT

- Brute-force: $O^*(2^n)$
- ... after > 50 years of SAT solving
 (SAT association, SAT conference, JSAT journal, annual SAT competitions, ...)
- fastest known algorithm for SAT: $O^*(2^n \cdot (1 - 1/O(\log m/n)))$, where m is the number of clauses [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]
- However: no $O^*(1.9999^n)$ time algorithm is known
- fastest known algorithms for 3-SAT: $O^*(1.3303^n)$ deterministic [Makino, Tamaki, Yamamoto, 2013] and $O^*(1.3071^n)$ randomized [Hertli, 2014]

Could it be that 3-SAT cannot be solved in $2^{o(n)}$ time?
Could it be that SAT cannot be solved in $O^*((2 - \epsilon)^n)$ time for any $\epsilon > 0$?
Outline

1. SAT and k-SAT
2. Subexponential time algorithms
3. ETH and SETH
4. Algorithmic lower bounds based on ETH
5. Algorithmic lower bounds based on SETH
6. Further Reading
Are there any NP-hard problems that can be solved in $2^{o(n)}$ time?

- Independent Set is NP-complete even when the input graph is planar (can be drawn in the plane without edge crossings). Planar graphs have treewidth $O(\sqrt{n})$ and tree decompositions of that width can be found in polynomial time ("Planar separator theorem" [Lipton, Tarjan, 1979]). Using a tree decomposition based algorithm, Independent Set can be solved in $2^{o(n)}$ time on planar graphs.
Are there any NP-hard problems that can be solved in \(2^{o(n)}\) time?

Yes. For example, Independent Set is \(\text{NP-complete}\) even when the input graph is planar (can be drawn in the plane without edge crossings). Planar graphs have treewidth \(O(\sqrt{n})\) and tree decompositions of that width can be found in polynomial time (“Planar separator theorem” [Lipton, Tarjan, 1979]). Using a tree decomposition based algorithm, Independent Set can be solved in \(2^{O(\sqrt{n})}\) time on planar graphs.
Outline

1. SAT and k-SAT
2. Subexponential time algorithms
3. ETH and SETH
4. Algorithmic lower bounds based on ETH
5. Algorithmic lower bounds based on SETH
6. Further Reading
ETH and SETH

Definition 1

For each $k \geq 3$, define δ_k to be the infinimum\(^1\) of the set of constants c such that k-SAT can be solved in $O^*(2^{c \cdot n})$ time.

Conjecture 2 (Exponential Time Hypothesis (ETH))

$\delta_3 > 0$.

Conjecture 3 (Strong Exponential Time Hypothesis (SETH))

$$\lim_{k \to \infty} \delta_k = 1.$$

Notes:

1. ETH \Rightarrow 3-SAT cannot be solved in $2^{o(n)}$ time.
2. SETH \Rightarrow SAT cannot be solved in $O^*((2 - \epsilon)^n)$ time for any $\epsilon > 0$.

\(^1\)The infinimum of a set of numbers is the largest number that is smaller or equal to each number in the set. E.g., the infinimum of $\{\epsilon \in \mathbb{R} : \epsilon > 0\}$ is 0.
Outline

1. SAT and k-SAT
2. Subexponential time algorithms
3. ETH and SETH
4. Algorithmic lower bounds based on ETH
5. Algorithmic lower bounds based on SETH
6. Further Reading
Suppose ETH is true
Can we infer lower bounds on the running time needed to solve other problems?
Algorithmic lower bounds based on ETH

- Suppose ETH is true
- Can we infer lower bounds on the running time needed to solve other problems?
- Suppose there is a polynomial-time reduction from 3-SAT to a graph problem Π, which constructs an equivalent instance where the number of vertices of the output graph equals the number of variables of the input formula, $|V| = |\text{var}(F)|$.
- Using the reduction, we can conclude that, if Π has an $O^*(2^{o(|V|)})$ time algorithm, then 3-SAT has an $O^*(2^{o(|\text{var}(F)|)})$ time algorithm, contradicting ETH.
- Therefore, we conclude that Π has no $O^*(2^{o(|V|)})$ time algorithm unless ETH fails.
Sparsification Lemma

Issue: Many reductions from 3-SAT create a number of vertices / variables / elements that are related to the number of *clauses* of the 3-SAT instance.
Sparsification Lemma

Issue: Many reductions from 3-SAT create a number of vertices / variables / elements that are related to the number of clauses of the 3-SAT instance.

Theorem 4 (Sparsification Lemma, [Impagliazzo, Paturi, Zane, 2001])

For each $\varepsilon > 0$ and positive integer k, there is a $O^*(2^{\varepsilon n})$ time algorithm that takes as input a k-CNF formula F with n variables and outputs an equivalent formula $F' = \bigvee_{i=1}^{t} F_i$ that is a disjunction of $t \leq 2^{\varepsilon n}$ formulas F_i with $\text{var}(F_i) = \text{var}(F)$ and $|\text{cla}(F_i)| = O(n)$.
Corollary 5

\[\text{ETH} \Rightarrow 3\text{-SAT cannot be solved in } O^*(2^{o(n+m)}) \text{ time where } m \text{ denotes the number of clauses of } F. \]

Observation: Let \(A, B \) be parameterized problems and \(f, g \) be non-decreasing functions.

Suppose there is a polynomial-parameter transformation from \(A \) to \(B \) such that if the parameter of an instance of \(A \) is \(k \), then the parameter of the constructed instance of \(B \) is at most \(g(k) \). Then an \(O^*(2^{o(f(k))}) \) time algorithm for \(B \) implies an \(O^*(2^{o(f(g(k))}) \) time algorithm for \(A \).
More general reductions are possible

Definition 6 (SERF-reduction)

A **SubExponential Reduction Family** from a parameterized problem A to a parameterized problem B is a family of **Turing reductions** from A to B (i.e., an algorithm for A, making queries to an oracle for B that solves any instance for B in constant time) for each $\varepsilon > 0$ such that

- for every instance I for A with parameter k, the running time is $O^*(2^{\varepsilon k})$, and
- for every query I' to B with parameter k', we have that $k' \in O(k)$ and $|I'| = |I|^{O(1)}$.

Note: If A is SERF-reducible to B and A has no $2^{o(k)}$ time algorithm, then B has no $2^{o(k')}$ time algorithm.
Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT. For simplicity, assume all clauses have length 3.

3-CNF Formula $F = (u \lor v \lor \neg y) \land (\neg u \lor y \lor z) \land (\neg v \lor w \lor x) \land (x \lor y \lor \neg z)$

For a 3-CNF formula with n variables and m clauses, we create a Vertex Cover instance with $|V| = 2^n + 3m$, $|E| = n + 6m$, and $k = n + 2m$.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2016
Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.
For simplicity, assume all clauses have length 3.

3-CNF Formula $F = (u \lor v \lor \neg y) \land (\neg u \lor y \lor z) \land (\neg v \lor w \lor x) \land (x \lor y \lor \neg z)$
Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.
For simplicity, assume all clauses have length 3.
3-CNF Formula $F = (u \lor v \lor \neg y) \land (\neg u \lor y \lor z) \land (\neg v \lor w \lor x) \land (x \lor y \lor \neg z)$

For a 3-CNF formula with n variables and m clauses, we create a Vertex Cover instance with $|V| = 2n + 3m$, $|E| = n + 6m$, and $k = n + 2m$.
Theorem 7

\[\text{ETH} \Rightarrow \text{Vertex Cover has no } 2^{o(|V|)} \text{ time algorithm.} \]

Theorem 8

\[\text{ETH} \Rightarrow \text{Vertex Cover has no } 2^{o(|E|)} \text{ time algorithm.} \]

Theorem 9

\[\text{ETH} \Rightarrow \text{Vertex Cover has no } 2^{o(k)} \text{ time algorithm.} \]
Outline

1. SAT and k-SAT
2. Subexponential time algorithms
3. ETH and SETH
4. Algorithmic lower bounds based on ETH
5. Algorithmic lower bounds based on SETH
6. Further Reading
Recall: A hitting set of a set system \(S = (V, H) \) is a subset \(X \) of \(V \) such that \(X \) contains at least one element of each set in \(H \), i.e., \(X \cap Y \neq \emptyset \) for each \(Y \in H \).

<table>
<thead>
<tr>
<th>elts-HITTING SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Parameter:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
</tbody>
</table>
CNF Formula $F = (u \lor v \lor \neg y) \land (\neg u \lor y \lor z) \land (\neg v \lor w \lor x) \land (x \lor y \lor \neg z)$

Inidence graph of equivalent Hitting Set instance:

For a CNF formula with n variables and m clauses, we create a Hitting Set instance with $|V| = 2n$ and $k = n$.
Theorem 10

\textit{SETH} \Rightarrow \text{Hitting Set} has no \text{O}^*((2 - \varepsilon)^{|V|/2}) time algorithm for any \varepsilon > 0.

\textbf{Note}: With a more ingenious reduction, one can show that \text{Hitting Set} has no \text{O}^*((2 - \varepsilon)^{|V|}) time algorithm for any \varepsilon > 0 under SETH.
A dominating set of a graph $G = (V, E)$ is a set of vertices $S \subseteq V$ such that $N_G[S] = V$.

Vertex-Dominating Set

<table>
<thead>
<tr>
<th>Input:</th>
<th>A graph $G = (V, E)$ and an integer k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter:</td>
<td>$n =</td>
</tr>
<tr>
<td>Question:</td>
<td>Does G have a dominating set of size at most k?</td>
</tr>
</tbody>
</table>

- Prove that ETH \Rightarrow vertex-Dominating Set has no $2^{o(n)}$ time algorithm.
Outline

1. SAT and k-SAT
2. Subexponential time algorithms
3. ETH and SETH
4. Algorithmic lower bounds based on ETH
5. Algorithmic lower bounds based on SETH
6. Further Reading
Further Reading

