
COMP4418, 25 October 2017 1Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Planning
—

KRR for Agents in Dynamic Environments

COMP4418, 25 October 2017 2Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Overview

Last week discussed Decision Making in some very general
settings: Markov process, MDP, HMM, POMDP.

This week look at a practical application of these ideas in a
more restricted setting.

Planning (or AI Planning) is about agents that execute
actions to reach goals (e.g., a robot delivering an item).

Note: ties closely to Reasoning about Actions (Week 9).

COMP4418, 25 October 2017 3Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

2. A proposed or tentative project or
course of action: had no plans for
the evening.

Some Dictionary Definitions of “Plan”

plan n.

1. A scheme, program, or method
worked out beforehand for the
accomplishment of an objective: a
plan of attack.

[a representation] of future behaviour …
usually a set of actions, with temporal
and other constraints on them, for
execution by some agent or agents.

 – Austin Tate, MIT Encyclopaedia of
the Cognitive Sciences, 1999

COMP4418, 25 October 2017 4Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Classical Planning

Deterministic environment; complete information

Representations for classical planning

Solving planning problems

Modern heuristics for state-space planning

Answer Set Programming and Graphplan

Background reading

Automated Planning, Malik Ghallab, Dana Nau, Paolo Traverso,
Morgan Kaufmann 2004. Chapters 1, 2, 4 & 6

Artificial Intelligence: A Modern Approach, Stuart Russell, Peter Norvig,
Prentice Hall 2003 (2nd Edition). Chapter 11.

Note: I think Chapter 10 for 3rd Edition of Russell and Norvig.

COMP4418, 25 October 2017 5Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Planning Overview

Dynamic environment.

One or more agents: (virtual) agents, robots.

Agents take actions that change the environment.

Agents have goals that they want to achieve.

What sequence of actions will allow the agent to achieve its goals?

Blocksworld is a prototypical example of a classical planning problem.

COMP4418, 25 October 2017 6Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Planning for an Agent/Robot in a Dynamic World

 is an abstraction that deals only with the aspects that the planner
needs to reason about

State transition system
 = (S,A,)
● S = {states}
● A = {actions}
● = state-transition function

COMP4418, 25 October 2017 7Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Example = (S,A,):

S = {s0, …, s5}

A = {move1, move2,
 putdown, pickup,
 load, unload}

 : see the arrows

Example

Dock Worker Robots (DWR) example

pickup

putdown

move1

putdown

pickup

move1

move1move2

 loadunload

move2

move2

loc1 loc2

s0

loc1 loc2

s1

s4

loc1 loc2

s5

loc1 loc2

loc1 loc2

s3

loc1 loc2

s2

COMP4418, 25 October 2017 8Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Example

Dock Worker Robots (DWR) example

pickup

putdown

move1

putdown

pickup

move1

move1move2

 loadunload

move2

move2

loc1 loc2

s0

loc1 loc2

s1

s4

loc1 loc2

s5

loc1 loc2

loc1 loc2

s3

loc1 loc2

s2

Classical plan: a sequence
of actions

〈pickup, move1, load, move2〉

COMP4418, 25 October 2017 9Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Domain-Specific Planners

Many successful real-world planning systems work
this way

Mars exploration, sheet-metal bending, playing
bridge, etc.

Often use problem-specific techniques that are
difficult to generalise to other planning domains

For example, encodes the knowledge of domain
experts (e.g., computer poker player)

COMP4418, 25 October 2017 10Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

No domain-specific knowledge except
the description of the system

In practice,

Not feasible to make domain-
independent planners work well in
all possible planning domains

Make simplifying assumptions
to restrict the set of domains

Classical planning

 Historical focus of most research
 on automated planning

Domain-Independent Planners

COMP4418, 25 October 2017 11Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Classical Planning

Generalise the earlier example:

Five locations, three robot carts,
100 containers, three piles

 10277 states

Automated-planning research has been heavily dominated by classical
planning. There are dozens of different algorithms.

loc1 loc2

s1

pickup

putdown

move1move2

Reduces to the following problem:

Given , initial state s0, and goal states Sg,

find a sequence of actions (a1, a2, … an) that produces

a sequence of state transitions (s0, s1, s2, …, sn) such that sn ∈ Sg

 Is this trivial?

COMP4418, 25 October 2017 12Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Representations for Classical Planning

COMP4418, 25 October 2017 13Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Classical Representations: Motivation

In most problems, far too many states to try to represent all of them explicitly as
s0, s1, s2, …

 represent each state as a set of atomic features
 Example feature, light(on) or light(off); the light can be on or off.

Define a set of operators that can be used to compute state-transitions

Example operator, switch(on); turn the switch on.

Don’t give all of the states explicitly

Just give the initial state

Use the operators to generate the other states as needed

COMP4418, 25 October 2017 14Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Classical Representation

Language of first-order logic but without function symbols

 finitely many predicate symbols and constant symbols

Classical planning problems often described using the STRIPS action
language (developed in 1970s), or PDDL (a more modern language).

We use STRIPS syntax, but for our purposes can think of STRIPS and
PDDL as being used to represent the same sorts of problems.

Example: the DWR domain

Locations: l1, l2, …

Containers: c1, c2, …

Piles: p1, p2, …

Robot carts: r1, r2, …

Cranes: crane1, crane2, …

COMP4418, 25 October 2017 15Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Example (cont'd)

Fixed (static) relations: same in all states

adjacent(l,l’) attached(p,l) belong(k,l)

Dynamic relations (fluents): differ between states

occupied(l) at(r,l)

loaded(r,c) unloaded(r)

holding(k,c) empty(k)

in(c,p) on(c,c’)

top(c,p) top(pallet,p)

Actions:

pickup(c,k,p) putdown(c,k,p)

load(r,c,k) unload(r) move(r,l,l’)

COMP4418, 25 October 2017 16Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

States

A state is a set s of ground atoms

The atoms represent the things that can be true in some states

Only finitely many ground atoms, so only finitely many possible states

s1 = {attached(p1,loc1), in(c1,p1), in(c3,p1), top(c3,p1),
 on(c3,c1), on(c1,pallet), attached(p2,loc1), in(c2,p2),
 top(c2,p2), on(c2,pallet), belong(crane1,loc1),
 empty(crane1), adjacent(loc1,loc2), adjacent(loc2,loc1),
 at(r1,loc2), occupied(loc2), unloaded(r1)}

COMP4418, 25 October 2017 17Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Operators

 An operator is a triple o = (name(o), precond(o), effects(o))

name(o): a syntactic expression of the form n(x1,…,xk)

(x1,…,xk) is a list of every variable symbol (parameter) that appears in o

precond(o): preconditions
literals that must be true in order to use the operator

effects(o): effects
literals the operator will make true

 Example

pickup(k,l,c,d,p)

 ;; crane k at location l takes c off of d in pile p

 precond: belong(k,l), attached(p,l),empty(k), top(c,p),
 on(c,d)

 effects: holding(k,c), ¬empty(k), ¬in(c,p), ¬top(c,p),
 ¬on(c,d), top(d,p)

COMP4418, 25 October 2017 18Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

 An action is a ground instance (via a substitution) of an operator

Let σ = {k  crane1, l  loc1, c  c3, d  c1, p  p1}

Then pickup(k,l,c,d,p)σ is the following action:

pickup(crane1,loc1,c3,c1,p1)

 precond: belong(crane1,loc1), attached(p1,loc1), empty(crane1),
 top(c3,p1), on(c3,c1)

 effects: holding(crane1,c3), ¬empty(crane1), ¬in(c3,p1),

 ¬top(c3,p1), ¬on(c3,c1), top(c1,p1)

pickup(k,l,c,d,p)

 ;; crane k at location l takes c off of d in pile p

 precond: belong(k,l), attached(p,l),empty(k), top(c,p),
 on(c,d)

 effects: holding(k,c), ¬empty(k), ¬in(c,p), ¬top(c,p),
 ¬on(c,d), top(d,p)

Actions

COMP4418, 25 October 2017 19Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Applicability and Result of Actions

Let S be a set of literals. Then
S+ = {atoms that appear positively in S}
S– = {atoms that appear negatively in S}

Let a be an operator or action. Then
precond+(a) = {atoms that appear positively in a’s preconditions}
precond–(a) = {atoms that appear negatively in a’s preconditions}
effects+(a) = {atoms that appear positively in a’s effects}
effects–(a) = {atoms that appear negatively in a’s effects}

Action a is applicable to (or executable in) S if

precond+(a) ⊆ s

precond–(a) ∩ s = ∅

The result of applying action a to state S is
γ(s,a) = (s \ effects–(a)) ∪ effects+(a)

COMP4418, 25 October 2017 20Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Example: Applicability

An action:
pickup(crane1,loc1,c3,c1,p1)

 precond: belong(crane,loc1),
attached(p1,loc1),
empty(crane1), top(c3,p1),
on(c3,c1)

 effects: holding(crane1,c3),
¬empty(crane1),
¬in(c3,p1), ¬top(c3,p1),
¬on(c3,c1), top(c1,p1)

A state it’s applicable to

s1 = {attached(p1,loc1), in(c1,p1), in(c3,p1),

top(c3,p1), on(c3,c1), on(c1,pallet),
attached(p2,loc1), in(c2,p2),
top(c2,p2), on(c2,pallet),
belong(crane1,loc1), empty(crane1),
adjacent(loc1,loc2),
adjacent(loc2,loc1), at(r1,loc2),
occupied(loc2, unloaded(r1)}

COMP4418, 25 October 2017 21Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Example: Result

pickup(crane1,loc1,c3,c1,p1)

 precond: belong(crane,loc1),
attached(p1,loc1),
empty(crane1), top(c3,p1),
on(c3,c1)

 effects: holding(crane1,c3),
¬empty(crane1),
¬in(c3,p1), ¬top(c3,p1),
¬on(c3,c1), top(c1,p1)

s2 = {attached(p1,loc1), in(c1,p1), in(c3,p1),

top(c3,p1), on(c3,c1), on(c1,pallet),
attached(p2,loc1), in(c2,p2),
top(c2,p2), on(c2,pallet),
belong(crane1,loc1), empty(crane1),
adjacent(loc1,loc2),
adjacent(loc2,loc1), at(r1,loc2),
occupied(loc2, unloaded(r1),
holding(crane1,c3), top(c1,p1)}

COMP4418, 25 October 2017 22Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Exercise

COMP4418, 25 October 2017 23Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Exercise: The Blocks World
Infinitely wide table, finite number of children’s blocks

Ignore where a block is located on the table

A block can sit on the table or on another block

There’s a robot gripper that can hold at most one block

Want to move blocks from one configuration to another

e.g.,

initial state goal

c

a

bc

a b e

d

COMP4418, 25 October 2017 24Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Exercise: Classical Representation – Symbols
Constant symbols:

The blocks: a, b, c, d, e

Dynamic relations?

c

a b e

d

COMP4418, 25 October 2017 25Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Exercise: Classical Operators
c

a b

c
a b

c

a
b

c

a b

unstack(c,a)
stack(c,a)

putdown(b)
pickup(b)

d

e

d

e

d

e

d

e

Preconditions and effects?

COMP4418, 25 October 2017 26Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Summary: Planning Problems

Given a planning domain (language L, operators O)

Representation of a planning problem: a triple P = (O,s0,g)

 O is the collection of operators

 s0 is a state (the initial state)

 g is a set of literals (the goal formula)

COMP4418, 25 October 2017 27Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Plans and Solutions

Let P = (O,s0,g) be a planning problem

Plan: any sequence of actions π = 〈a1, a2, …, an〉 such that
each ai is an instance of an operator in O

Plan π is a solution for P = (O,s0,g) if it is executable and achieves g

i.e., if there are states s0, s1, …, sn such that
γ (s0,a1) = s1

γ (s1,a2) = s2

⁞
γ (sn–1,an) = sn

sn satisfies g

COMP4418, 25 October 2017 28Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Example: The 5 DWR Operators
move(r,l,m)

 ;; robot r moves from location l to location m

 precond: adjacent(l,m), at(r,l), ¬occupied(m)

 effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

load(k,l,c,r)

 ;; crane k at location l loads container c onto robot r

 precond: belong(k,l), holding(k,c), at(r,l), unloaded(r)

 effects: empty(k), ¬holding(k,c), loaded(r,c), ¬unloaded(r)

unload(k,l,c,r)

 ;; crane k at location l takes container c onto robot r

 precond: belong(k,l), at(k,l), loaded(r,c), empty(k)

 effects: ¬empty(k), holding(k,c), unloaded(r), ¬loaded(r,c)

putdown(k,l,c,d,p)

 ;; crane k at location l puts c onto d in pile p

 precond: belong(k,l), attached(p,l), holding(k,c), top(d,p)

 effects: ¬holding(k,c), empty(k), in(c,p), top(c,p), on(c,d), ¬top(d,p)

pickup(k,l,c,d,p)

 ;; crane k at location l takes c off of d in pile p

 precond: belong(k,l), attached(p,l),empty(k), top(c,p), on(c,d)

 effects: holding(k,c), ¬empty(k), ¬in(c,p), ¬top(c,p), ¬on(c,d), top(d,p)

COMP4418, 25 October 2017 29Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Example

Let P = (O, s0, g), where

O = {the 5 DWR operators}

s0 = {attached(p1,loc1), in(c1,p1),

in(c3,p1), top(c3,p1),

on(c3,c1), on(c1,pallet),

attached(p2,loc1),

in(c2,p2), top(c2,p2),

on(c2,pallet),

belong(crane1,loc1), empty(crane1),

adjacent(loc1,loc2), adjacent(loc2,loc1),

at(r1,loc2), occupied(loc2), unloaded(r1)}

 g = {loaded(r1,c3), at(r1,loc2)}

COMP4418, 25 October 2017 30Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

s1 Two redundant solutions
(can remove actions and still
have a solution):

(move(r1,loc2,loc1),
 pickup(crane1,loc1,c3,c1,p1),
 move(r1,loc1,loc2),
 move(r1,loc2,loc1),
 load(crane1,loc1,c3,r1),
 move(r1,loc1,loc2))

(pickup(crane1,loc1,c3,c1,p1),
 putdown(crane1,loc1,c3,c2,p2),
 move(r1,loc2,loc1),
 pickup(crane1, loc1,c3,c2,p2),
 load(crane1,loc1,c3,r1),
 move(r1,loc1,loc2))

A solution that is both irredundant and shortest:

(move(r1,loc2,loc1), pickup(crane1, loc1,c3,c1,p1),
 load(crane1,loc1,c3,r1), move(r1,loc1,loc2))

Are there any other shortest solutions? Are irredundant
solutions always the shortest?

COMP4418, 25 October 2017 31Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Exercise

COMP4418, 25 October 2017 32Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Exercise: Plans

initial state goal

Solution?

c

a

bc

a b e

d

COMP4418, 25 October 2017 33Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Alternative to the classical representation

Use ground atoms for properties that do not change, e.g., adjacent(loc1,loc2)

For properties that can change, assign values to state variables

Like fields in a record structure

State-Variable Representation

s1 = {top(p1)=c3,
 cpos(c3)=c1,
 cpos(c1)=pallet,
 holding(crane1)=nil,
 rloc(r1)=loc2,
 loaded(r1)=nil, …}

COMP4418, 25 October 2017 34Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Expressive Power

Any problem that can be represented in one representation can also be
represented in the other

Can convert in linear time and space

Classical
representation

State-variable
representation

P(x1,…,xn)
becomes

fP(x1,…,xn)=1

f(x1,…,xn)=y
becomes

Pf(x1,…,xn,y)

COMP4418, 25 October 2017 35Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Comparison

Classical representation
The most popular for classical planning, partly for historical reasons

State-variable representation
Equivalent to classical representation in expressive power
Less natural for logicians, more natural for engineers and most computer
scientists
Useful in non-classical planning problems as a way to handle numbers,
functions, time

COMP4418, 25 October 2017 36Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

State-Space Search

COMP4418, 25 October 2017 37Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Search Algorithms

 Search tree

nodes = states

edges = actions

s0

s1

s2

s3

a1

a2

a3

s4

s5

sg

a4

a5 …

COMP4418, 25 October 2017 38Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Search Algorithms

 Search tree

nodes = states

edges = actions

Most common search method: depth-first search

In general, sound but not complete

But classical planning has only finitely many states

 can make depth-first search complete by doing loop-checking

s0

s1

s2

s3

a1

a2

a3

s4

s5

sg

a4

a5 …

COMP4418, 25 October 2017 39Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Exercise

COMP4418, 25 October 2017 40Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Exercise: Interchange Values of Variables

Operator assign(v,w,x,y)

 ;; assign the value of v (which is currently x)

 ;; to the value of w (which is currently y)

 precond: value(v,x), value(w,y)

 effects: ¬value(v,x), value(v,y)

Initial state s0 = { value(a,3), value(b,5), value(c,0) }

Goal g = { value(a,5), value(b,3) }

In the search tree for this planning problem,

what is the length of the shortest path to a solution?

what is the length of the longest path in the tree?

a

b

c

3

5

0

a

b

c

5

3

?

COMP4418, 25 October 2017 41Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Algorithms/Technologies for Solving Planning
Problems

COMP4418, 25 October 2017 42Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

How to Solve Classical Planning Problems

Heuristic search

 Heuristics aren't guaranteed to work - but work well as a guide

Many different heuristics

Is it possible to generate heuristics automatically?

Planning with Answer Set Programming

Requires setting a maximum length to the path

Graphplan (won't cover here)

Algorithm developed in 1995

At the time it set a new benchmark for planning!

COMP4418, 25 October 2017 43Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

A standard tree search may try lots of actions that are unrelated to the goal

One way to reduce branching factor:

First create a relaxed problem

Remove some restrictions of the original problem

 Want the relaxed problem to be easy to solve (polynomial time)

The solutions to the relaxed problem will include all solutions to the original
problem

Then do a modified version of the original search

Restrict its search space to include only those actions that occur in solutions
to the relaxed problem

Motivation

s0

s1

s2

s3

a1

a2

a3

s4

s5

sg

a4

a5 …

COMP4418, 25 October 2017 44Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Planning with Heuristic Search

Explicitly search with heuristic h(s) that estimates cost from s to goal

General idea:

heuristic function = length of optimal plan for a relaxed problem

Example:

Manhattan distance in 15-puzzle
(sum of distances to correct positions)

Manhattan distance is an admissible heuristic
(it never overestimates the cost).

How to get such heuristics automatically?

COMP4418, 25 October 2017 45Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Relaxation Heuristic - General-Purpose Heuristics for
Classical Planning

Operator assign(v,w,x,y)

 precond: value(v,x), value(w,y)

 effects: ¬value(v,x), value(v,y)

s0 = { value(a,3), value(b,5), value(c,0) }, g = { value(a,5), value(b,3) }

Optimal relaxed plan: assign(a,b,3,5), assign(b,a,5,3), hence h(s0) = 2

Automatic extraction of informative heuristic function from the problem P itself

Most common relaxation in planning: ignore all negative effects of the operators.

 Let P+ be obtained from planning problem P by dropping the negative effects.

 If c*(P+,s) is optimal cost of P+ with initial state s, then the heuristic is set to

 h(s) = c*(P+,s)

This heuristic is intractable in general, but easy to approximate

 Example.

COMP4418, 25 October 2017 46Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Planning with ASP – Simple Example

Add to each state feature and action a time argument

p(T) – p is true at time T

a(T) – action a is taken at time T

Initial state:

 have(0).

Two state properties: have, eaten

Action eat, which is possible if have is true;
effects: eaten, not have

Action bake, which is possible if have is false;
effect: have

Initially, have is true

The goal is to make eaten true

Cake-Example

COMP4418, 25 October 2017 47Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Planning with ASP – Preconditions & Effects

1 { bake(T); eat(T) } 1 :- time(T).

Generator: one action at a time

Tester (1): Action preconditions

Auxiliary rules: Action effects

have(T+1) :- bake(T), time(T).
have(T+1) :- have(T), not eat(T), time(T).
eaten(T+1) :- eat(T), time(T).
eaten(T+1) :- eaten(T), time(T).

Condition under which
have remains unchanged

Plan length (τ = search depth):

 time(0..τ).

:- eat(T), not have(T).
:- bake(T), have(T).

eat possible if have true
bake possible if have false

Stands for: time(0).
 time(1).
 ...

 time(τ).
where τ a number ≥ 0

COMP4418, 25 October 2017 48Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Planning with ASP - Goal Conditions

Tester (2):
exclude models where the goal has not been reached at time τ+1

% Goal
:- not eaten(τ+1).

Remember:
the goal is to make eaten true

COMP4418, 25 October 2017 49Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Planning with ASP - Plans

Plans correspond to answer sets:

there is a stable model iff there is a valid sequence of n moves
that leads to the goal

A valid plan:

all action instances in the stable model. Here: eat(0)

time(0..0). % equivalent to just "time(0)."
have(0).
1 { eat(T); bake(T) } 1 :- time(T).
:- eat(T), not have(T).
:- bake(T), have(T).
have(T+1) :- bake(T), time(T).
have(T+1) :- have(T), not eat(T), time(T).
eaten(T+1) :- eat(T), time(T).
eaten(T+1) :- eaten(T), time(T).
:- not eaten(1).

COMP4418, 25 October 2017 50Planning

 David Rajaratnam 2017 (© Michael Thielscher 2015) COMP4418 17s2

Summary

Representations for classical planning

Classical representation

State-variable representation

State-space search

with heuristics

Solving planning problems

With heuristics

ASP

Graphplan

