Planning

KRR for Agents in Dynamic Environments

Overview

Planning

- Last week discussed **Decision Making** in some very general settings: Markov process, MDP, HMM, POMDP.
- This week look at a practical application of these ideas in a more restricted setting.
- Planning (or Al Planning) is about agents that execute actions to reach goals (e.g., a robot delivering an item).
- Note: ties closely to Reasoning about Actions (Week 9).

Some Dictionary Definitions of "Plan"

plan n.

- 1. A scheme, program, or method worked out beforehand for the accomplishment of an objective: a plan of attack.
- 2. A proposed or tentative project or course of action: *had no plans for the evening.*

[a representation] of future behaviour ... usually a set of actions, with temporal and other constraints on them, for execution by some agent or agents.

 Austin Tate, MIT Encyclopaedia of the Cognitive Sciences, 1999

Classical Planning

- Deterministic environment; complete information
- Representations for classical planning
- Solving planning problems
 - Modern heuristics for state-space planning
 - Answer Set Programming and Graphplan

Background reading

Automated Planning, Malik Ghallab, Dana Nau, Paolo Traverso, Morgan Kaufmann 2004. Chapters 1, 2, 4 & 6

Artificial Intelligence: A Modern Approach, Stuart Russell, Peter Norvig, Prentice Hall 2003 (2nd Edition). Chapter 11.

Note: I think Chapter 10 for 3rd Edition of Russell and Norvig.

Planning Overview

- Dynamic environment.
- One or more agents: (virtual) agents, robots.
- Agents take actions that change the environment.
- Agents have goals that they want to achieve.
- What sequence of actions will allow the agent to achieve its goals?
- Blocksworld is a prototypical example of a classical planning problem.

Planning for an Agent/Robot in a Dynamic World

ullet is an abstraction that deals only with the aspects that the planner needs to reason about

Example

- Example $\Sigma = (S, A, \gamma)$:
 - $S = \{s_0, ..., s_5\}$
 - A = {move1, move2, putdown, pickup, load, unload}
 - ullet γ : see the arrows

Dock Worker Robots (DWR) example

Classical plan: a sequence of actions

⟨pickup, move1, load, move2⟩

Dock Worker Robots (DWR) example

Domain-Specific Planners

- Many successful real-world planning systems work this way
 - Mars exploration, sheet-metal bending, playing bridge, etc.
- Often use problem-specific techniques that are difficult to generalise to other planning domains
- For example, encodes the knowledge of domain experts (e.g., computer poker player)

COMP4418, 25 October 2017

Domain-Independent Planners

- No domain-specific knowledge except the description of the system Σ
- In practice,
 - Not feasible to make domainindependent planners work well in all possible planning domains
- Make simplifying assumptions to restrict the set of domains
 - Classical planning
 - Historical focus of most research on automated planning

Classical Planning

Reduces to the following problem:
 Given Σ, initial state s₀, and goal states S_g,
 find a sequence of actions (a₁, a₂, ... a_n) that produces
 a sequence of state transitions (s₀, s₁, s₂, ..., s_n) such that s_n ∈ S_q

Is this trivial?

- Generalise the earlier example:
 - Five locations, three robot carts,
 100 containers, three piles
 10²⁷⁷ states

 Automated-planning research has been heavily dominated by classical planning. There are dozens of different algorithms.

Representations for Classical Planning

Classical Representations: Motivation

- In most problems, far too many states to try to represent all of them explicitly as s_0, s_1, s_2, \dots
 - represent each state as a set of **atomic features**Example feature, *light(on)* or *light(off)*; the light can be on or off.
- Define a set of operators that can be used to compute state-transitions
 Example operator, switch(on); turn the switch on.
- Don't give all of the states explicitly
 - Just give the initial state
 - Use the operators to generate the other states as needed

Classical Representation

- Language of first-order logic but without function symbols
 - finitely many predicate symbols and constant symbols
- Classical planning problems often described using the STRIPS action language (developed in 1970s), or PDDL (a more modern language).
- We use STRIPS syntax, but for our purposes can think of STRIPS and PDDL as being used to represent the same sorts of problems.
- Example: the DWR domain
 - Locations: I1, I2, ...
 - Containers: c1, c2, ...
 - Piles: p1, p2, ...
 - Robot carts: r1, r2, ...
 - Cranes: crane1, crane2, ...

Example (cont'd)

Fixed (static) relations: same in all states adjacent(I,I') attached(p,I) belong(*k,l*)

Dynamic relations (fluents): differ between states

occupied(/) at(*r,l*)

loaded(*r,c*) unloaded(r)

holding(k,c)empty(k)

on(*c*,*c*') in(c,p)

top(c,p)top(pallet,p)

Actions:

pickup(c,k,p) putdown(c,k,p)

load(*r,c,k*) unload(*r*) move(r,l,l')

States

A state is a set s of ground atoms

- The atoms represent the things that can be true in some states
- Only finitely many ground atoms, so only finitely many possible states

Operators

An operator is a triple o = (name(o), precond(o), effects(o))

- name(o): a syntactic expression of the form $n(x_1,...,x_k)$
 - $(x_1,...,x_k)$ is a list of every variable symbol (parameter) that appears in o
- precond(o): preconditions
 - literals that must be true in order to use the operator
- effects(o): effects
 - literals the operator will make true

Example

Actions

An action is a ground instance (via a substitution) of an operator

- Let $\sigma = \{k \mid \text{crane1}, I \mid \text{loc1}, c \mid \text{c3}, d \mid \text{c1}, p \mid \text{p1}\}$
- Then pickup $(k,l,c,d,p)\sigma$ is the following action:

```
pickup(crane1,loc1,c3,c1,p1)

precond: belong(crane1,loc1), attached(p1,loc1), empty(crane1), top(c3,p1), on(c3,c1)

effects: holding(crane1,c3), ¬empty(crane1), ¬in(c3,p1), ¬top(c3,p1), ¬on(c3,c1), top(c1,p1)
```

Applicability and Result of Actions

Let S be a set of literals. Then

 S^{+} = {atoms that appear positively in S}

 S^- = {atoms that appear negatively in S}

Let a be an operator or action. Then

```
precond^{+}(a) = \{atoms that appear positively in a's preconditions\}
```

 $precond^{-}(a) = \{atoms that appear negatively in a's preconditions\}$

effects⁺(a) = {atoms that appear positively in a's effects}

effects-(a) = {atoms that appear negatively in a's effects}

- Action a is **applicable** to (or **executable** in) S if
 - precond $(a) \subseteq s$
 - precond-(a) \cap s = \emptyset
- The result of applying action a to state S is
 - $\gamma(s,a) = (s \setminus effects^-(a)) \cup effects^+(a)$

Example: Applicability

An action:

```
pickup(crane1,loc1,c3,c1,p1)

precond: belong(crane,loc1),
    attached(p1,loc1),
    empty(crane1), top(c3,p1),
    on(c3,c1)

effects: holding(crane1,c3),
    ¬empty(crane1),
    ¬in(c3,p1), ¬top(c3,p1),
    ¬on(c3,c1), top(c1,p1)
```

A state it's applicable to

```
s_1 = {attached(p1,loc1), in(c1,p1), in(c3,p1), top(c3,p1), on(c3,c1), on(c1,pallet), attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1), empty(crane1), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc2), occupied(loc2, unloaded(r1))
```

Example: Result


```
pickup(crane1,loc1,c3,c1,p1)
               belong(crane,loc1),
  precond:
               attached(p1,loc1),
               empty(crane1), top(c3,p1),
               on(c3,c1)
       effects: holding(crane1,c3),
                 ¬empty(crane1),
                 \neg in(c3,p1), \neg top(c3,p1),
                 \neg on(c3,c1), top(c1,p1)
s_2 = \{attached(p1,loc1), in(c1,p1), in(c3,p1), \}
     top(c3,p1), on(c3,c1), on(c1,pallet),
     attached(p2,loc1), in(c2,p2),
     top(c2,p2), on(c2,pallet),
     belong(crane1,loc1), empty(crane1),
     adjacent(loc1,loc2),
     adjacent(loc2,loc1), at(r1,loc2),
     occupied(loc2, unloaded(r1),
     holding(crane1,c3), top(c1,p1)}
```

Exercise

Exercise: The Blocks World

- Infinitely wide table, finite number of children's blocks
- Ignore where a block is located on the table
- A block can sit on the table or on another block
- There's a robot gripper that can hold at most one block
- Want to move blocks from one configuration to another

Exercise: Classical Representation – Symbols

- Constant symbols:
 - The blocks: a, b, c, d, e
- Dynamic relations?

Exercise: Classical Operators

Preconditions and effects?

Summary: Planning Problems

Given a planning domain (language L, operators O)

- **Representation** of a planning problem: a triple $P = (O, s_0, g)$
 - O is the collection of operators
 - s_0 is a state (the initial state)
 - g is a set of literals (the goal formula)

26

Plans and Solutions

Let $P = (O, s_0, g)$ be a planning problem

- **Plan**: any sequence of actions $\pi = \langle a_1, a_2, ..., a_n \rangle$ such that each a_i is an instance of an operator in O
- Plan π is a **solution** for $P = (O, s_0, g)$ if it is executable and achieves g
 - i.e., if there are states $s_0, s_1, ..., s_n$ such that

$$\gamma(s_0,a_1)=s_1$$

$$\gamma(s_1,a_2)=s_2$$

i

$$\gamma(s_{n-1},a_n)=s_n$$

 s_n satisfies g

Example: The 5 DWR Operators

```
move(r,1,m)
  ;; robot r moves from location 1 to location m
  precond: adjacent(1,m), at(r,1), ¬occupied(m)
  effects: at(r,m), occupied(m), ¬occupied(1), ¬at(r,1)
load(k,l,c,r)
  ;; crane k at location 1 loads container c onto robot r
  precond: belong(k,1), holding(k,c), at(r,1), unloaded(r)
  effects: empty(k), ¬holding(k,c), loaded(r,c), ¬unloaded(r)
unload(k,l,c,r)
  :: crane k at location l takes container c onto robot r
  precond: belong (k,1), at (k,1), loaded (r,c), empty (k)
  effects: \( \text{rempty}(k) \), \( \text{holding}(k,c) \), \( \text{unloaded}(r) \), \( \text{rloaded}(r,c) \)
putdown(k,l,c,d,p)
  ;; crane k at location 1 puts c onto d in pile p
  precond: belong (k,1), attached (p,1), holding (k,c), top (d,p)
  effects: \neg \text{holding}(k,c), \text{empty}(k), \text{in}(c,p), \text{top}(c,p), \text{on}(c,d), \neg \text{top}(d,p)
pickup(k, 1, c, d, p)
  ;; crane k at location 1 takes c off of d in pile p
  precond: belong (k,1), attached (p,1), empty (k), top (c,p), on (c,d)
  effects: holding (k,c), \neg empty(k), \neg in(c,p), \neg top(c,p), \neg on(c,d), top(d,p)
```

Example

- Let $P = (O, s_0, g)$, where
 - O = {the 5 DWR operators}
 - s_0 = {attached(p1,loc1), in(c1,p1), in(c3,p1), top(c3,p1), on(c3,c1), on(c1,pallet), attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1), empty(crane1),

adjacent(loc1,loc2), adjacent(loc2,loc1),

at(r1,loc2), occupied(loc2), unloaded(r1)}

g = {loaded(r1,c3), at(r1,loc2)}

loc2

Two redundant solutions (can remove actions and still have a solution):

```
( move(r1,loc2,loc1),
  pickup(crane1,loc1,c3,c1,p1),
  move(r1,loc1,loc2),
  move(r1,loc2,loc1),
  load(crane1,loc1,c3,r1),
  move(r1,loc1,loc2) )
( pickup(crane1,loc1,c3,c1,p1),
  putdown(crane1,loc1,c3,c2,p2),
  move(r1,loc2,loc1),
  pickup(crane1, loc1,c3,c2,p2),
  load(crane1,loc1,c3,r1),
  move(r1,loc1,loc2) )
```


- A solution that is both irredundant and shortest:
 - (move(r1,loc2,loc1), pickup(crane1, loc1,c3,c1,p1), load(crane1,loc1,c3,r1), move(r1,loc1,loc2))
- Are there any other shortest solutions? Are irredundant solutions always the shortest?

Exercise

Exercise: Plans

initial state goal

a
b
c
c
a
b
c
c

Solution?

State-Variable Representation

- Alternative to the classical representation
- Use ground atoms for properties that do not change, e.g., adjacent(loc1,loc2)
- For properties that can change, assign values to state variables
 - Like fields in a record structure

```
move(r, l, m)
;; robot r at location l moves to an adjacent location m
precond: rloc(r) = l, adjacent(l, m)
effects: rloc(r) \leftarrow m
```


s₁ = {top(p1)=c3,
 cpos(c3)=c1,
 cpos(c1)=pallet,
 holding(crane1)=nil,
 rloc(r1)=loc2,
 loaded(r1)=nil, ...}

Expressive Power

- Any problem that can be represented in one representation can also be represented in the other
- Can convert in linear time and space

Comparison

- Classical representation
 - The most popular for classical planning, partly for historical reasons

- State-variable representation
 - Equivalent to classical representation in expressive power
 - Less natural for logicians, more natural for engineers and most computer scientists
 - Useful in non-classical planning problems as a way to handle numbers, functions, time

35

State-Space Search

Search Algorithms

Search tree

- nodes = states
- edges = actions

Search Algorithms

Search tree

- nodes = states
- edges = actions

- Most common search method: depth-first search
 - In general, sound but not complete
 - But classical planning has only finitely many states
 - can make depth-first search complete by doing loop-checking

Exercise

Exercise: Interchange Values of Variables

Operator assign (v,w,x,y)

```
;; assign the value of v (which is currently x); to the value of w (which is currently y) precond: value(v,x), value(w,y) effects: \neg value(v,x), value(v,y)
```

a 3 b 5 c 0

- Initial state $s_0 = \{ \text{ value}(a,3), \text{ value}(b,5), \text{ value}(c,0) \}$
- Goal $g = \{ value(a,5), value(b,3) \}$
- In the search tree for this planning problem,
 - what is the length of the shortest path to a solution?
 - what is the length of the longest path in the tree?

Algorithms/Technologies for Solving Planning Problems

41

How to Solve Classical Planning Problems

- Heuristic search
 - Heuristics aren't guaranteed to work but work well as a guide
 - Many different heuristics
 - Is it possible to generate heuristics automatically?
- Planning with Answer Set Programming
 - Requires setting a maximum length to the path
- Graphplan (won't cover here)
 - Algorithm developed in 1995
 - At the time it set a new benchmark for planning!

43

Motivation

A standard tree search may try lots of actions that are unrelated to the goal

- One way to reduce branching factor:
- First create a relaxed problem
 - Remove some restrictions of the original problem
 Want the relaxed problem to be easy to solve (polynomial time)
 - The solutions to the relaxed problem will include all solutions to the original problem
- Then do a modified version of the original search
 - Restrict its search space to include only those actions that occur in solutions to the relaxed problem

Planning with Heuristic Search

- Explicitly search with heuristic h(s) that estimates cost from s to goal
- General idea:
 heuristic function = length of optimal plan for a relaxed problem
- Example:
 - Manhattan distance in 15-puzzle (sum of distances to correct positions)
 - Manhattan distance is an admissible heuristic (it never overestimates the cost).

4	1	2	3
5	6	7	11
8	9		10
12	13	14	15

How to get such heuristics automatically?

Relaxation Heuristic - General-Purpose Heuristics for Classical Planning

- Automatic extraction of informative heuristic function from the problem P itself
- Most common relaxation in planning: ignore all negative effects of the operators.

Let P^+ be obtained from planning problem P by dropping the negative effects. If $c^*(P^+,s)$ is optimal cost of P^+ with initial state s, then the heuristic is set to

$$h(s) = c^*(P^+,s)$$

This heuristic is intractable in general, but easy to approximate

Example.

Operator assign(v,w,x,y)

```
precond: value(v,x), value(w,y) effects: \frac{\neg value(v,x)}{\neg value(v,y)}
```

- $s_0 = \{ \text{ value}(a,3), \text{ value}(b,5), \text{ value}(c,0) \}, g = \{ \text{ value}(a,5), \text{ value}(b,3) \}$
- Optimal relaxed plan: assign(a,b,3,5), assign(b,a,5,3), hence h(s₀) = 2

45

Planning with ASP – Simple Example

Cake-Example

- Two state properties: have, eaten
- Action eat, which is possible if have is true; effects: eaten, not have
- Action bake, which is possible if have is false;
 effect: have
- Initially, have is true
- The goal is to make eaten true
- Add to each state feature and action a time argument
 - p(T) − p is true at time T
 - a (T) action a is taken at time T
- Initial state:

have (0).

Planning with ASP – Preconditions & Effects

Plan length (τ = search depth):

```
time (0...t).
```

Generator: one action at a time

```
bake (T); eat (T) } 1 :- time (T).
```

Tester (1): Action preconditions

```
:- eat(T), not have(T).
:- bake(T), have(T).
```

Auxiliary rules: Action effects

```
have (T+1): - bake (T), time (T).
have (T+1): - have (T), not eat (T), time (T).
eaten(T+1):- eat(T), time(T).
eaten(T+1):- eaten(T), time(T).
```

Stands for: time (0). time(1). time (T). where τ a number ≥ 0

eat possible if have true bake possible if have false

Condition under which have remains unchanged

Planning with ASP - Goal Conditions

 Tester (2): exclude models where the goal has not been reached at time τ+1

```
% Goal :- not eaten(\tau+1).
```

Remember:

the goal is to make eaten true

Planning with ASP - Plans

```
time(0..0). % equivalent to just "time(0)."
have(0).
1 { eat(T); bake(T) } 1 :- time(T).
:- eat(T), not have(T).
:- bake(T), have(T).
have(T+1) :- bake(T), time(T).
have(T+1) :- have(T), not eat(T), time(T).
eaten(T+1) :- eat(T), time(T).
eaten(T+1) :- eaten(T), time(T).
:- not eaten(1).
```

- Plans correspond to answer sets:
 - there is a stable model iff there is a valid sequence of n moves that leads to the goal
- A valid plan:
 - all action instances in the stable model. Here: eat (0)

49

Summary

- Representations for classical planning
 - Classical representation
 - State-variable representation
- State-space search
 - with heuristics
- Solving planning problems
 - With heuristics
 - ASP
 - Graphplan