COMP4418, 25 October 2017 Planning 1

Planning

KRR for Agents in Dynamic Environments

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning

Overview

@ |Last week discussed Decision Making in some very general
settings: Markov process, MDP, HMM, POMDP.

@ This week look at a practical application of these ideas in a
more restricted setting.

@ Planning (or Al Planning) is about agents that execute
actions to reach goals (e.g., a robot delivering an item).

@ Note: ties closely to Reasoning about Actions (Week 9).

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning

Some Dictionary Definitions of “Plan”

plan n.

1. A'scheme, program, or method 2. A proposed or tentative project or
worked out beforehand for the course of action: had no plans for
accomplishment of an objective: a the evening.

plan of attack.

[a representation] of future behaviour ...
usually a set of actions, with temporal
and other constraints on them, for
execution by some agent or agents.

— Austin Tate, MIT Encyclopaedia of
the Cognitive Sciences, 1999

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 4

Classical Planning

@ Deterministic environment; complete information
@ Representations for classical planning

@ Solving planning problems

@ Modern heuristics for state-space planning

@ Answer Set Programming and Graphplan

Background reading

Automated Planning, Malik Ghallab, Dana Nau, Paolo Traverso,
Morgan Kaufmann 2004. Chapters 1, 2,4 &6

Artificial Intelligence: A Modern Approach, Stuart Russell, Peter Norvig,
Prentice Hall 2003 (2" Edition). Chapter 11.

Note: | think Chapter 10 for 3™ Edition of Russell and Norvig.

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning

Planning Overview

@ Dynamic environment.

@ One or more agents: (virtual) agents, robots.

@ Agents take actions that change the environment.
@ Agents have goals that they want to achieve.

@ What sequence of actions will allow the agent to achieve its goals?

» Blocksworld is a prototypical example of a classical planning problem.

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 6

Planning for an Agent/Robot in a Dynamic World

l Description of £
Initial state

-

~| Planner

Objectives
‘ l Plans

Execution status

Controller

State transition system
Observations T l Actions Y= (S,AN)
* § = {states}

System X * A = {actions}
T Events e Y = state-transition function

@ >, is an abstraction that deals only with the aspects that the planner
needs to reason about

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017

Example

* Example X = (S,A)):
@ S={s, ..., S}
@ A ={move1l, move2,

putdown, pickup,
load, unload}

@ 7 : see the arrows

Planning

loc1 loc2

unload

| =&

loc1 loc2

putdown
—_—

‘_

pickup

putdown
—

—

pickup

move2

move1

So
loc1 loc2
move2 move
v
S

[

loc1 loc2

Dock Worker Robots (DWR) example

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

Planning

COMP4418, 25 October 2017

putdown

Example udon

T gy o L

loc1 loc2 loc1 loc2
@ H . A
Clasglcal plan: a sequence ves move) oves move1
of actions ‘
. S S
{pickup, move1, load, move2) ’] ?
putdown
—
-
loc1 loc2
unload IoacD
(——Z7 7 Sy Y —A S

0
move2
>
-/ 4—
[| R =

loc1 loc2 loc1 loc2

Dock Worker Robots (DWR) example

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418 17s2

COMP4418, 25 October 2017 Planning 9

Domain-Specific Planners

@ Many successful real-world planning systems work
this way

* Mars exploration, sheet-metal bending, playing

bridge, etc. West - East
@ Often use problem-specific techniques that are | ’ | ’
difficult to generalise to other planning domains o
@ For example, encodes the knowledge of domain \ ’

experts (e.g., computer poker player)

5 lh

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 10

Domain-Independent Planners

@ No domain-specific knowledge except
the description of the system X

@ |n practice,
@ Not feasible to make domain-
independent planners work well in

all possible planning domains 4

@ Make simplifying assumptions
to restrict the set of domains
@ Classical planning

—> Historical focus of most research
on automated planning

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 1

Classical Planning

@ Reduces to the following problem:
Given X, initial state s;, and goal states S,

find a sequence of actions (a,, a,, ... a,) that produces
a sequence of state transitions (s, s;, S, ..., S,) such thats, € S,

Is this trivial? 5,
@ Generalise the earlier example: outdown
@ Five locations, three robot carts, —'
100 containers, three piles o h mp
—> 10?7 states — —

move2 I l move1

@ Automated-planning research has been heavily dominated by classical
planning. There are dozens of different algorithms.

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017

Planning 12

Representations for Classical Planning

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 13

Classical Representations: Motivation

@ |n most problems, far too many states to try to represent all of them explicitly as
So» Sy Sy -

> represent each state as a set of atomic features
Example feature, light(on) or light(off); the light can be on or off.

@ Define a set of operators that can be used to compute state-transitions
Example operator, switch(on); turn the switch on.

@ Don't give all of the states explicitly
@ Just give the initial state
@ Use the operators to generate the other states as needed

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 14

Classical Representation

@ Language of first-order logic but without function symbols

II> finitely many predicate symbols and constant symbols

@ (Classical planning problems often described using the STRIPS action
language (developed in 1970s), or PDDL (a more modern language).

@ We use STRIPS syntax, but for our purposes can think of STRIPS and
PDDL as being used to represent the same sorts of problems.

@ Example: the DWR domain

-

-

i

i

-)

Locations: I1, 12, ...
Containers: c1, c2, ...
Piles: p1, p2, ...

Robot carts: r1, r2, ...
Cranes: crane1l, cranez, ...

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 15

Example (cont'd)

* Fixed (static) relations: same in all states
adjacent(/,l’) attached(p,/) belong(k,/)

* Dynamic relations (fluents): differ between states
occupied(/) at(r/)
loaded(r,c) unloaded(r)
holding(k,c) empty(k)

in(c,p) on(c,c’)
top(c,p) top(pallet,p)
@ Actions:

pickup(c,k,p) putdown(c,k,p)
load(r,c,k) unload(r) move(r,/,I)

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 16

States

A is a set s of ground atoms
@ The atoms represent the things that can be true in some states
@ Only finitely many ground atoms, so only finitely many possible states

-
‘ cranel
c3 ~—{§§——J7
cl ~
locl | loc2

S1={attached(p1,locl), in(cl,pl), in(c3,pl), top(c3,pl),

on(c3,cl), on(cl,pallet), attached(p2,locl), in(c2,p2),
top(c2,p2), on(c2,pallet), belong(cranel,locl),
empty (cranel), adjacent(locl,loc2), adjacent (loc2,locl),

at(rl,loc2), occupied(loc2), unloaded(rl)}

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 17

Operators

An is a triple o = (name(o), precond(o), effects(0))

@ name(o): a syntactic expression of the form n(x,,...,x,)
® (x,,...,X,) is a list of every variable symbol (parameter) that appears in o

@ precond(o): preconditions
@ literals that must be true in order to use the operator

@ effects(o). effects
@ literals the operator will make true

Example

pickup(k,1,c,d, p)
;; crane k at location 1 takes ¢ off of d in pile p
precond: belong(k,1l), attached(p,1l),empty(k), top(c,p),
on(c,d)
effects: holding(k,c), "empty(k), "in(c,p), ~top(c,p).,
“on(c,d), top(d,p)

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017

Planning

Actions

An is a ground instance (via a substitution) of an operator

pickup(k,1,c,d,p)
;; crane k at location 1 takes ¢ off of d in pile p
precond: belong(k,1l), attached(p,1l),empty(k), topl(c,p),
on(c,d)
effects: holding(k,c), "empty(k), "in(c,p), ~top(c,p),
-on(c,d), top(d,p)

@ Leto ={k/crane1, //loc1, c/c3,d/c1, p/p1}

@ Then pickup(k,/,c,d,p)o is the following action:

pickup(crane1,loc1,c3,c1,p1)
precond: belong(crane1,loc1), attached(p1,loc1), empty(crane1),
top(c3,p1), on(c3,c1)
effects: holding(crane1,c3), "empty(crane1), 7in(c3,p1),
—top(c3,p1), "on(c3,c1), top(c1,p1)

18

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418 17s2

COMP4418, 25 October 2017 Planning 19

Applicability and Result of Actions

* Let S be a set of literals. Then
S* = {atoms that appear positively in S}
S- = {atoms that appear negatively in S}

@ |et a be an operator or action. Then
precond*(a) = {atoms that appear positively in a’'s preconditions}
precond-(a) = {atoms that appear negatively in a's preconditions}
effects*(a) = {atoms that appear positively in a’s effects}
effects-(a) = {atoms that appear negatively in a’s effects}

@ Action a is applicable to (or executable in) S if
@ precond*(a) < s
@ precond-(a)Ns=4

® The result of applying action a to state S is
® y(s,a) = (s \ effects~(a)) U effects*(a)

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 20

Example: Applicability

1
cranel
C3 ;g
cl % 1 ——
Pl O O
locl ' loc2
@ An action: @ Astate it's applicable to
pickup(crane1,loc1,c3,c1,p1)
precond: belong(crane,loc?), s, = {attached(p1,loc1), in(c1,p1), in(c3,p1),
attached(p1,loc1), top(c3,p1), on(c3,c1), on(c1,pallet),
empty(crane1), top(c3,p1), attached(p2,loc1), in(c2,p2),
on(c3,c1) top(c2,p2), on(c2,pallet),
effects: holding(crane1,c3), belong(crane1,loc1), empty(crane1),
“empty(crane1), adjacent(loc1,loc2),
7in(c3,p1), ~top(c3,p1), adjacent(loc2,loc1), at(r1,loc2),
~on(c3,c1), top(c1,p1) occupied(loc2, unloaded(r1)}

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 21

Example: Result

&
cranel
c2
o 2
= ri —
pl O 0O
locl 1 loc2
c3 cranel
c2
p2
1 -
¢ l e—
7 O O
loc1 . loc2

pickup(crane1,loc1,c3,c1,p1)

precond: belong(crane,loc1),

attached(p1,loc1),

empty(crane1), top(c3,p1),

on(c3,c1)

effects: holding(crane1,c3),

“empty(crane1),
7in(c3,p1), top(c3,p1),
2on(c3,c1), top(c1,p1)

S, = {attached(p1,loc1), in(c1,p1), irc3p),
top(e3:pH), en(e3d;64); on(c1,pallet),
attached(p2,loc1), in(c2,p2),
top(c2,p2), on(c2,pallet),
belong(crane1,loc1), ermphHeraned),
adjacent(loc1,loc2),
adjacent(loc2,loc1), at(r1,loc2),
occupied(loc2, unloaded(r1),

: }

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017

Planning

Exercise

22

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017

@ |gnore where a block is located on the table
@ Ablock can sit on the table or on another block

Planning

23

Exercise: The Blocks World

@ Infinitely wide table, finite number of children’s blocks

® There's a robot gripper that can hold at most one block

@ Want to move blocks from one configuration to another

°* eg.,

initial state

4
RICHE

goal

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 24

Exercise: Classical Representation — Symbols

@ Constant symbols:
® The blocks: a, b, c,d, e
@ Dynamic relations?

m
ninME

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning

Exercise: Classical Operators

@ Preconditions and effects?

25

di{la||Db
t
uns {%(c,a) stadk(k.2)
e
Il
dlla|]|b
s |

putdpwn(b)

= []

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning

26

Summary: Planning Problems

Given a planning domain (language L, operators O)

@ O is the collection of operators
» S, Is a state (the initial state)
* gis a set of literals (the goal formula)

» Representation of a planning problem: a triple P = (O,s,,9)

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning

Let

Plans and Solutions

P = (0O,s,,g) be a planning problem

27

-

Plan: any sequence of actions m = (a,, a,, ..., a,) such that

each a. is an instance of an operator in O

@ Plan mis a solution for P = (0O,s,,9) if it is executable and achieves g

@ |.e., ifthere are states s, s, ..., S, such that
V(SOia’]) = S1

V(S;,8,) = S,

V (Sn—1 ’an) = Sn

s, satisfies g

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 28

Example: The 5 DWR Operators

move (r,1,m)
;; robot r moves from location 1 to location m
precond: adjacent(l,m), at(r,1l), —"occupied (m)
effects: at(r,m), occupied(m), —occupied(l), —"at(r,1l)

load(k,1,c,r)
;; crane k at location 1 loads container c¢ onto robot r
precond: belong(k,1l), holding(k,c), at(r,1l), unloaded(r)
effects: empty(k), —holding(k,c), loaded(r,c), ~unloaded(r)

unload(k,1,c,r)
;; crane k at location 1 takes container c¢ onto robot r
precond: belong(k,1l), at(k,1l), loaded(r,c), empty (k)
effects: —empty(k), holding(k,c), unloaded(r), —-loaded(r,c)

putdown (k,1,c,d,p)
;7 crane k at location 1 puts ¢ onto d in pile p
precond: belong(k,1l), attached(p,1l), holding(k,c), top(d,p)
effects: "holding(k,c), empty(k), in(c,p), top(c,p), on(c,d), ~top(d,p)

pickup(k,1l,c,d,p)
;; crane k at location 1 takes c¢ off of d in pile p
precond: belong(k,1l), attached(p,1l),empty(k), top(c,p), on(c,d)
effects: holding(k,c), —empty(k), -in(c,p), ~top(c,p), —"on(c,d), top(d,p)

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 29

Example
» LetP=(0O, s, g), where
2

@ O = {the 5 DWR operators} 1

s s, = {attached(p1,loc1), in(c1,p1), cranel
in(c3,p1), top(c3,p1), 3 ;;
on(c3,c1), on(c1,pallet), cl) rl

(), on(c1,pallet) i 7

attached(p2,loc1),
in(c2,p2), top(c2,p2), locl ' loc2
on(c2,pallet),
belong(crane1,loc1), empty(crane1), @
adjacent(loc1,loc2), adjacent(loc2,loc1),
at(r1,loc2), occupied(loc2), unloaded(r1)}

@ g={loaded(r1,c3), at(r1,loc2)} ri|[3

loc2

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 30

@ Two redundant solutions s,
(can remove actions and still cranel
have a solution):

(move(r1,loc2,loc1),
pickup(crane1,loc1,c3,c1,p1), D1
move{rtleeZloct), locl loc2

load(crane1,loc1,c3,r1),
move(r1,loc1,loc2)) s

(pickup(crane1,loc1,c3,c1,p1), '

c2

: £3-62 ’ cranel
move(r1,loc2,loc1), c2

>
c1 5

load(crane1,loc1,c3,r1), D1 @)
move(r1,loc1,loc2))

locl ' loc2

@ A solution that is both irredundant and shortest:

(move(r1,loc2,loc1), pickup(crane1, loc1,c3,c1,p1),
load(crane1,loc1,c3,r1), move(r1,loc1,loc2))

@ Are there any other shortest solutions? Are irredundant
solutions always the shortest?

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017

Planning

Exercise

31

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017

Planning

Exercise: Plans

initial state

4
RISHE

Solution?

32

goal

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 33

State-Variable Representation

@ Alternative to the classical representation
@ Use ground atoms for properties that do not change, e.g., adjacent(loc1,loc2)
@ For properties that can change, assign values to state variables

@ Like fields in a record structure

move(r, I, m)
;; robot r at location I moves to an adjacent location m
precond: rloc(r) = I, adjacent(l, m)
effects: rloc(r) < m

! L s, = {top(p1)=c3,
cpos(c3)=c1,
c3 gg cpos(c1)=pallet,
cl - rl holding(crane1)=nil,
__
P O ao rloc(r1)=loc2,
locl | loc2 loaded(r1)=nil, ...}

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning

Expressive Power

@ Any problem that can be represented in one representation can also be
represented in the other

@ (Can convert in linear time and space

P(x,,...,X,)
becomes
f(x,,...,x)=1

Classical State-variable
representation representation

f(x,.., X)=y
becomes

P(x,,....X_,y)

34

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 35

Comparison

@ (lassical representation
@ The most popular for classical planning, partly for historical reasons

@ State-variable representation
@ Equivalent to classical representation in expressive power
@ Less natural for logicians, more natural for engineers and most computer
scientists
@ Useful in non-classical planning problems as a way to handle numbers,
functions, time

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017

Planning

State-Space Search

36

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017

Search tree
@ nodes = states
@ edges = actions

Planning

Search Algorithms

37

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning

Search Algorithms

a, Sy
Search tree
® nodes = states <
@ edges = actions s 5

@ Most common search method: depth-first search

@ |n general, sound but not complete

@ But classical planning has only finitely many states

—> can make depth-first search complete by doing loop-checking

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

38

COMP4418, 25 October 2017

Planning

Exercise

39

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning

@ QOperator assign(v,w,x,v) a 3
;; assign the value of v (which is currently x) b 5
;; to the value of w (which is currently y) C 0

40

Exercise: Interchange Values of Variables

precond: value(v,x), value(w,y)

effects: -value(v,x), value(v,y)

@

i

-

Initial state s, = { value(a,3), value(b,5), value(c,0) }

Goal g ={value(a,d), value(b,3) }

In the search tree for this planning problem,

@ what is the length of the shortest path to a solution?

@ what is the length of the longest path in the tree?

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 41

Algorithms/Technologies for Solving Planning
Problems

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 42

How to Solve Classical Planning Problems

@ Heuristic search
@ Heuristics aren't guaranteed to work - but work well as a guide
@ Many different heuristics

@ |s it possible to generate heuristics automatically?

@ Planning with Answer Set Programming

@ Requires setting a maximum length to the path

@ Graphplan (won't cover here)
@ Algorithm developed in 1995

@ At the time it set a new benchmark for planning!

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 43

Motivation

@ A standard tree search may try lots of actions that are unrelated to the goal

@ One way to reduce branching factor:
@ First create a relaxed problem
@ Remove some restrictions of the original problem
|:>Want the relaxed problem to be easy to solve (polynomial time)

@ The solutions to the relaxed problem will include all solutions to the original
problem

* Then do a modified version of the original search

@ Restrict its search space to include only those actions that occur in solutions
to the relaxed problem

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning

Planning with Heuristic Search

@ Explicitly search with heuristic h(s) that estimates cost from s to goal

@ General idea:
heuristic function = length of optimal plan for a relaxed problem

@ Example:
4 11 3
@ Manhattan distance in 15-puzzle
(sum of distances to correct positions) o lebd lul Ll
@ Manhattan distance is an admissible heuristic 10
(it never overestimates the cost). 12113 14 15

@ How to get such heuristics automatically?

44

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 4%

Relaxation Heuristic - General-Purpose Heuristics for
Classical Planning

@ Automatic extraction of informative heuristic function from the problem P itself

@ Most common relaxation in planning: ignore all negative effects of the operators.
Let P* be obtained from planning problem P by dropping the negative effects.
If c*(P*,s) is optimal cost of P+ with initial state s, then the heuristic is set to

h(s) = c*(P*,s)

@ This heuristic is intractable in general, but easy to approximate

Example.
@ QOperator assign(v,w,x,vy)

precond: value(v,x), value(w,y)

effects: =wvatwelvs0—+ value(v,vy)

@ s, ={value(a,3), value(b,5), value(c,0) }, g ={ value(a,5), value(b,3) }
@ Optimal relaxed plan: assign(a,b,3,5), assign(b,a,5,3), hence

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning 46

Planning with ASP — Simple Example

Cake-Example @ Two state properties: have, eaten

® Action eat, which is possible if have is true;
effects: eaten, not have

* Action bake, which is possible if have is false;
effect: have

* [nitially, have is true

* The goal is to make eaten true

* Add to each state feature and action a time argument
® p(T) —pistrueattimeT
® a(T) —actionaistakenattime T

@ |nitial state:
have (0) .

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017

i

=)

Planning

47

Planning with ASP — Preconditions & Effects

Plan length (r = search depth):

time (0..1).

Generator: one

action at a time

Stands for: time (0) .
time (1) .

time (T) .
where T anumber=0

1 { bake(T)

; eat(T) } 1 := time(T).

Tester (1): Action preconditions

:— eat (T),
:— bake (T),

not have (T) .
have (T) .

Auxiliary rules: Action effects

eat possible if have true

bake possible if have false

Condition under which

have (T+1)
have (T+1)
eaten (T+1)
eaten (T+1)

:— bake (T), time(T).
:— have (T), not eat(T), time(T).

:— eat (T), time(T).

:— eaten(T), time(T).

have remains unchanged

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017

Planning

48

Planning with ASP - Goal Conditions

* Tester (2):

exclude models where the goal has not been reached at time t+1

$ Goal

:— not eaten(t+1).

S

Remember:
the goal is to make eaten true

COMP4418 17s2

David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning

Planning with ASP - Plans

:— eat (T), not have (T).
:— bake(T), have(T).

have (T+1) :— bake (T), time (T).

have (T+1) :— have (T), not eat(T), time(T).
eaten(T+1) :— eat(T), time(T).

eaten(T+1) :— eaten(T), time(T).

:— not eaten(l).

time (0..0). % equivalent to just "time (0) .
have (0) .
1 { eat(T); bake(T) } 1 :— time(T).

LA

* Plans correspond to answer sets:

* there is a stable model iff there is a valid sequence of n moves

that leads to the goal
@ Avalid plan:

@ all action instances in the stable model. Here: eat (0)

49

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

COMP4418, 25 October 2017 Planning

Summary

@ Representations for classical planning

@ Classical representation

@ State-variable representation

@ State-space search

@ with heuristics

@ Solving planning problems
@ With heuristics
s ASP
@ Graphplan

50

COMP4418 17s2 David Rajaratnam 2017 (© Michael Thielscher 2015)

