
Tractable Reasoning with Limited Belief
Christoph Schwering

UNSW Sydney

COMP4418, Week 8

Computational Aspects of Reasoning

� Good news:
OKB |= α reduces to KB |= φ1, . . . , KB |= φk (Representation Theorem)
I No modal reasoning necessary (no O, no K)

� Bad (old) news:
First-order case: KB |= φ is only semidecidable
I There is a procedure that always halts if KB |= φ
I But it might not terminate if KB 6|= φ

Propositional case: KB |= φ is intractable (or P = NP)
I KB |= φ is co-NP-complete
I co-NP contains all problems whose complement is in NP

2 / 39

Computational Aspects of Reasoning

� Good news:
OKB |= α reduces to KB |= φ1, . . . , KB |= φk (Representation Theorem)
I No modal reasoning necessary (no O, no K)

� Bad (old) news:
First-order case: KB |= φ is only semidecidable
I There is a procedure that always halts if KB |= φ
I But it might not terminate if KB 6|= φ

Propositional case: KB |= φ is intractable (or P = NP)
I KB |= φ is co-NP-complete
I co-NP contains all problems whose complement is in NP

2 / 39

Computational Aspects of Reasoning

� Good news:
OKB |= α reduces to KB |= φ1, . . . , KB |= φk (Representation Theorem)
I No modal reasoning necessary (no O, no K)

� Bad (old) news:
First-order case: KB |= φ is only semidecidable
I There is a procedure that always halts if KB |= φ
I But it might not terminate if KB 6|= φ

Propositional case: KB |= φ is intractable (or P = NP)
I KB |= φ is co-NP-complete
I co-NP contains all problems whose complement is in NP

2 / 39

Some Options We Have

1. We could use a standard theorem prover and set a timeout.
But: The underlying logic would be hopelessly complex.

2. We could restrict the expressivity of our representation language.
I Horn logic
I Description logics
But: Humans can deal with very complex representations.

3 / 39

Some Options We Have

1. We could use a standard theorem prover and set a timeout.
But: The underlying logic would be hopelessly complex.

2. We could restrict the expressivity of our representation language.
I Horn logic
I Description logics
But: Humans can deal with very complex representations.

3 / 39

Logical Omniscience
Some sources of complexity:
� All tautologies are known
E.g., |= K(p ∨ ¬p)

� Knowledge is closed under logical consequence
E.g., |= Kp ∧ K(p→ q)→ Kq

� Knowledge is closed under equivalence
E.g., |= Kp↔ K(p ∧ (q ∨ ¬q))

� Inconsistent knowledge implies knowing everything (incl. nonsense)
E.g., |= K(p ∧ ¬p)→ Kq

4 / 39

Logical Omniscience
Some sources of complexity:
� All tautologies are known
E.g., |= K(p ∨ ¬p)

� Knowledge is closed under logical consequence
E.g., |= Kp ∧ K(p→ q)→ Kq

� Knowledge is closed under equivalence
E.g., |= Kp↔ K(p ∧ (q ∨ ¬q))

� Inconsistent knowledge implies knowing everything (incl. nonsense)
E.g., |= K(p ∧ ¬p)→ Kq

4 / 39

Logical Omniscience
Some sources of complexity:
� All tautologies are known
E.g., |= K(p ∨ ¬p)

� Knowledge is closed under logical consequence
E.g., |= Kp ∧ K(p→ q)→ Kq

� Knowledge is closed under equivalence
E.g., |= Kp↔ K(p ∧ (q ∨ ¬q))

� Inconsistent knowledge implies knowing everything (incl. nonsense)
E.g., |= K(p ∧ ¬p)→ Kq

4 / 39

Logical Omniscience
Some sources of complexity:
� All tautologies are known
E.g., |= K(p ∨ ¬p)

� Knowledge is closed under logical consequence
E.g., |= Kp ∧ K(p→ q)→ Kq

� Knowledge is closed under equivalence
E.g., |= Kp↔ K(p ∧ (q ∨ ¬q))

� Inconsistent knowledge implies knowing everything (incl. nonsense)
E.g., |= K(p ∧ ¬p)→ Kq

4 / 39

Limited Belief

� Want to weaken the entailment relation |=, call it |≈.

� Should be sound: OKB |≈ Kα =⇒ OKB |= Kα

� Should be incomplete: OKB |= Kα 6=⇒ OKB |≈ Kα

� Should be easy to compute OKB |≈ Kα

This is different from restricting expressiveness:
� Horn logic, description logics restrict the language
� Limited belief restricts the semantics (mainly)

5 / 39

Limited Belief

� Want to weaken the entailment relation |=, call it |≈.
� Should be sound: OKB |≈ Kα =⇒ OKB |= Kα

� Should be incomplete: OKB |= Kα 6=⇒ OKB |≈ Kα

� Should be easy to compute OKB |≈ Kα

This is different from restricting expressiveness:
� Horn logic, description logics restrict the language
� Limited belief restricts the semantics (mainly)

5 / 39

Limited Belief

� Want to weaken the entailment relation |=, call it |≈.
� Should be sound: OKB |≈ Kα =⇒ OKB |= Kα

� Should be incomplete: OKB |= Kα 6=⇒ OKB |≈ Kα

� Should be easy to compute OKB |≈ Kα

This is different from restricting expressiveness:
� Horn logic, description logics restrict the language
� Limited belief restricts the semantics (mainly)

5 / 39

Limited Belief

� Want to weaken the entailment relation |=, call it |≈.
� Should be sound: OKB |≈ Kα =⇒ OKB |= Kα

� Should be incomplete: OKB |= Kα 6=⇒ OKB |≈ Kα

� Should be easy to compute OKB |≈ Kα

This is different from restricting expressiveness:
� Horn logic, description logics restrict the language
� Limited belief restricts the semantics (mainly)

5 / 39

Limited Belief

� Want to weaken the entailment relation |=, call it |≈.
� Should be sound: OKB |≈ Kα =⇒ OKB |= Kα

� Should be incomplete: OKB |= Kα 6=⇒ OKB |≈ Kα

� Should be easy to compute OKB |≈ Kα

This is different from restricting expressiveness:
� Horn logic, description logics restrict the language
� Limited belief restricts the semantics (mainly)

5 / 39

Overview of the Lecture

� Limited Belief – First Attempt

� Limited Belief – Second Attempt
� Data structures and algorithms for ASP solvers

6 / 39

Limited Belief— First Attempt
Idea: Allow more models as part of epistemic state e

Why?
� Larger e corresponds to fewer beliefs
� e |= Kφ ⇐⇒ for all w ∈ e, w |= φ

� For ê ⊇ e: ê |= Kφ =⇒ e |= Kφ

ê {w
| w
|=
φ
}

e

Simplification: propositional logic for now, no nested O, K .

7 / 39

Limited Belief— First Attempt
Idea: Allow more models as part of epistemic state e

Why?
� Larger e corresponds to fewer beliefs
� e |= Kφ ⇐⇒ for all w ∈ e, w |= φ

� For ê ⊇ e: ê |= Kφ =⇒ e |= Kφ

ê {w
| w
|=
φ
}

e

Simplification: propositional logic for now, no nested O, K .

7 / 39

Limited Belief— First Attempt
Idea: Allow more models as part of epistemic state e

Why?
� Larger e corresponds to fewer beliefs
� e |= Kφ ⇐⇒ for all w ∈ e, w |= φ

� For ê ⊇ e: ê |= Kφ =⇒ e |= Kφ

ê {w
| w
|=
φ
}

e

Simplification: propositional logic for now, no nested O, K .
7 / 39

Multi-Valued Worlds

Definition: multi-valued world
Amulti-valued world v is a function from the atomic propositions
to {{}, {0}, {1}, {0,1}}.

An epistemic state e is a set of multi-valued worlds.

� v[p] = {}means “never heard of it”
� v[p] = {0}means “false”
� v[p] = {1}means “true”
� v[p] = {0,1}means “conflicting information”

We will define true support and false support.

8 / 39

Multi-Valued Worlds

Definition: multi-valued world
Amulti-valued world v is a function from the atomic propositions
to {{}, {0}, {1}, {0,1}}.

An epistemic state e is a set of multi-valued worlds.

� v[p] = {}means “never heard of it”
� v[p] = {0}means “false”
� v[p] = {1}means “true”
� v[p] = {0,1}means “conflicting information”

We will define true support and false support.

8 / 39

Multi-Valued Worlds

Definition: multi-valued world
Amulti-valued world v is a function from the atomic propositions
to {{}, {0}, {1}, {0,1}}.
An epistemic state e is a set of multi-valued worlds.

� v[p] = {}means “never heard of it”
� v[p] = {0}means “false”
� v[p] = {1}means “true”
� v[p] = {0,1}means “conflicting information”

We will define true support and false support.

8 / 39

The Semantics of True and False Support
Definition: semantics of true and false support
� e, v |=T P ⇐⇒ v[P] 3 1

e, v |=F P ⇐⇒ v[P] 3 0

� e, v |=T ¬α ⇐⇒ e, v |=F α

e, v |=F ¬α ⇐⇒ e, v |=T α

� e, v |=T (α ∨ β) ⇐⇒ e, v |=T α or e, v |=T β

e, v |=F (α ∨ β) ⇐⇒ e, v |=F α and e, v |=F β

� e, v |=T (α ∧ β) ⇐⇒ e, v |=T α and e, v |=T β

e, v |=F (α ∧ β) ⇐⇒ e, v |=F α or e, v |=F β

� e, v |=T Kα ⇐⇒ for all v′, v′ ∈ e⇒ e, v′ |=T α

e, v |=F Kα ⇐⇒ e, v 6|=T Kα

� e, v |=T Oα ⇐⇒ for all v′, v′ ∈ e⇔ e, v′ |=T α

e, v |=F Oα ⇐⇒ e, v 6|=T Oα

OKB |≈ Kα ⇐⇒ for all e, v, e, v |=T OKB⇒ e, v |=T Kα

9 / 39

The Semantics of True and False Support
Definition: semantics of true and false support
� e, v |=T P ⇐⇒ v[P] 3 1

e, v |=F P ⇐⇒ v[P] 3 0

� e, v |=T ¬α ⇐⇒ e, v |=F α

e, v |=F ¬α ⇐⇒ e, v |=T α

� e, v |=T (α ∨ β) ⇐⇒ e, v |=T α or e, v |=T β

e, v |=F (α ∨ β) ⇐⇒ e, v |=F α and e, v |=F β

� e, v |=T (α ∧ β) ⇐⇒ e, v |=T α and e, v |=T β

e, v |=F (α ∧ β) ⇐⇒ e, v |=F α or e, v |=F β

� e, v |=T Kα ⇐⇒ for all v′, v′ ∈ e⇒ e, v′ |=T α

e, v |=F Kα ⇐⇒ e, v 6|=T Kα

� e, v |=T Oα ⇐⇒ for all v′, v′ ∈ e⇔ e, v′ |=T α

e, v |=F Oα ⇐⇒ e, v 6|=T Oα

OKB |≈ Kα ⇐⇒ for all e, v, e, v |=T OKB⇒ e, v |=T Kα

9 / 39

The Semantics of True and False Support
Definition: semantics of true and false support
� e, v |=T P ⇐⇒ v[P] 3 1

e, v |=F P ⇐⇒ v[P] 3 0

� e, v |=T ¬α ⇐⇒ e, v |=F α

e, v |=F ¬α ⇐⇒ e, v |=T α

� e, v |=T (α ∨ β) ⇐⇒ e, v |=T α or e, v |=T β

e, v |=F (α ∨ β) ⇐⇒ e, v |=F α and e, v |=F β

� e, v |=T (α ∧ β) ⇐⇒ e, v |=T α and e, v |=T β

e, v |=F (α ∧ β) ⇐⇒ e, v |=F α or e, v |=F β

� e, v |=T Kα ⇐⇒ for all v′, v′ ∈ e⇒ e, v′ |=T α

e, v |=F Kα ⇐⇒ e, v 6|=T Kα

� e, v |=T Oα ⇐⇒ for all v′, v′ ∈ e⇔ e, v′ |=T α

e, v |=F Oα ⇐⇒ e, v 6|=T Oα

OKB |≈ Kα ⇐⇒ for all e, v, e, v |=T OKB⇒ e, v |=T Kα

9 / 39

The Semantics of True and False Support
Definition: semantics of true and false support
� e, v |=T P ⇐⇒ v[P] 3 1

e, v |=F P ⇐⇒ v[P] 3 0

� e, v |=T ¬α ⇐⇒ e, v |=F α

e, v |=F ¬α ⇐⇒ e, v |=T α

� e, v |=T (α ∨ β) ⇐⇒ e, v |=T α or e, v |=T β

e, v |=F (α ∨ β) ⇐⇒ e, v |=F α and e, v |=F β

� e, v |=T (α ∧ β) ⇐⇒ e, v |=T α and e, v |=T β

e, v |=F (α ∧ β) ⇐⇒ e, v |=F α or e, v |=F β

� e, v |=T Kα ⇐⇒ for all v′, v′ ∈ e⇒ e, v′ |=T α

e, v |=F Kα ⇐⇒ e, v 6|=T Kα

� e, v |=T Oα ⇐⇒ for all v′, v′ ∈ e⇔ e, v′ |=T α

e, v |=F Oα ⇐⇒ e, v 6|=T Oα

OKB |≈ Kα ⇐⇒ for all e, v, e, v |=T OKB⇒ e, v |=T Kα

9 / 39

The Semantics of True and False Support
Definition: semantics of true and false support
� e, v |=T P ⇐⇒ v[P] 3 1

e, v |=F P ⇐⇒ v[P] 3 0

� e, v |=T ¬α ⇐⇒ e, v |=F α

e, v |=F ¬α ⇐⇒ e, v |=T α

� e, v |=T (α ∨ β) ⇐⇒ e, v |=T α or e, v |=T β

e, v |=F (α ∨ β) ⇐⇒ e, v |=F α and e, v |=F β

� e, v |=T (α ∧ β) ⇐⇒ e, v |=T α and e, v |=T β

e, v |=F (α ∧ β) ⇐⇒ e, v |=F α or e, v |=F β

� e, v |=T Kα ⇐⇒ for all v′, v′ ∈ e⇒ e, v′ |=T α

e, v |=F Kα ⇐⇒ e, v 6|=T Kα

� e, v |=T Oα ⇐⇒ for all v′, v′ ∈ e⇔ e, v′ |=T α

e, v |=F Oα ⇐⇒ e, v 6|=T Oα

OKB |≈ Kα ⇐⇒ for all e, v, e, v |=T OKB⇒ e, v |=T Kα

9 / 39

The Semantics of True and False Support
Definition: semantics of true and false support
� e, v |=T P ⇐⇒ v[P] 3 1

e, v |=F P ⇐⇒ v[P] 3 0

� e, v |=T ¬α ⇐⇒ e, v |=F α

e, v |=F ¬α ⇐⇒ e, v |=T α

� e, v |=T (α ∨ β) ⇐⇒ e, v |=T α or e, v |=T β

e, v |=F (α ∨ β) ⇐⇒ e, v |=F α and e, v |=F β

� e, v |=T (α ∧ β) ⇐⇒ e, v |=T α and e, v |=T β

e, v |=F (α ∧ β) ⇐⇒ e, v |=F α or e, v |=F β

� e, v |=T Kα ⇐⇒ for all v′, v′ ∈ e⇒ e, v′ |=T α

e, v |=F Kα ⇐⇒ e, v 6|=T Kα

� e, v |=T Oα ⇐⇒ for all v′, v′ ∈ e⇔ e, v′ |=T α

e, v |=F Oα ⇐⇒ e, v 6|=T Oα

OKB |≈ Kα ⇐⇒ for all e, v, e, v |=T OKB⇒ e, v |=T Kα

9 / 39

The Semantics of True and False Support
Definition: semantics of true and false support
� e, v |=T P ⇐⇒ v[P] 3 1

e, v |=F P ⇐⇒ v[P] 3 0

� e, v |=T ¬α ⇐⇒ e, v |=F α

e, v |=F ¬α ⇐⇒ e, v |=T α

� e, v |=T (α ∨ β) ⇐⇒ e, v |=T α or e, v |=T β

e, v |=F (α ∨ β) ⇐⇒ e, v |=F α and e, v |=F β

� e, v |=T (α ∧ β) ⇐⇒ e, v |=T α and e, v |=T β

e, v |=F (α ∧ β) ⇐⇒ e, v |=F α or e, v |=F β

� e, v |=T Kα ⇐⇒ for all v′, v′ ∈ e⇒ e, v′ |=T α

e, v |=F Kα ⇐⇒ e, v 6|=T Kα

� e, v |=T Oα ⇐⇒ for all v′, v′ ∈ e⇔ e, v′ |=T α

e, v |=F Oα ⇐⇒ e, v 6|=T Oα

OKB |≈ Kα ⇐⇒ for all e, v, e, v |=T OKB⇒ e, v |=T Kα
9 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v |=T (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

= {v | v |=T p or v |=T q or v |=T r, and
v |=T p or v |=T q or v |=F r}

= {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q)

7

� e |=T ¬Kp

3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v |=T (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

= {v | v |=T p or v |=T q or v |=T r, and
v |=T p or v |=T q or v |=F r}

= {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q)

7

� e |=T ¬Kp

3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v |=T (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)}

= {v | v |=T p or v |=T q or v |=T r, and
v |=T p or v |=T q or v |=F r}

= {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q)

7

� e |=T ¬Kp

3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q)

7

� e |=T ¬Kp

3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q)

7

⇐⇒ for all v, v ∈ e⇒ v |=T (p ∨ q)
⇐⇒ for all v, v ∈ e⇒ v |=T p or v |=T q
⇐⇒ for all v, v ∈ e⇒ v[p] 3 1 or v[q] 3 1 7

� e |=T ¬Kp

3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q)

7

⇐⇒ for all v, v ∈ e⇒ v |=T (p ∨ q)

⇐⇒ for all v, v ∈ e⇒ v |=T p or v |=T q
⇐⇒ for all v, v ∈ e⇒ v[p] 3 1 or v[q] 3 1 7

� e |=T ¬Kp

3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q)

7

⇐⇒ for all v, v ∈ e⇒ v |=T (p ∨ q)
⇐⇒ for all v, v ∈ e⇒ v |=T p or v |=T q

⇐⇒ for all v, v ∈ e⇒ v[p] 3 1 or v[q] 3 1 7

� e |=T ¬Kp

3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q)

7

⇐⇒ for all v, v ∈ e⇒ v |=T (p ∨ q)
⇐⇒ for all v, v ∈ e⇒ v |=T p or v |=T q
⇐⇒ for all v, v ∈ e⇒ v[p] 3 1 or v[q] 3 1 7

� e |=T ¬Kp

3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

⇐⇒ for all v, v ∈ e⇒ v |=T (p ∨ q)
⇐⇒ for all v, v ∈ e⇒ v |=T p or v |=T q
⇐⇒ for all v, v ∈ e⇒ v[p] 3 1 or v[q] 3 1 7

� e |=T ¬Kp

3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp

3

⇐⇒ e |=F Kp
⇐⇒ e 6|=T Kp
⇐⇒ for some v, v ∈ e and v 6|=T p
⇐⇒ for some v, v ∈ e and v[p] /3 1 3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp

3

⇐⇒ e |=F Kp

⇐⇒ e 6|=T Kp
⇐⇒ for some v, v ∈ e and v 6|=T p
⇐⇒ for some v, v ∈ e and v[p] /3 1 3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp

3

⇐⇒ e |=F Kp
⇐⇒ e 6|=T Kp

⇐⇒ for some v, v ∈ e and v 6|=T p
⇐⇒ for some v, v ∈ e and v[p] /3 1 3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp

3

⇐⇒ e |=F Kp
⇐⇒ e 6|=T Kp
⇐⇒ for some v, v ∈ e and v 6|=T p

⇐⇒ for some v, v ∈ e and v[p] /3 1 3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp

3

⇐⇒ e |=F Kp
⇐⇒ e 6|=T Kp
⇐⇒ for some v, v ∈ e and v 6|=T p
⇐⇒ for some v, v ∈ e and v[p] /3 1 3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp 3

⇐⇒ e |=F Kp
⇐⇒ e 6|=T Kp
⇐⇒ for some v, v ∈ e and v 6|=T p
⇐⇒ for some v, v ∈ e and v[p] /3 1 3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp 3

� e |=T ¬K¬p

3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp 3

� e |=T ¬K¬p

3

⇐⇒ for some v, v ∈ e and v 6|=T ¬p

⇐⇒ for some v, v ∈ e and v 6|=F p
⇐⇒ for some v, v ∈ e and v[p] /3 0 3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp 3

� e |=T ¬K¬p

3

⇐⇒ for some v, v ∈ e and v 6|=T ¬p
⇐⇒ for some v, v ∈ e and v 6|=F p

⇐⇒ for some v, v ∈ e and v[p] /3 0 3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp 3

� e |=T ¬K¬p

3

⇐⇒ for some v, v ∈ e and v 6|=T ¬p
⇐⇒ for some v, v ∈ e and v 6|=F p
⇐⇒ for some v, v ∈ e and v[p] /3 0 3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp 3

� e |=T ¬K¬p 3

⇐⇒ for some v, v ∈ e and v 6|=T ¬p
⇐⇒ for some v, v ∈ e and v 6|=F p
⇐⇒ for some v, v ∈ e and v[p] /3 0 3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp 3

� e |=T ¬K¬p 3

� e |=T K(r ∨ ¬r)

7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp 3

� e |=T ¬K¬p 3

� e |=T K(r ∨ ¬r)

7

⇐⇒ for all v, v ∈ e⇒ v |=T (r ∨ ¬r)

⇐⇒ for all v, v ∈ e⇒ v |=T r or v |=F r
⇐⇒ for all v, v ∈ e⇒ v[r] 3 0 or v[r] 3 1
⇐⇒ for all v, v ∈ e⇒ v[r] 6= {} 7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp 3

� e |=T ¬K¬p 3

� e |=T K(r ∨ ¬r)

7

⇐⇒ for all v, v ∈ e⇒ v |=T (r ∨ ¬r)
⇐⇒ for all v, v ∈ e⇒ v |=T r or v |=F r

⇐⇒ for all v, v ∈ e⇒ v[r] 3 0 or v[r] 3 1
⇐⇒ for all v, v ∈ e⇒ v[r] 6= {} 7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp 3

� e |=T ¬K¬p 3

� e |=T K(r ∨ ¬r)

7

⇐⇒ for all v, v ∈ e⇒ v |=T (r ∨ ¬r)
⇐⇒ for all v, v ∈ e⇒ v |=T r or v |=F r
⇐⇒ for all v, v ∈ e⇒ v[r] 3 0 or v[r] 3 1

⇐⇒ for all v, v ∈ e⇒ v[r] 6= {} 7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp 3

� e |=T ¬K¬p 3

� e |=T K(r ∨ ¬r)

7

⇐⇒ for all v, v ∈ e⇒ v |=T (r ∨ ¬r)
⇐⇒ for all v, v ∈ e⇒ v |=T r or v |=F r
⇐⇒ for all v, v ∈ e⇒ v[r] 3 0 or v[r] 3 1
⇐⇒ for all v, v ∈ e⇒ v[r] 6= {} 7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp 3

� e |=T ¬K¬p 3

� e |=T K(r ∨ ¬r) 7

⇐⇒ for all v, v ∈ e⇒ v |=T (r ∨ ¬r)
⇐⇒ for all v, v ∈ e⇒ v |=T r or v |=F r
⇐⇒ for all v, v ∈ e⇒ v[r] 3 0 or v[r] 3 1
⇐⇒ for all v, v ∈ e⇒ v[r] 6= {} 7

10 / 39

Examples
Let e |=T O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� e = {v | v[p] 3 1 or v[q] 3 1 or v[r] = {0,1}}

� e |=T K(p ∨ q) 7

� e |=T ¬Kp 3

� e |=T ¬K¬p 3

� e |=T K(r ∨ ¬r) 7

So O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)) really doesn’t entail much. . .

10 / 39

Some Properties
� Not all tautologies are known
6|≈ K(p ∨ ¬p)
falsified by e = {v} for v[p] = {}

� Knowledge is not closed under logical consequence
6|≈ Kp ∧ K(p→ q)→ Kq
falsified by e = {v} for v[p] = {0, 1} and v[q] /3 1

� Knowledge is not closed under equivalence
6|≈ Kp↔ K(p ∧ (q ∨ ¬q))
falsified by e = {v} for v[p] = 1 and v[q] = {}

� Inconsistent knowledge does not imply knowing everything
6|≈ K(p ∧ ¬p)→ Kq
falsified by e = {v} for v[p] = {0, 1} and v[q] /3 1

11 / 39

Some Properties
� Not all tautologies are known
6|≈ K(p ∨ ¬p)
falsified by e = {v} for v[p] = {}

� Knowledge is not closed under logical consequence
6|≈ Kp ∧ K(p→ q)→ Kq
falsified by e = {v} for v[p] = {0, 1} and v[q] /3 1

� Knowledge is not closed under equivalence
6|≈ Kp↔ K(p ∧ (q ∨ ¬q))
falsified by e = {v} for v[p] = 1 and v[q] = {}

� Inconsistent knowledge does not imply knowing everything
6|≈ K(p ∧ ¬p)→ Kq
falsified by e = {v} for v[p] = {0, 1} and v[q] /3 1

11 / 39

Some Properties
� Not all tautologies are known
6|≈ K(p ∨ ¬p)
falsified by e = {v} for v[p] = {}

� Knowledge is not closed under logical consequence
6|≈ Kp ∧ K(p→ q)→ Kq
falsified by e = {v} for v[p] = {0, 1} and v[q] /3 1

� Knowledge is not closed under equivalence
6|≈ Kp↔ K(p ∧ (q ∨ ¬q))
falsified by e = {v} for v[p] = 1 and v[q] = {}

� Inconsistent knowledge does not imply knowing everything
6|≈ K(p ∧ ¬p)→ Kq
falsified by e = {v} for v[p] = {0, 1} and v[q] /3 1

11 / 39

Some Properties
� Not all tautologies are known
6|≈ K(p ∨ ¬p)
falsified by e = {v} for v[p] = {}

� Knowledge is not closed under logical consequence
6|≈ Kp ∧ K(p→ q)→ Kq
falsified by e = {v} for v[p] = {0, 1} and v[q] /3 1

� Knowledge is not closed under equivalence
6|≈ Kp↔ K(p ∧ (q ∨ ¬q))
falsified by e = {v} for v[p] = 1 and v[q] = {}

� Inconsistent knowledge does not imply knowing everything
6|≈ K(p ∧ ¬p)→ Kq
falsified by e = {v} for v[p] = {0, 1} and v[q] /3 1

11 / 39

Complexity
None of the sources of complexity we identified on slide 7 remains.
Is reasoning easier now?

Bad news: Not in general.
Theorem: complexity
OKB |≈ Kφ is co-NP-complete.

Let p1, . . . , pn be the propositions in KB and φ.
KB |= φ ⇐⇒ O(KB ∧

∧
i(pi ∨ ¬pi)︸ ︷︷ ︸prevent “conflicting information”

) |≈ K(φ ∨
∨

i(pi ∧ ¬pi)︸ ︷︷ ︸ignore “never heard of” worlds
)

12 / 39

Complexity
None of the sources of complexity we identified on slide 7 remains.
Is reasoning easier now?
Bad news: Not in general.
Theorem: complexity
OKB |≈ Kφ is co-NP-complete.

Let p1, . . . , pn be the propositions in KB and φ.
KB |= φ ⇐⇒ O(KB ∧

∧
i(pi ∨ ¬pi)︸ ︷︷ ︸prevent “conflicting information”

) |≈ K(φ ∨
∨

i(pi ∧ ¬pi)︸ ︷︷ ︸ignore “never heard of” worlds
)

12 / 39

Complexity
None of the sources of complexity we identified on slide 7 remains.
Is reasoning easier now?
Bad news: Not in general.
Theorem: complexity
OKB |≈ Kφ is co-NP-complete.

Let p1, . . . , pn be the propositions in KB and φ.
KB |= φ ⇐⇒ O(KB ∧

∧
i(pi ∨ ¬pi)︸ ︷︷ ︸prevent “conflicting information”

) |≈ K(φ ∨
∨

i(pi ∧ ¬pi)︸ ︷︷ ︸ignore “never heard of” worlds
)

12 / 39

Complexity (2)
Good news: Reasoning gets very easy when KB and φ are in CNF.
Theorem: decision procedure for CNF KB, φ
Let KB def

= c1 ∧ . . . ∧ cm and φ def
= d1 ∧ . . . ∧ dn for clauses ci, dj.

OKB |≈ Kφ is decidable inO(m · n).
OKB |≈ Kφ ⇐⇒ for every dj, there is a ci with ci ⊆ dj.

Ex.: O((p ∨ ¬q) ∧ q) |≈ K(p ∨ ¬q ∨ r) since {p,¬q} ⊆ {p,¬q, r}.
O((p ∨ ¬q) ∧ q) 6|≈ Kp since {p,¬q} 6⊆ {p}, {q} 6⊆ {p}.

Proof on paper.

13 / 39

The First-Order Case
Generalise to first-orderOL (function symbols aside):
� Predicates: P(t1, . . . , tj) where ti is variable or standard name
� Quantification: ∃xα

Generalise the true and false support semantics to this language:
Definition: multi-valued world, first-order case
P(~n) is primitive iff all ni are standard names.Amulti-valued world v is a function from the primitive atomic
formulas to {{}, {0}, {1}, {0,1}}.
� e, v |=T ∃xα ⇐⇒ e, v |=T αx

n for some standard name n
e, v |=F ∃xα ⇐⇒ e, v |=F αx

n for every standard name n

14 / 39

The First-Order Case
Generalise to first-orderOL (function symbols aside):
� Predicates: P(t1, . . . , tj) where ti is variable or standard name
� Quantification: ∃xα

Generalise the true and false support semantics to this language:
Definition: multi-valued world, first-order case
P(~n) is primitive iff all ni are standard names.Amulti-valued world v is a function from the primitive atomic
formulas to {{}, {0}, {1}, {0,1}}.
� e, v |=T ∃xα ⇐⇒ e, v |=T αx

n for some standard name n
e, v |=F ∃xα ⇐⇒ e, v |=F αx

n for every standard name n

14 / 39

Complexity in the First-Order Case

Bad news: Too complex.
Theorem: complexity, first-order case
OKB |≈ Kα is undecidable.

Let P1, . . . , Pn be the predicate symbols in KB and φ.
KB |= φ ⇐⇒

O(KB ∧
∧

i ∀~x (Pi(~x) ∨ ¬Pi(~x))︸ ︷︷ ︸prevent “conflicting information”
) |≈ K(φ ∨

∨
i ∀~x (Pi(~x) ∧ ¬Pi(~x))︸ ︷︷ ︸ignore “never heard of” worlds

)

15 / 39

Complexity in the First-Order Case

Bad news: Too complex.
Theorem: complexity, first-order case
OKB |≈ Kα is undecidable.

Let P1, . . . , Pn be the predicate symbols in KB and φ.
KB |= φ ⇐⇒

O(KB ∧
∧

i ∀~x (Pi(~x) ∨ ¬Pi(~x))︸ ︷︷ ︸prevent “conflicting information”
) |≈ K(φ ∨

∨
i ∀~x (Pi(~x) ∧ ¬Pi(~x))︸ ︷︷ ︸ignore “never heard of” worlds

)

15 / 39

Overview of the Lecture

� Limited Belief – First Attempt
� Limited Belief – Second Attempt

� Data structures and algorithms for ASP solvers

16 / 39

Limited Belief— Second Attempt
What went wrong in the First Attempt?
� “Believe or not”, no way of controlling how much to “think”
� Knowledge is very weak, not closed under forward chaining
� Still very complex in the worst case

Idea: stratify beliefs into levels
� Use Kkα to say “α is known at level k”
� Level 0: explicit beliefs
� Level k + 1: level k plus some inferences

Simplification: propositional logic for now, no nested O, K .

17 / 39

Limited Belief— Second Attempt
What went wrong in the First Attempt?
� “Believe or not”, no way of controlling how much to “think”
� Knowledge is very weak, not closed under forward chaining
� Still very complex in the worst case

Idea: stratify beliefs into levels
� Use Kkα to say “α is known at level k”
� Level 0: explicit beliefs
� Level k + 1: level k plus some inferences

Simplification: propositional logic for now, no nested O, K .

17 / 39

Limited Belief— Second Attempt
What went wrong in the First Attempt?
� “Believe or not”, no way of controlling how much to “think”
� Knowledge is very weak, not closed under forward chaining
� Still very complex in the worst case

Idea: stratify beliefs into levels
� Use Kkα to say “α is known at level k”
� Level 0: explicit beliefs
� Level k + 1: level k plus some inferences

Simplification: propositional logic for now, no nested O, K .

17 / 39

Easy Inferences

What should count as explicit belief?
� If α ∈ KB, then OKB |≈ K0α

� If p ∈ KB and p→ q ∈ KB, then OKB |≈ K0q

� If p ∈ KB and p→ q ∈ KB and q→ r ∈ KB, then OKB |≈ K0r

� If p1, . . . , pj ∈ KB and p1 ∧ . . . ∧ pj → q ∈ KB, then OKB |≈ K0q

� If P(n) ∈ KB and ∀x (P(x)→ Q(x)) ∈ KB, then OKB |≈ K0Q(n)

18 / 39

Easy Inferences

What should count as explicit belief?
� If α ∈ KB, then OKB |≈ K0α

� If p ∈ KB and p→ q ∈ KB, then OKB |≈ K0q

� If p ∈ KB and p→ q ∈ KB and q→ r ∈ KB, then OKB |≈ K0r

� If p1, . . . , pj ∈ KB and p1 ∧ . . . ∧ pj → q ∈ KB, then OKB |≈ K0q

� If P(n) ∈ KB and ∀x (P(x)→ Q(x)) ∈ KB, then OKB |≈ K0Q(n)

18 / 39

Easy Inferences

What should count as explicit belief?
� If α ∈ KB, then OKB |≈ K0α

� If p ∈ KB and p→ q ∈ KB, then OKB |≈ K0q

� If p ∈ KB and p→ q ∈ KB and q→ r ∈ KB, then OKB |≈ K0r

� If p1, . . . , pj ∈ KB and p1 ∧ . . . ∧ pj → q ∈ KB, then OKB |≈ K0q

� If P(n) ∈ KB and ∀x (P(x)→ Q(x)) ∈ KB, then OKB |≈ K0Q(n)

18 / 39

Easy Inferences

What should count as explicit belief?
� If α ∈ KB, then OKB |≈ K0α

� If p ∈ KB and p→ q ∈ KB, then OKB |≈ K0q

� If p ∈ KB and p→ q ∈ KB and q→ r ∈ KB, then OKB |≈ K0r

� If p1, . . . , pj ∈ KB and p1 ∧ . . . ∧ pj → q ∈ KB, then OKB |≈ K0q

� If P(n) ∈ KB and ∀x (P(x)→ Q(x)) ∈ KB, then OKB |≈ K0Q(n)

18 / 39

Easy Inferences

What should count as explicit belief?
� If α ∈ KB, then OKB |≈ K0α

� If p ∈ KB and p→ q ∈ KB, then OKB |≈ K0q

� If p ∈ KB and p→ q ∈ KB and q→ r ∈ KB, then OKB |≈ K0r

� If p1, . . . , pj ∈ KB and p1 ∧ . . . ∧ pj → q ∈ KB, then OKB |≈ K0q

� If P(n) ∈ KB and ∀x (P(x)→ Q(x)) ∈ KB, then OKB |≈ K0Q(n)

18 / 39

Hard Inferences
What should not count as explicit belief?
Things that are not obvious (requires to consider different cases).
For example, only one of the following KBs entails ∃x (P(x) ∧Q(x)):

KB1 KB2

3

P(a) ∨ P(e) ∨ P(f) P(a) ∨ Q(e) ∨ Q(c)

3

3

P(a) ∨ P(e) ∨ Q(f) Q(d) ∨ P(b) ∨ Q(a)

3

3

P(a) ∨ P(e) ∨ P(c) P(a) ∨ P(e) ∨ P(f)

3

3

P(a) ∨ P(e) ∨ Q(c) P(c) ∨ Q(e) ∨ P(a)

3

3

Q(a) ∨ P(b) ∨ P(d) Q(a) ∨ Q(b) ∨ Q(g)

3

3

Q(a) ∨ P(b) ∨ Q(c) P(a) ∨ P(e) ∨ Q(f)

3

3

Q(a) ∨ Q(b) ∨ P(g) Q(b) ∨ Q(a) ∨ P(g)

3

3

Q(a) ∨ Q(b) ∨ Q(g) Q(a) ∨ P(d) ∨ P(b)

3

Let w |= P(a) ∧ P(d) ∧ Q(b) ∧ Q(c).
Then w |= KB1 but w 6|= ∃x (P(x) ∧ Q(x)).

19 / 39

Hard Inferences
What should not count as explicit belief?
Things that are not obvious (requires to consider different cases).
For example, only one of the following KBs entails ∃x (P(x) ∧Q(x)):

KB1 KB2
3 P(a) ∨ P(e) ∨ P(f) P(a) ∨ Q(e) ∨ Q(c)

3

3 P(a) ∨ P(e) ∨ Q(f) Q(d) ∨ P(b) ∨ Q(a)

3

3 P(a) ∨ P(e) ∨ P(c) P(a) ∨ P(e) ∨ P(f)

3

3 P(a) ∨ P(e) ∨ Q(c) P(c) ∨ Q(e) ∨ P(a)

3

3 Q(a) ∨ P(b) ∨ P(d) Q(a) ∨ Q(b) ∨ Q(g)

3

3 Q(a) ∨ P(b) ∨ Q(c) P(a) ∨ P(e) ∨ Q(f)

3

3 Q(a) ∨ Q(b) ∨ P(g) Q(b) ∨ Q(a) ∨ P(g)

3

3 Q(a) ∨ Q(b) ∨ Q(g) Q(a) ∨ P(d) ∨ P(b)

3

Let w |= P(a) ∧ P(d) ∧ Q(b) ∧ Q(c).
Then w |= KB1 but w 6|= ∃x (P(x) ∧ Q(x)).

19 / 39

Hard Inferences
What should not count as explicit belief?
Things that are not obvious (requires to consider different cases).
For example, only one of the following KBs entails ∃x (P(x) ∧Q(x)):

KB1 KB2

3

P(a) ∨ P(e) ∨ P(f) P(a) ∨ Q(e) ∨ Q(c)

3

3

P(a) ∨ P(e) ∨ Q(f) Q(d) ∨ P(b) ∨ Q(a)

3

3

P(a) ∨ P(e) ∨ P(c) P(a) ∨ P(e) ∨ P(f)

3

3

P(a) ∨ P(e) ∨ Q(c) P(c) ∨ Q(e) ∨ P(a)

3

3

Q(a) ∨ P(b) ∨ P(d) Q(a) ∨ Q(b) ∨ Q(g)

3

3

Q(a) ∨ P(b) ∨ Q(c) P(a) ∨ P(e) ∨ Q(f)

3

3

Q(a) ∨ Q(b) ∨ P(g) Q(b) ∨ Q(a) ∨ P(g)

3

3

Q(a) ∨ Q(b) ∨ Q(g) Q(a) ∨ P(d) ∨ P(b)

3

Let w |= KB2.

Then w |= ∃x (P(x) ∧ Q(x)).

19 / 39

Hard Inferences
What should not count as explicit belief?
Things that are not obvious (requires to consider different cases).
For example, only one of the following KBs entails ∃x (P(x) ∧Q(x)):

KB1 KB2

3

P(a) ∨ P(e) ∨ P(f) P(a) ∨ Q(e) ∨ Q(c) 3

3

P(a) ∨ P(e) ∨ Q(f) Q(d) ∨ P(b) ∨ Q(a)

3

3

P(a) ∨ P(e) ∨ P(c) P(a) ∨ P(e) ∨ P(f) 3

3

P(a) ∨ P(e) ∨ Q(c) P(c) ∨ Q(e) ∨ P(a) 3

3

Q(a) ∨ P(b) ∨ P(d) Q(a) ∨ Q(b) ∨ Q(g)

3

3

Q(a) ∨ P(b) ∨ Q(c) P(a) ∨ P(e) ∨ Q(f) 3

3

Q(a) ∨ Q(b) ∨ P(g) Q(b) ∨ Q(a) ∨ P(g)

3

3

Q(a) ∨ Q(b) ∨ Q(g) Q(a) ∨ P(d) ∨ P(b)

3

Let w |= KB2 ∧ P(a).

Then w |= ∃x (P(x) ∧ Q(x)).

19 / 39

Hard Inferences
What should not count as explicit belief?
Things that are not obvious (requires to consider different cases).
For example, only one of the following KBs entails ∃x (P(x) ∧Q(x)):

KB1 KB2

3

P(a) ∨ P(e) ∨ P(f) P(a) ∨ Q(e) ∨ Q(c) 3

3

P(a) ∨ P(e) ∨ Q(f) Q(d) ∨ P(b) ∨ Q(a)

3

3

P(a) ∨ P(e) ∨ P(c) P(a) ∨ P(e) ∨ P(f) 3

3

P(a) ∨ P(e) ∨ Q(c) P(c) ∨ Q(e) ∨ P(a) 3

3

Q(a) ∨ P(b) ∨ P(d) Q(a) ∨ Q(b) ∨ Q(g)

3

3

Q(a) ∨ P(b) ∨ Q(c) P(a) ∨ P(e) ∨ Q(f) 3

3

Q(a) ∨ Q(b) ∨ P(g) Q(b) ∨ Q(a) ∨ P(g)

3

3

Q(a) ∨ Q(b) ∨ Q(g) Q(a) ∨ P(d) ∨ P(b)

3

Let w |= KB2 ∧ P(a) ∧ ¬Q(a).

Then w |= ∃x (P(x) ∧ Q(x)).

19 / 39

Hard Inferences
What should not count as explicit belief?
Things that are not obvious (requires to consider different cases).
For example, only one of the following KBs entails ∃x (P(x) ∧Q(x)):

KB1 KB2

3

P(a) ∨ P(e) ∨ P(f) P(a) ∨ Q(e) ∨ Q(c) 3

3

P(a) ∨ P(e) ∨ Q(f) Q(d) ∨ P(b) ∨ Q(a) 3

3

P(a) ∨ P(e) ∨ P(c) P(a) ∨ P(e) ∨ P(f) 3

3

P(a) ∨ P(e) ∨ Q(c) P(c) ∨ Q(e) ∨ P(a) 3

3

Q(a) ∨ P(b) ∨ P(d) Q(a) ∨ Q(b) ∨ Q(g)

3

3

Q(a) ∨ P(b) ∨ Q(c) P(a) ∨ P(e) ∨ Q(f) 3

3

Q(a) ∨ Q(b) ∨ P(g) Q(b) ∨ Q(a) ∨ P(g)

3

3

Q(a) ∨ Q(b) ∨ Q(g) Q(a) ∨ P(d) ∨ P(b) 3

Let w |= KB2 ∧ P(a) ∧ ¬Q(a) ∧ P(b).

Then w |= ∃x (P(x) ∧ Q(x)).

19 / 39

Hard Inferences
What should not count as explicit belief?
Things that are not obvious (requires to consider different cases).
For example, only one of the following KBs entails ∃x (P(x) ∧Q(x)):

KB1 KB2

3

P(a) ∨ P(e) ∨ P(f) P(a) ∨ Q(e) ∨ Q(c) 3

3

P(a) ∨ P(e) ∨ Q(f) Q(d) ∨ P(b) ∨ Q(a) 3

3

P(a) ∨ P(e) ∨ P(c) P(a) ∨ P(e) ∨ P(f) 3

3

P(a) ∨ P(e) ∨ Q(c) P(c) ∨ Q(e) ∨ P(a) 3

3

Q(a) ∨ P(b) ∨ P(d) Q(a) ∨ Q(b) ∨ Q(g)

3

3

Q(a) ∨ P(b) ∨ Q(c) P(a) ∨ P(e) ∨ Q(f) 3

3

Q(a) ∨ Q(b) ∨ P(g) Q(b) ∨ Q(a) ∨ P(g)

3

3

Q(a) ∨ Q(b) ∨ Q(g) Q(a) ∨ P(d) ∨ P(b) 3

Let w |= KB2 ∧ P(a) ∧ ¬Q(a) ∧ P(b) ∧ ¬Q(b).

Then w |= ∃x (P(x) ∧ Q(x)).

19 / 39

Hard Inferences
What should not count as explicit belief?
Things that are not obvious (requires to consider different cases).
For example, only one of the following KBs entails ∃x (P(x) ∧Q(x)):

KB1 KB2

3

P(a) ∨ P(e) ∨ P(f) P(a) ∨ Q(e) ∨ Q(c) 3

3

P(a) ∨ P(e) ∨ Q(f) Q(d) ∨ P(b) ∨ Q(a) 3

3

P(a) ∨ P(e) ∨ P(c) P(a) ∨ P(e) ∨ P(f) 3

3

P(a) ∨ P(e) ∨ Q(c) P(c) ∨ Q(e) ∨ P(a) 3

3

Q(a) ∨ P(b) ∨ P(d) Q(a) ∨ Q(b) ∨ Q(g) 3

3

Q(a) ∨ P(b) ∨ Q(c) P(a) ∨ P(e) ∨ Q(f) 3

3

Q(a) ∨ Q(b) ∨ P(g) Q(b) ∨ Q(a) ∨ P(g) 3

3

Q(a) ∨ Q(b) ∨ Q(g) Q(a) ∨ P(d) ∨ P(b) 3

Let w |= KB2 ∧ P(a) ∧ ¬Q(a) ∧ P(b) ∧ ¬Q(b) ∧ P(g) ∧ Q(g).
Then w |= ∃x (P(x) ∧ Q(x)).

19 / 39

Semantic Model of Belief Levels
� Level 0: only simple inferences (unit propagation, subsumption)

� Level 1: one case split, i.e., branch on p and ¬p for some atom p

� Level k: k case splits

Ex.: Let KB def
= ((p ∨ r) ∧ (q ∨ ¬r)).

� At level 0, we do not know (p ∨ q)
� At level 1, we can split cases for r:

I KB ∧ r =⇒ q =⇒ (p ∨ q)
I KB ∧ ¬r =⇒ p =⇒ (p ∨ q)

Semantic representation: set of clauses instead of set of worlds
� Set of worlds≈ disjunction of conjunctions (DNF)
� Set of clauses≈ conjunction of disjunctions (CNF)
� CNF is often more compact than DNF

20 / 39

Semantic Model of Belief Levels
� Level 0: only simple inferences (unit propagation, subsumption)
� Level 1: one case split, i.e., branch on p and ¬p for some atom p

� Level k: k case splits

Ex.: Let KB def
= ((p ∨ r) ∧ (q ∨ ¬r)).

� At level 0, we do not know (p ∨ q)
� At level 1, we can split cases for r:

I KB ∧ r =⇒ q =⇒ (p ∨ q)
I KB ∧ ¬r =⇒ p =⇒ (p ∨ q)

Semantic representation: set of clauses instead of set of worlds
� Set of worlds≈ disjunction of conjunctions (DNF)
� Set of clauses≈ conjunction of disjunctions (CNF)
� CNF is often more compact than DNF

20 / 39

Semantic Model of Belief Levels
� Level 0: only simple inferences (unit propagation, subsumption)
� Level 1: one case split, i.e., branch on p and ¬p for some atom p

� Level k: k case splits

Ex.: Let KB def
= ((p ∨ r) ∧ (q ∨ ¬r)).

� At level 0, we do not know (p ∨ q)
� At level 1, we can split cases for r:

I KB ∧ r =⇒ q =⇒ (p ∨ q)
I KB ∧ ¬r =⇒ p =⇒ (p ∨ q)

Semantic representation: set of clauses instead of set of worlds
� Set of worlds≈ disjunction of conjunctions (DNF)
� Set of clauses≈ conjunction of disjunctions (CNF)
� CNF is often more compact than DNF

20 / 39

Semantic Model of Belief Levels
� Level 0: only simple inferences (unit propagation, subsumption)
� Level 1: one case split, i.e., branch on p and ¬p for some atom p

� Level k: k case splits

Ex.: Let KB def
= ((p ∨ r) ∧ (q ∨ ¬r)).

� At level 0, we do not know (p ∨ q)

� At level 1, we can split cases for r:
I KB ∧ r =⇒ q =⇒ (p ∨ q)
I KB ∧ ¬r =⇒ p =⇒ (p ∨ q)

Semantic representation: set of clauses instead of set of worlds
� Set of worlds≈ disjunction of conjunctions (DNF)
� Set of clauses≈ conjunction of disjunctions (CNF)
� CNF is often more compact than DNF

20 / 39

Semantic Model of Belief Levels
� Level 0: only simple inferences (unit propagation, subsumption)
� Level 1: one case split, i.e., branch on p and ¬p for some atom p

� Level k: k case splits

Ex.: Let KB def
= ((p ∨ r) ∧ (q ∨ ¬r)).

� At level 0, we do not know (p ∨ q)
� At level 1, we can split cases for r:

I KB ∧ r =⇒ q =⇒ (p ∨ q)
I KB ∧ ¬r =⇒ p =⇒ (p ∨ q)

Semantic representation: set of clauses instead of set of worlds
� Set of worlds≈ disjunction of conjunctions (DNF)
� Set of clauses≈ conjunction of disjunctions (CNF)
� CNF is often more compact than DNF

20 / 39

Semantic Model of Belief Levels
� Level 0: only simple inferences (unit propagation, subsumption)
� Level 1: one case split, i.e., branch on p and ¬p for some atom p

� Level k: k case splits

Ex.: Let KB def
= ((p ∨ r) ∧ (q ∨ ¬r)).

� At level 0, we do not know (p ∨ q)
� At level 1, we can split cases for r:

I KB ∧ r =⇒ q =⇒ (p ∨ q)
I KB ∧ ¬r =⇒ p =⇒ (p ∨ q)

Semantic representation: set of clauses instead of set of worlds
� Set of worlds≈ disjunction of conjunctions (DNF)
� Set of clauses≈ conjunction of disjunctions (CNF)
� CNF is often more compact than DNF

20 / 39

Setups, Unit Propagation, Subsumption

� Identify clause `1 ∨ . . . ∨ `j with {`1, . . . , `j}
� We write ` to flip the sign of `, e.g., p is ¬p, and ¬p is p
� Recall: empty clause is unsatisfiable

Definition: unit propagation, subsumption, setup
A setup s is a (possibly infinite) set of ground clauses.
Unit propagation infers c \ {`} from c and `.
Subsumption infers c ∪ d from c.
UP(s) closes s under unit propagation.
UP+(s) adds subsumed clauses.
UP−(s) removes subsumed clauses.

21 / 39

Setups, Unit Propagation, Subsumption

� Identify clause `1 ∨ . . . ∨ `j with {`1, . . . , `j}
� We write ` to flip the sign of `, e.g., p is ¬p, and ¬p is p
� Recall: empty clause is unsatisfiable

Definition: unit propagation, subsumption, setup
A setup s is a (possibly infinite) set of ground clauses.
Unit propagation infers c \ {`} from c and `.
Subsumption infers c ∪ d from c.
UP(s) closes s under unit propagation.
UP+(s) adds subsumed clauses.
UP−(s) removes subsumed clauses.

21 / 39

Examples
Ex.: c1 = (p ∨ q ∨ r), c2 = (p ∨ q ∨ ¬r)

� UP({c1, c2}) = {c1, c2}

� UP({c1, c2, r}) = {c1, c2, r, (p ∨ q)}

� UP({c1, c2,¬r}) = {c1, c2,¬r, (p ∨ q)}

� UP+({c1, c2,¬r}) = {c1, c2,¬r, (p ∨ q)} ∪ {c | c ⊇ ¬r or c ⊇ (p ∨ q)}

� UP−({c1, c2,¬r}) = {¬r, (p ∨ q)}

Unit propagation = forward chaining
UP(s) can be computed in linear time (if s is finite).

22 / 39

Examples
Ex.: c1 = (p ∨ q ∨ r), c2 = (p ∨ q ∨ ¬r)

� UP({c1, c2}) = {c1, c2}

� UP({c1, c2, r}) = {c1, c2, r, (p ∨ q)}

� UP({c1, c2,¬r}) = {c1, c2,¬r, (p ∨ q)}

� UP+({c1, c2,¬r}) = {c1, c2,¬r, (p ∨ q)} ∪ {c | c ⊇ ¬r or c ⊇ (p ∨ q)}

� UP−({c1, c2,¬r}) = {¬r, (p ∨ q)}

Unit propagation = forward chaining
UP(s) can be computed in linear time (if s is finite).

22 / 39

Semantics of Limited Belief
Definition: semantics of limited belief
� s |≈ c ⇐⇒ c ∈ UP+(s) if c is a clause
� s |≈ (α ∨ β) ⇐⇒ s |≈ α or s |≈ β if (α ∨ β) is not a clause

� s |≈ ¬(α ∨ β) ⇐⇒ s |≈ ¬α and s |≈ ¬β
� s |≈ ¬¬α ⇐⇒ s |≈ α

� s |≈ K0φ ⇐⇒ s is obviously inconsistent or s |≈ φ

� s |≈ Kk+1φ ⇐⇒ for some atomic proposition P,
(1) s ∪ {P} |≈ Kkφ and(2) s ∪ {¬P} |≈ Kkφ

� s |≈ ¬Kkφ ⇐⇒ s 6|≈ Kkφ

� s |≈ Oφ ⇐⇒ s |≈ φ and s′ 6|≈ φ for all s′ with UP+(s′) (UP+(s)
� s |≈ ¬Oφ ⇐⇒ s 6|≈ Oφ

s is obviously inconsistent when UP(s) contains the empty clause.

23 / 39

Semantics of Limited Belief
Definition: semantics of limited belief
� s |≈ c ⇐⇒ c ∈ UP+(s) if c is a clause
� s |≈ (α ∨ β) ⇐⇒ s |≈ α or s |≈ β if (α ∨ β) is not a clause
� s |≈ ¬(α ∨ β) ⇐⇒ s |≈ ¬α and s |≈ ¬β

� s |≈ ¬¬α ⇐⇒ s |≈ α

� s |≈ K0φ ⇐⇒ s is obviously inconsistent or s |≈ φ

� s |≈ Kk+1φ ⇐⇒ for some atomic proposition P,
(1) s ∪ {P} |≈ Kkφ and(2) s ∪ {¬P} |≈ Kkφ

� s |≈ ¬Kkφ ⇐⇒ s 6|≈ Kkφ

� s |≈ Oφ ⇐⇒ s |≈ φ and s′ 6|≈ φ for all s′ with UP+(s′) (UP+(s)
� s |≈ ¬Oφ ⇐⇒ s 6|≈ Oφ

s is obviously inconsistent when UP(s) contains the empty clause.

23 / 39

Semantics of Limited Belief
Definition: semantics of limited belief
� s |≈ c ⇐⇒ c ∈ UP+(s) if c is a clause
� s |≈ (α ∨ β) ⇐⇒ s |≈ α or s |≈ β if (α ∨ β) is not a clause
� s |≈ ¬(α ∨ β) ⇐⇒ s |≈ ¬α and s |≈ ¬β
� s |≈ ¬¬α ⇐⇒ s |≈ α

� s |≈ K0φ ⇐⇒ s is obviously inconsistent or s |≈ φ

� s |≈ Kk+1φ ⇐⇒ for some atomic proposition P,
(1) s ∪ {P} |≈ Kkφ and(2) s ∪ {¬P} |≈ Kkφ

� s |≈ ¬Kkφ ⇐⇒ s 6|≈ Kkφ

� s |≈ Oφ ⇐⇒ s |≈ φ and s′ 6|≈ φ for all s′ with UP+(s′) (UP+(s)
� s |≈ ¬Oφ ⇐⇒ s 6|≈ Oφ

s is obviously inconsistent when UP(s) contains the empty clause.

23 / 39

Semantics of Limited Belief
Definition: semantics of limited belief
� s |≈ c ⇐⇒ c ∈ UP+(s) if c is a clause
� s |≈ (α ∨ β) ⇐⇒ s |≈ α or s |≈ β if (α ∨ β) is not a clause
� s |≈ ¬(α ∨ β) ⇐⇒ s |≈ ¬α and s |≈ ¬β
� s |≈ ¬¬α ⇐⇒ s |≈ α

� s |≈ K0φ ⇐⇒ s is obviously inconsistent or s |≈ φ

� s |≈ Kk+1φ ⇐⇒ for some atomic proposition P,
(1) s ∪ {P} |≈ Kkφ and(2) s ∪ {¬P} |≈ Kkφ

� s |≈ ¬Kkφ ⇐⇒ s 6|≈ Kkφ

� s |≈ Oφ ⇐⇒ s |≈ φ and s′ 6|≈ φ for all s′ with UP+(s′) (UP+(s)
� s |≈ ¬Oφ ⇐⇒ s 6|≈ Oφ

s is obviously inconsistent when UP(s) contains the empty clause.
23 / 39

Semantics of Limited Belief
Definition: semantics of limited belief
� s |≈ c ⇐⇒ c ∈ UP+(s) if c is a clause
� s |≈ (α ∨ β) ⇐⇒ s |≈ α or s |≈ β if (α ∨ β) is not a clause
� s |≈ ¬(α ∨ β) ⇐⇒ s |≈ ¬α and s |≈ ¬β
� s |≈ ¬¬α ⇐⇒ s |≈ α

� s |≈ K0φ ⇐⇒ s is obviously inconsistent or s |≈ φ

� s |≈ Kk+1φ ⇐⇒ for some atomic proposition P,
(1) s ∪ {P} |≈ Kkφ and(2) s ∪ {¬P} |≈ Kkφ

� s |≈ ¬Kkφ ⇐⇒ s 6|≈ Kkφ

� s |≈ Oφ ⇐⇒ s |≈ φ and s′ 6|≈ φ for all s′ with UP+(s′) (UP+(s)

� s |≈ ¬Oφ ⇐⇒ s 6|≈ Oφ

s is obviously inconsistent when UP(s) contains the empty clause.
23 / 39

Semantics of Limited Belief
Definition: semantics of limited belief
� s |≈ c ⇐⇒ c ∈ UP+(s) if c is a clause
� s |≈ (α ∨ β) ⇐⇒ s |≈ α or s |≈ β if (α ∨ β) is not a clause
� s |≈ ¬(α ∨ β) ⇐⇒ s |≈ ¬α and s |≈ ¬β
� s |≈ ¬¬α ⇐⇒ s |≈ α

� s |≈ K0φ ⇐⇒ s is obviously inconsistent or s |≈ φ

� s |≈ Kk+1φ ⇐⇒ for some atomic proposition P,
(1) s ∪ {P} |≈ Kkφ and(2) s ∪ {¬P} |≈ Kkφ

� s |≈ ¬Kkφ ⇐⇒ s 6|≈ Kkφ

� s |≈ Oφ ⇐⇒ s |≈ φ and s′ 6|≈ φ for all s′ with UP+(s′) (UP+(s)
� s |≈ ¬Oφ ⇐⇒ s 6|≈ Oφ

s is obviously inconsistent when UP(s) contains the empty clause.
23 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).

� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q)

7

� s |≈ K1(p ∨ q)

3

� s |≈ ¬K0p

3

� s |≈ ¬K0¬p

3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})

� s |≈ K0(p ∨ q)

7

� s |≈ K1(p ∨ q)

3

� s |≈ ¬K0p

3

� s |≈ ¬K0¬p

3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q)

7

⇐⇒ s is obv. inconsistent or s |≈ (p ∨ q)
⇐⇒ s is obv. inconsistent or (p ∨ q) ∈ UP+(s) 7

� s |≈ K1(p ∨ q)

3

� s |≈ ¬K0p

3

� s |≈ ¬K0¬p

3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q)

7

⇐⇒ s is obv. inconsistent or s |≈ (p ∨ q)

⇐⇒ s is obv. inconsistent or (p ∨ q) ∈ UP+(s) 7

� s |≈ K1(p ∨ q)

3

� s |≈ ¬K0p

3

� s |≈ ¬K0¬p

3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q)

7

⇐⇒ s is obv. inconsistent or s |≈ (p ∨ q)
⇐⇒ s is obv. inconsistent or (p ∨ q) ∈ UP+(s) 7

� s |≈ K1(p ∨ q)

3

� s |≈ ¬K0p

3

� s |≈ ¬K0¬p

3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q)

3

� s |≈ ¬K0p

3

� s |≈ ¬K0¬p

3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q)

3
⇐= splitting on r succeeds:

(1) s ∪ {r} |≈ K0(p ∨ q)

⇐⇒ s ∪ {r} is obv. inconsistent or (p ∨ q) ∈ UP+(s ∪ {r})
because UP infers (p ∨ q) from (p ∨ q ∨ ¬r) and r

(2) s ∪ {¬r} |≈ K0(p ∨ q)

⇐⇒ s ∪ {¬r} is obv. inconsistent or (p ∨ q) ∈ UP+(s ∪ {¬r})
because UP infers (p ∨ q) from (p ∨ q ∨ r) and ¬r

� s |≈ ¬K0p

3

� s |≈ ¬K0¬p

3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q)

3

⇐⇒ for some atom P, (1) and (2) succeed:
(1) s ∪ {P} |≈ K0(p ∨ q)

⇐⇒ s ∪ {P} is obv. inconsistent or (p ∨ q) ∈ UP+(s ∪ {P})
because UP infers (p ∨ q) from (p ∨ q ∨ ¬r) and r

(2) s ∪ {¬P} |≈ K0(p ∨ q)

⇐⇒ s ∪ {¬P} is obv. inconsistent or (p ∨ q) ∈ UP+(s ∪ {¬P})
because UP infers (p ∨ q) from (p ∨ q ∨ r) and ¬r

� s |≈ ¬K0p

3

� s |≈ ¬K0¬p

3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q)

3

⇐⇒ for some atom P, (1) and (2) succeed:
(1) s ∪ {P} |≈ K0(p ∨ q)

⇐⇒ s ∪ {P} is obv. inconsistent or (p ∨ q) ∈ UP+(s ∪ {P})

because UP infers (p ∨ q) from (p ∨ q ∨ ¬r) and r

(2) s ∪ {¬P} |≈ K0(p ∨ q)
⇐⇒ s ∪ {¬P} is obv. inconsistent or (p ∨ q) ∈ UP+(s ∪ {¬P})

because UP infers (p ∨ q) from (p ∨ q ∨ r) and ¬r

� s |≈ ¬K0p

3

� s |≈ ¬K0¬p

3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q)

3

⇐= splitting on r succeeds:
(1) s ∪ {r} |≈ K0(p ∨ q)

⇐⇒ s ∪ {r} is obv. inconsistent or (p ∨ q) ∈ UP+(s ∪ {r})

because UP infers (p ∨ q) from (p ∨ q ∨ ¬r) and r

(2) s ∪ {¬r} |≈ K0(p ∨ q)
⇐⇒ s ∪ {¬r} is obv. inconsistent or (p ∨ q) ∈ UP+(s ∪ {¬r})

because UP infers (p ∨ q) from (p ∨ q ∨ r) and ¬r

� s |≈ ¬K0p

3

� s |≈ ¬K0¬p

3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q)

3

⇐= splitting on r succeeds:
(1) s ∪ {r} |≈ K0(p ∨ q)

⇐⇒ s ∪ {r} is obv. inconsistent or (p ∨ q) ∈ UP+(s ∪ {r}) 3

because UP infers (p ∨ q) from (p ∨ q ∨ ¬r) and r

(2) s ∪ {¬r} |≈ K0(p ∨ q)
⇐⇒ s ∪ {¬r} is obv. inconsistent or (p ∨ q) ∈ UP+(s ∪ {¬r}) 3

because UP infers (p ∨ q) from (p ∨ q ∨ r) and ¬r

� s |≈ ¬K0p

3

� s |≈ ¬K0¬p

3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ ¬K0p

3

� s |≈ ¬K0¬p

3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ ¬K0p

3

⇐⇒ s is not obv. inconsistent and p /∈ UP+(s) 3

� s |≈ ¬K0¬p

3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ ¬K0p

3

⇐⇒ s is not obv. inconsistent and p /∈ UP+(s) 3

� s |≈ ¬K0¬p

3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ ¬K0p 3

� s |≈ ¬K0¬p

3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ ¬K0p 3

� s |≈ ¬K0¬p

3

⇐⇒ s is not obv. inconsistent and ¬p /∈ UP+(s) 3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ ¬K0p 3

� s |≈ ¬K0¬p

3

⇐⇒ s is not obv. inconsistent and ¬p /∈ UP+(s) 3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ ¬K0p 3

� s |≈ ¬K0¬p 3

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ ¬K0p 3

� s |≈ ¬K0¬p 3

But what about ¬K1¬p? And ¬K2¬p? And so on?

Kk is incomplete (see first example).So how to find out with certainty that p is unknown?
Need a dual operator to Kkφ, call itMkφ, to say that φ is possible.

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ ¬K0p 3

� s |≈ ¬K0¬p 3

But what about ¬K1¬p? And ¬K2¬p? And so on?
Kk is incomplete (see first example).So how to find out with certainty that p is unknown?

Need a dual operator to Kkφ, call itMkφ, to say that φ is possible.

24 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ ¬K0p 3

� s |≈ ¬K0¬p 3

But what about ¬K1¬p? And ¬K2¬p? And so on?
Kk is incomplete (see first example).So how to find out with certainty that p is unknown?
Need a dual operator to Kkφ, call itMkφ, to say that φ is possible.

24 / 39

Semantics of Limited Belief (2)
The semantics of unlimitedMα inOL is:
Definition: semanticsM

� e,w |= Mα ⇐⇒ for some w, w ∈ e and e,w |= α

Note: e,w |= Mα ⇐⇒ e,w |= ¬K¬α

Definition: semanticsMk

� s |≈ M0φ ⇐⇒ s is obviously consistent and s |≈ φ

� s |≈ Mk+1φ ⇐⇒ for some literal L, s ∪ {L} |≈ Mkφ

� s |≈ ¬Mkφ ⇐⇒ s 6|≈ Mkφ

s is obviously consistent when UP−(s) does not contain the empty
clause and does not contain any clauses that contain
complementary literals (c1, c2 ∈ UP−(s), P ∈ c1, ¬P ∈ c2 for some P)

25 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ M0p

7

� s |≈ M1p

3

� s |≈ M0¬p 7

� s |≈ M1¬p 7

� s |≈ M2¬p 3

26 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ M0p

7

⇐⇒ s is obv. consistent and s |≈ p
⇐⇒ s is obv. consistent and p ∈ UP+(s) 7because s is not obv. consistent (r occurs pos. and neg. in UP−(s))and also p /∈ UP+(s)
� s |≈ M1p

3

� s |≈ M0¬p 7

� s |≈ M1¬p 7

� s |≈ M2¬p 3

26 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ M0p

7

⇐⇒ s is obv. consistent and s |≈ p

⇐⇒ s is obv. consistent and p ∈ UP+(s) 7because s is not obv. consistent (r occurs pos. and neg. in UP−(s))and also p /∈ UP+(s)
� s |≈ M1p

3

� s |≈ M0¬p 7

� s |≈ M1¬p 7

� s |≈ M2¬p 3

26 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ M0p

7

⇐⇒ s is obv. consistent and s |≈ p
⇐⇒ s is obv. consistent and p ∈ UP+(s) 7because s is not obv. consistent (r occurs pos. and neg. in UP−(s))and also p /∈ UP+(s)

� s |≈ M1p

3

� s |≈ M0¬p 7

� s |≈ M1¬p 7

� s |≈ M2¬p 3

26 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ M0p 7

� s |≈ M1p

3

� s |≈ M0¬p 7

� s |≈ M1¬p 7

� s |≈ M2¬p 3

26 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ M0p 7

� s |≈ M1p

3

⇐= s ∪ {p} |≈ M0p
⇐⇒ s ∪ {p} is obv. consistent and s ∪ {p} |≈ p

3

because s is obv. consistent (UP−(s ∪ {p}) = {p})and p ∈ UP+(s ∪ {p})
� s |≈ M0¬p 7

� s |≈ M1¬p 7

� s |≈ M2¬p 3

26 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ M0p 7

� s |≈ M1p

3

⇐⇒ for some atom P, s ∪ {P} |≈ M0p

⇐⇒ s ∪ {P} is obv. consistent and s ∪ {P} |≈ p

3

because s is obv. consistent (UP−(s ∪ {p}) = {p})and p ∈ UP+(s ∪ {p})
� s |≈ M0¬p 7

� s |≈ M1¬p 7

� s |≈ M2¬p 3

26 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ M0p 7

� s |≈ M1p

3

⇐⇒ for some atom P, s ∪ {P} |≈ M0p
⇐⇒ s ∪ {P} is obv. consistent and s ∪ {P} |≈ p

3because s is obv. consistent (UP−(s ∪ {p}) = {p})and p ∈ UP+(s ∪ {p})
� s |≈ M0¬p 7

� s |≈ M1¬p 7

� s |≈ M2¬p 3

26 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ M0p 7

� s |≈ M1p

3

⇐= s ∪ {p} |≈ M0p
⇐⇒ s ∪ {p} is obv. consistent and s ∪ {p} |≈ p 3because s is obv. consistent (UP−(s ∪ {p}) = {p})and p ∈ UP+(s ∪ {p})

� s |≈ M0¬p 7

� s |≈ M1¬p 7

� s |≈ M2¬p 3

26 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ M0p 7

� s |≈ M1p 3

� s |≈ M0¬p 7

� s |≈ M1¬p 7

� s |≈ M2¬p 3

26 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ M0p 7

� s |≈ M1p 3

� s |≈ M0¬p 7

� s |≈ M1¬p 7

� s |≈ M2¬p 3

26 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ M0p 7

� s |≈ M1p 3

� s |≈ M0¬p 7

� s |≈ M1¬p 7

� s |≈ M2¬p 3

26 / 39

Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ M0p 7

� s |≈ M1p 3

� s |≈ M0¬p 7

� s |≈ M1¬p 7

� s |≈ M2¬p 3

26 / 39

Some Properties
Theorem: monotonicity
|≈ Kkφ→ Kk+1φ.
|≈ Mkφ→ Mk+1φ.

Definition: proper+ KB
A KB is proper+ when it is a conjunction of clauses (CNF).

Let KB be proper+ of the form c1 ∧ . . . ∧ cj.

Theorem: unique-model property
s |≈ OKB ⇐⇒ UP+(s) = UP+({c1, . . . , cj}).

27 / 39

Some Properties (2)
Let KB be proper+.
Theorem: soundness
OKB |≈ Kkφ =⇒ OKB |= Kφ.
OKB |≈ Mkφ =⇒ OKB |= Mφ.

Theorem: eventual completeness
OKB |= Kφ =⇒ OKB |≈ Kkφ for large enough k.
OKB |= Mφ =⇒ OKB |≈ Mkφ for large enough k.

Theorem: complexity
OKB |= Kφ and OKB |= Mφ is tractable for small k:

O(2k · (|KB|+ |φ|)k+3).
28 / 39

Generalisation of the Logic of Limited Belief
� Introspection

I Extend semantics to keep track of original setup without splits
I Representation theorem translates to limited belief

� First-order logic
I s |≈ ∃xφ ⇐⇒ s |≈ φx

n for some n
I Proper+ means CNF without ∃, i.e., ∀~x ∧

i ci

Let KB be proper+.
Theorem: soundness
OKB |≈ Kkφ =⇒ OKB |= Kkφ.
OKB |≈ Mkφ =⇒ OKB |= Mkφ.

Theorem: decidability
OKB |≈ σ is decidable.

29 / 39

Generalisation of the Logic of Limited Belief
� Introspection

I Extend semantics to keep track of original setup without splits
I Representation theorem translates to limited belief

� First-order logic
I s |≈ ∃xφ ⇐⇒ s |≈ φx

n for some n
I Proper+ means CNF without ∃, i.e., ∀~x ∧

i ci

Let KB be proper+.
Theorem: soundness
OKB |≈ Kkφ =⇒ OKB |= Kkφ.
OKB |≈ Mkφ =⇒ OKB |= Mkφ.

Theorem: decidability
OKB |≈ σ is decidable.

29 / 39

Does Limited Belief Work?
Experiment: Sudoku
� Fill 9 × 9 board with numbers 1,. . . ,9 such that no identical
numbers in rows, columns, 3 × 3 blocks

� Has a unique solution
� Difficulty depends on how many and which clues we get

I Newspaper: easy (≈ 38 clues), medium (≈ 24 clues), hard (≈ 24 clues)
I Top 1465: extremely difficult (18 clues, proven minimum is 17)

� Question: do belief level and difficulty correlate?

30 / 39

Sudoku with Limited Belief

0 10 20 30 40 50 60 70 81

Top1465
Hard

Medium

Easy

Average # of cells solved at. . .
clues level 0 level 1 level 2 level 3 level 4 level 5

31 / 39

Overview of the Lecture

� Limited Belief – First Attempt
� Limited Belief – Second Attempt
� Implementation Techniques

32 / 39

Implementation of a Solver
� Same techniques can be used for

I Propositional Satisfiability
I Answer Set Programs
I Limited Belief

� Solvers operate on sets of ground clauses
I Recall: a clause is a disjunction of literals
I SAT: find a model
I ASP: find a stable model
I Limited Belief: case splits, subsumption

� Data structures and algorithms:
I Davis-Putnam-Logemann-Loveland (DPLL) algorithm
I Watched-Literal Scheme
I Conflict-Driven Clause Learning (CDCL)

While SAT is NP-complete for propositional logic and for ASP,
modern solvers can solve large instances (millions of variables).

33 / 39

Implementation of a Solver
� Same techniques can be used for

I Propositional Satisfiability
I Answer Set Programs
I Limited Belief

� Solvers operate on sets of ground clauses
I Recall: a clause is a disjunction of literals
I SAT: find a model
I ASP: find a stable model
I Limited Belief: case splits, subsumption

� Data structures and algorithms:
I Davis-Putnam-Logemann-Loveland (DPLL) algorithm
I Watched-Literal Scheme
I Conflict-Driven Clause Learning (CDCL)

While SAT is NP-complete for propositional logic and for ASP,
modern solvers can solve large instances (millions of variables).

33 / 39

Implementation of a Solver
� Same techniques can be used for

I Propositional Satisfiability
I Answer Set Programs
I Limited Belief

� Solvers operate on sets of ground clauses
I Recall: a clause is a disjunction of literals
I SAT: find a model
I ASP: find a stable model
I Limited Belief: case splits, subsumption

� Data structures and algorithms:
I Davis-Putnam-Logemann-Loveland (DPLL) algorithm
I Watched-Literal Scheme
I Conflict-Driven Clause Learning (CDCL)

While SAT is NP-complete for propositional logic and for ASP,
modern solvers can solve large instances (millions of variables).

33 / 39

DPLL Algorithm
Definition: DPLL algorithm
A literal ` is assigned in s iff ` ∈ s or ` ∈ s.
Input: set of clauses s
Output: 1 iff s is satisfiable in propositional logic
DPLL(s) procedure:
1. If s contains the empty clause, return 0
2. If all literals are assigned in s, return 1
3. Select some unassigned literal `
4. Returnmin{DPLL(UP(s ∪ {`})),DPLL(UP(s ∪ {`}))}

Theorem: sound and complete
DPLL is sound and complete for SAT in propositional logic.

How to select literal? Prefer ones that trigger UP

34 / 39

DPLL Algorithm
Definition: DPLL algorithm
A literal ` is assigned in s iff ` ∈ s or ` ∈ s.
Input: set of clauses s
Output: 1 iff s is satisfiable in propositional logic
DPLL(s) procedure:
1. If s contains the empty clause, return 0
2. If all literals are assigned in s, return 1
3. Select some unassigned literal `
4. Returnmin{DPLL(UP(s ∪ {`})),DPLL(UP(s ∪ {`}))}

Theorem: sound and complete
DPLL is sound and complete for SAT in propositional logic.

How to select literal? Prefer ones that trigger UP

34 / 39

DPLL Algorithm
Definition: DPLL algorithm
A literal ` is assigned in s iff ` ∈ s or ` ∈ s.
Input: set of clauses s
Output: 1 iff s is satisfiable in propositional logic
DPLL(s) procedure:
1. If s contains the empty clause, return 0
2. If all literals are assigned in s, return 1
3. Select some unassigned literal `
4. Returnmin{DPLL(UP(s ∪ {`})),DPLL(UP(s ∪ {`}))}

Theorem: sound and complete
DPLL is sound and complete for SAT in propositional logic.

How to select literal? Prefer ones that trigger UP 34 / 39

Watched-Literal Scheme

� DPLL uses backtracking:
1. Add ` to s, close under unit propagation2. (recursive calls)3. Remove ` from s, undo the unit propagation

� Watched-literal scheme
I s implements as stack
I Step 1 pushes onto s, leaves old clauses unchanged
I Step 3 pops from (shrinks) s
I s is kept closed under UP

35 / 39

Watched-Literal Scheme

� DPLL uses backtracking:
1. Add ` to s, close under unit propagation2. (recursive calls)3. Remove ` from s, undo the unit propagation

� Watched-literal scheme
I s implements as stack
I Step 1 pushes onto s, leaves old clauses unchanged
I Step 3 pops from (shrinks) s
I s is kept closed under UP

35 / 39

Watched-Literal Scheme

� DPLL uses backtracking:
1. Add ` to s, close under unit propagation2. (recursive calls)3. Remove ` from s, undo the unit propagation

� Watched-literal scheme
I s implements as stack
I Step 1 pushes onto s, leaves old clauses unchanged
I Step 3 pops from (shrinks) s
I s is kept closed under UP

35 / 39

Watched-Literal Scheme: Observation
Let s be a set of clauses which is closed under unit propagation. Let
c ∈ s with |c| ≥ 2. If c contains at least two unassigned literals,
select two of them as watched literals; otherwise select two of them
randomly. When we add a new literal ` to s, then unit propagation
of c with all the unit clauses in s together with ` produces a new
unit clause only if ` is one of the watched literals.
Why?
� Case 1: Suppose there are two unassigned literals in c that are
not assigned initially. Then the watched literals `1, `2 areunassigned. Suppose unit propagation of c with all the unit
clauses in s together with ` produces a new unit clause c′.
Then |c′| = 1 < |c|, so either `1 /∈ c or `2 /∈ c. Since `1, `2 werenot assigned before adding `, either `1 or `2 must be `.

� Case 2: There are no two unassigned literals in c. Then there is
at most one unassigned literal `1 in c, in which case we have `1already as a unit clause in s.

36 / 39

Watched-Literal Scheme
Definition: watched literals
For every clause c ∈ s with |c| ≥ 2, mark two literals as watched.

AddUnit(`) procedure:
1. Push ` onto s.
2. If ` ∈ s, mark s as inconsistent and return.
3. For every c ∈ s with |c| ≥ 2, check if ` is watched.

If yes, propagate the unit clauses from s with c to infer c′.
If |c′| = 0, mark s as inconsistent.
If |c′| = 1, add c′ to s (i.e., recursive call to AddUnit(c′)).
If |c′| > 1, select literals from c′ as new watched literals for c.

Backtrack procedure:
1. Store n := |s|
2. (recursive calls)
3. Pop from s until |s| = n

Example on paper

37 / 39

Watched-Literal Scheme
Definition: watched literals
For every clause c ∈ s with |c| ≥ 2, mark two literals as watched.
AddUnit(`) procedure:
1. Push ` onto s.
2. If ` ∈ s, mark s as inconsistent and return.
3. For every c ∈ s with |c| ≥ 2, check if ` is watched.

If yes, propagate the unit clauses from s with c to infer c′.
If |c′| = 0, mark s as inconsistent.
If |c′| = 1, add c′ to s (i.e., recursive call to AddUnit(c′)).
If |c′| > 1, select literals from c′ as new watched literals for c.

Backtrack procedure:
1. Store n := |s|
2. (recursive calls)
3. Pop from s until |s| = n

Example on paper

37 / 39

Watched-Literal Scheme
Definition: watched literals
For every clause c ∈ s with |c| ≥ 2, mark two literals as watched.
AddUnit(`) procedure:
1. Push ` onto s.
2. If ` ∈ s, mark s as inconsistent and return.
3. For every c ∈ s with |c| ≥ 2, check if ` is watched.

If yes, propagate the unit clauses from s with c to infer c′.
If |c′| = 0, mark s as inconsistent.
If |c′| = 1, add c′ to s (i.e., recursive call to AddUnit(c′)).
If |c′| > 1, select literals from c′ as new watched literals for c.

Backtrack procedure:
1. Store n := |s|
2. (recursive calls)
3. Pop from s until |s| = n

Example on paper 37 / 39

Conflict-Driven Clause Learning

t ¬t

s

t ¬t

¬s

r

t ¬t

s

t ¬t

¬s

¬r

q

t ¬t

s

t ¬t

¬s

r

t ¬t

s

t ¬t

¬s

¬r

¬q

p

t ¬t

s

t ¬t

¬s

r

t ¬t

s

t ¬t

¬s

¬r

q

t ¬t

s

t ¬t

¬s

r

t ¬t

s

t ¬t

¬s

¬r

¬q

¬p

Conflict caused by ¬r and s! Add conflict clause (r ∨ ¬s).
Implicitly prunes future subtrees.

38 / 39

Conflict-Driven Clause Learning

t ¬t

s

t ¬t

¬s

r

t ¬t

s

t ¬t

¬s

¬r

q

t ¬t

s

t ¬t

¬s

r

t ¬t

s

t ¬t

¬s

¬r

¬q

p

t ¬t

s

t ¬t

¬s

r

t ¬t

s

t ¬t

¬s

¬r

q

t ¬t

s

t ¬t

¬s

r

t ¬t

s

t ¬t

¬s

¬r

¬q

¬p

Conflict caused by ¬r and s! Add conflict clause (r ∨ ¬s).

Implicitly prunes future subtrees.

38 / 39

Conflict-Driven Clause Learning

t ¬t

s

t ¬t

¬s

r

t ¬t

s

t ¬t

¬s

¬r

q

t ¬t

s

t ¬t

¬s

r

t ¬t

s

t ¬t

¬s

¬r

¬q

p

t ¬t

s

t ¬t

¬s

r

t ¬t

s

t ¬t

¬s

¬r

q

t ¬t

s

t ¬t

¬s

r

t ¬t

s

t ¬t

¬s

¬r

¬q

¬p

Conflict caused by ¬r and s! Add conflict clause (r ∨ ¬s).
Implicitly prunes future subtrees.

38 / 39

Conflict-Driven Clause Learning
� Learn from conflicts

I Why did a conflict occur?
I Analyse, find reason, feed back negation of reason to s

� Consider a conflict caused by `1, . . . , `k
I UP of `1, . . . , `k with c1 ∈ s infers `k+1
I UP of `1, . . . , `k with c2 ∈ s infers `k+1

Then s entails `1 ∨ . . . ∨ `k

Theorem: sound and complete
DPLL + CDCL is sound and complete for SAT in propositional logic.

Example on paper

39 / 39

Conflict-Driven Clause Learning
� Learn from conflicts

I Why did a conflict occur?
I Analyse, find reason, feed back negation of reason to s

� Consider a conflict caused by `1, . . . , `k
I UP of `1, . . . , `k with c1 ∈ s infers `k+1
I UP of `1, . . . , `k with c2 ∈ s infers `k+1

Then s entails `1 ∨ . . . ∨ `k

Theorem: sound and complete
DPLL + CDCL is sound and complete for SAT in propositional logic.

Example on paper

39 / 39

Conflict-Driven Clause Learning
� Learn from conflicts

I Why did a conflict occur?
I Analyse, find reason, feed back negation of reason to s

� Consider a conflict caused by `1, . . . , `k
I UP of `1, . . . , `k with c1 ∈ s infers `k+1
I UP of `1, . . . , `k with c2 ∈ s infers `k+1

Then s entails `1 ∨ . . . ∨ `k

Theorem: sound and complete
DPLL + CDCL is sound and complete for SAT in propositional logic.

Example on paper

39 / 39

