Tractable Reasoning with Limited Belief

Christoph Schwering

UNSW Sydney

COMP4418, Week 8

Computational Aspects of Reasoning

Good news:

 \mathbf{O} KB $\models \alpha$ reduces to KB $\models \varphi_1, \dots,$ KB $\models \varphi_k$ (Representation Theorem)

▶ No modal reasoning necessary (no **O**, no **K**)

Computational Aspects of Reasoning

Good news:

 \mathbf{O} KB $\models \alpha$ reduces to KB $\models \varphi_1, \dots,$ KB $\models \varphi_k$ (Representation Theorem)

▶ No modal reasoning necessary (no **O**, no **K**)

Bad (old) news:

First-order case: $KB \models \phi$ is only semidecidable

- \blacktriangleright There is a procedure that always halts if KB $\models \phi$
- $\blacktriangleright \hspace{0.1 cm} \text{But it might not terminate if KB} \not\models \varphi$

Computational Aspects of Reasoning

Good news:

 \mathbf{O} KB $\models \alpha$ reduces to KB $\models \varphi_1, \dots,$ KB $\models \varphi_k$ (Representation Theorem)

▶ No modal reasoning necessary (no **O**, no **K**)

Bad (old) news:

First-order case: $KB \models \phi$ is only semidecidable

- \blacktriangleright There is a procedure that always halts if KB $\models \phi$
- \blacktriangleright But it might not terminate if KB $eq \varphi$

Propositional case: $KB \models \phi$ is intractable (or P = NP)

- ► KB $\models \phi$ is co-NP-complete
- co-NP contains all problems whose complement is in NP

We could use a standard theorem prover and set a timeout.
 <u>But</u>: The underlying logic would be hopelessly complex.

Some Options We Have

- We could use a standard theorem prover and set a timeout.
 <u>But</u>: The underlying logic would be hopelessly complex.
- 2. We could restrict the expressivity of our representation language.
 - Horn logic
 - Description logics

But: Humans can deal with very complex representations.

Some sources of complexity:

All tautologies are known E.g., $\models \mathbf{K}(p \lor \neg p)$

Some sources of complexity:

- All tautologies are known E.g., $\models \mathbf{K}(p \lor \neg p)$
- Knowledge is closed under logical consequence E.g., $\models \mathbf{K}p \land \mathbf{K}(p \rightarrow q) \rightarrow \mathbf{K}q$

Some sources of complexity:

- All tautologies are known E.g., $\models \mathbf{K}(p \lor \neg p)$
- Knowledge is closed under logical consequence E.g., \models Kp \land K(p \rightarrow q) \rightarrow Kq
- Knowledge is closed under equivalence E.g., \models Kp \leftrightarrow K(p \land (q \lor ¬q))

Some sources of complexity:

- All tautologies are known E.g., $\models \mathbf{K}(p \lor \neg p)$
- Knowledge is closed under logical consequence E.g., \models Kp \land K(p \rightarrow q) \rightarrow Kq
- Knowledge is closed under equivalence E.g., \models Kp \leftrightarrow K(p \land (q \lor ¬q))
- Inconsistent knowledge implies knowing everything (incl. nonsense) E.g., \models K($p \land \neg p$) → Kq

• Want to weaken the entailment relation \models , call it \models .

- Want to weaken the entailment relation \models , call it \models .
- Should be sound: \mathbf{O} KB $\models \mathbf{K} \alpha \implies \mathbf{O}$ KB $\models \mathbf{K} \alpha$

- Want to weaken the entailment relation \models , call it \models .
- $\blacksquare \text{ Should be sound: } \mathbf{O}\text{KB} \models \mathbf{K}\alpha \implies \mathbf{O}\text{KB} \models \mathbf{K}\alpha$
- Should be incomplete: \mathbf{O} KB \models $\mathbf{K} \alpha \implies \mathbf{O}$ KB \models $\mathbf{K} \alpha$

- Want to weaken the entailment relation \models , call it \models .
- Should be sound: \mathbf{O} KB $\models \mathbf{K} \alpha \implies \mathbf{O}$ KB $\models \mathbf{K} \alpha$
- Should be incomplete: \mathbf{O} KB \models $\mathbf{K} \alpha \implies \mathbf{O}$ KB \models $\mathbf{K} \alpha$
- Should be easy to compute \mathbf{O} KB \models K α

- Want to weaken the entailment relation \models , call it \models .
- Should be sound: \mathbf{O} KB $\models \mathbf{K} \alpha \implies \mathbf{O}$ KB $\models \mathbf{K} \alpha$
- Should be incomplete: \mathbf{O} KB \models $\mathbf{K} \alpha \implies \mathbf{O}$ KB \models $\mathbf{K} \alpha$
- Should be easy to compute \mathbf{O} KB $\models \mathbf{K} \alpha$

This is different from restricting expressiveness:

- Horn logic, description logics restrict the language
- Limited belief restricts the *semantics* (mainly)

Overview of the Lecture

Limited Belief – First Attempt

Limited Belief – Second Attempt

Data structures and algorithms for ASP solvers

Limited Belief — First Attempt

Idea: Allow more models as part of epistemic state e

Limited Belief — First Attempt

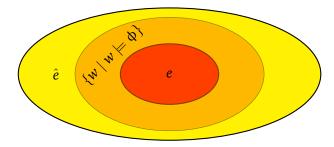
Idea: Allow more models as part of epistemic state e

Why?

Larger *e* corresponds to fewer beliefs

•
$$e \models \mathbf{K} \phi \iff$$
 for all $w \in e$, $w \models \phi$

 $\blacksquare \text{ For } \hat{e} \supseteq e : \quad \hat{e} \models \mathbf{K} \varphi \implies e \models \mathbf{K} \varphi$



Limited Belief — First Attempt

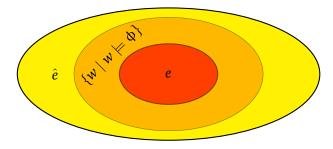
Idea: Allow more models as part of epistemic state *e*

Why?

Larger *e* corresponds to fewer beliefs

•
$$e \models \mathbf{K} \phi \iff$$
 for all $w \in e, \ w \models \phi$

 $\blacksquare \ \text{For} \ \hat{e} \supseteq e : \ \hat{e} \models \mathbf{K} \varphi \implies e \models \mathbf{K} \varphi$



Simplification: propositional logic for now, no nested O, K.

Multi-Valued Worlds

Definition: multi-valued world

A **multi-valued world** v is a function from the atomic propositions to $\{\{\}, \{0\}, \{1\}, \{0, 1\}\}$.

Multi-Valued Worlds

Definition: multi-valued world

A **multi-valued world** v is a function from the atomic propositions to $\{\{\}, \{0\}, \{1\}, \{0, 1\}\}$.

- $v[p] = \{\}$ means "never heard of it"
- $v[p] = \{0\}$ means "false"
- $v[p] = \{1\}$ means "true"
- $v[p] = \{0,1\}$ means "conflicting information"

We will define true support and false support.

Multi-Valued Worlds

Definition: multi-valued world

A **multi-valued world** v is a function from the atomic propositions to $\{\{\}, \{0\}, \{1\}, \{0, 1\}\}$.

An **epistemic state** *e* is a set of multi-valued worlds.

- $v[p] = \{\}$ means "never heard of it"
- $v[p] = \{0\}$ means "false"
- $v[p] = \{1\}$ means "true"
- $v[p] = \{0,1\}$ means "conflicting information"

We will define true support and false support.

$$\bullet, v \models_{\mathrm{T}} P \iff v[P] \ni 1$$
$$e, v \models_{\mathrm{F}} P \iff v[P] \ni 0$$

•
$$e, v \models_{T} P \iff v[P] \ni 1$$

 $e, v \models_{F} P \iff v[P] \ni 0$
• $e, v \models_{T} \neg \alpha \iff e, v \models_{F} \alpha$
 $e, v \models_{F} \neg \alpha \iff e, v \models_{T} \alpha$

•
$$e, v \models_{T} P \iff v[P] \ni 1$$

 $e, v \models_{F} P \iff v[P] \ni 0$
• $e, v \models_{T} \neg \alpha \iff e, v \models_{F} \alpha$
 $e, v \models_{F} \neg \alpha \iff e, v \models_{T} \alpha$
• $e, v \models_{T} (\alpha \lor \beta) \iff e, v \models_{T} \alpha \text{ or } e, v \models_{T} \beta$
 $e, v \models_{F} (\alpha \lor \beta) \iff e, v \models_{F} \alpha \text{ and } e, v \models_{F} \beta$

•
$$e, v \models_{T} P \iff v[P] \ni 1$$

 $e, v \models_{F} P \iff v[P] \ni 0$
• $e, v \models_{T} \neg \alpha \iff e, v \models_{F} \alpha$
 $e, v \models_{F} \neg \alpha \iff e, v \models_{T} \alpha$
• $e, v \models_{T} (\alpha \lor \beta) \iff e, v \models_{T} \alpha \text{ or } e, v \models_{T} \beta$
 $e, v \models_{F} (\alpha \lor \beta) \iff e, v \models_{F} \alpha \text{ and } e, v \models_{F} \beta$
• $e, v \models_{T} (\alpha \land \beta) \iff e, v \models_{T} \alpha \text{ or } e, v \models_{T} \beta$
 $e, v \models_{F} (\alpha \land \beta) \iff e, v \models_{F} \alpha \text{ or } e, v \models_{F} \beta$

•
$$e, v \models_{T} P \iff v[P] \ni 1$$

 $e, v \models_{F} P \iff v[P] \ni 0$
• $e, v \models_{T} \neg \alpha \iff e, v \models_{F} \alpha$
 $e, v \models_{T} \neg \alpha \iff e, v \models_{T} \alpha$
• $e, v \models_{T} (\alpha \lor \beta) \iff e, v \models_{T} \alpha \text{ or } e, v \models_{T} \beta$
 $e, v \models_{F} (\alpha \lor \beta) \iff e, v \models_{F} \alpha \text{ and } e, v \models_{F} \beta$
• $e, v \models_{T} (\alpha \land \beta) \iff e, v \models_{F} \alpha \text{ and } e, v \models_{T} \beta$
• $e, v \models_{F} (\alpha \land \beta) \iff e, v \models_{F} \alpha \text{ or } e, v \models_{F} \beta$
• $e, v \models_{F} (\alpha \land \beta) \iff e, v \models_{F} \alpha \text{ or } e, v \models_{F} \beta$
• $e, v \models_{T} K\alpha \iff \text{ for all } v', v' \in e \Rightarrow e, v' \models_{T} \alpha$
 $e, v \models_{F} K\alpha \iff e, v \not\models_{T} K\alpha$

•
$$e, v \models_{T} P \iff v[P] \ni 1$$

 $e, v \models_{F} P \iff v[P] \ni 0$
• $e, v \models_{T} \neg \alpha \iff e, v \models_{F} \alpha$
 $e, v \models_{T} \neg \alpha \iff e, v \models_{T} \alpha$
• $e, v \models_{T} \neg \alpha \iff e, v \models_{T} \alpha$
• $e, v \models_{T} (\alpha \lor \beta) \iff e, v \models_{T} \alpha \text{ or } e, v \models_{T} \beta$
 $e, v \models_{T} (\alpha \land \beta) \iff e, v \models_{F} \alpha \text{ and } e, v \models_{F} \beta$
• $e, v \models_{T} (\alpha \land \beta) \iff e, v \models_{F} \alpha \text{ or } e, v \models_{F} \beta$
• $e, v \models_{T} (\alpha \land \beta) \iff e, v \models_{F} \alpha \text{ or } e, v \models_{F} \beta$
• $e, v \models_{T} (\alpha \land \beta) \iff e, v \models_{F} \alpha \text{ or } e, v \models_{F} \beta$
• $e, v \models_{T} K\alpha \iff for all v', v' \in e \Rightarrow e, v' \models_{T} \alpha$
 $e, v \models_{F} O\alpha \iff e, v \not\models_{T} O\alpha$

•
$$e, v \models_{T} P \iff v[P] \ni 1$$

 $e, v \models_{F} P \iff v[P] \ni 0$
• $e, v \models_{T} \neg \alpha \iff e, v \models_{F} \alpha$
 $e, v \models_{T} \neg \alpha \iff e, v \models_{T} \alpha$
• $e, v \models_{T} (\alpha \lor \beta) \iff e, v \models_{T} \alpha \text{ or } e, v \models_{T} \beta$
 $e, v \models_{T} (\alpha \lor \beta) \iff e, v \models_{F} \alpha \text{ and } e, v \models_{F} \beta$
• $e, v \models_{T} (\alpha \land \beta) \iff e, v \models_{T} \alpha \text{ and } e, v \models_{T} \beta$
• $e, v \models_{T} (\alpha \land \beta) \iff e, v \models_{F} \alpha \text{ or } e, v \models_{F} \beta$
• $e, v \models_{T} (\alpha \land \beta) \iff e, v \models_{F} \alpha \text{ or } e, v \models_{F} \beta$
• $e, v \models_{T} K\alpha \iff \text{ for all } v', v' \in e \Rightarrow e, v' \models_{T} \alpha$
 $e, v \models_{F} K\alpha \iff e, v \not\models_{T} K\alpha$
• $e, v \models_{T} O\alpha \iff \text{ for all } v', v' \in e \Leftrightarrow e, v' \models_{T} \alpha$
 $e, v \models_{F} O\alpha \iff e, v \not\models_{T} O\alpha$
OKB $\models K\alpha \iff \text{ for all } e, v, e, v \models_{T} OKB \Rightarrow e, v \models_{T} K\alpha$

Let
$$e \models_{\mathrm{T}} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\mathbf{e} = \{ v \mid v \models_{\mathrm{T}} (p \lor q \lor r) \land (p \lor q \lor \neg r) \}$$

Let
$$e \models_{\mathbb{T}} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{ v \mid v \models_{\mathbb{T}} (p \lor q \lor r) \land (p \lor q \lor \neg r) \}$$

$$= \{ v \mid v \models_{\mathbb{T}} p \text{ or } v \models_{\mathbb{T}} q \text{ or } v \models_{\mathbb{T}} r, \text{ and}$$

$$v \models_{\mathbb{T}} p \text{ or } v \models_{\mathbb{T}} q \text{ or } v \models_{\mathbb{F}} r \}$$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{ v \mid v \models_{T} (p \lor q \lor r) \land (p \lor q \lor \neg r) \}$$

$$= \{ v \mid v \models_{T} p \text{ or } v \models_{T} q \text{ or } v \models_{T} r, \text{ and}$$

$$v \models_{T} p \text{ or } v \models_{T} q \text{ or } v \models_{F} r \}$$

$$= \{ v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0,1\} \}$$

Let
$$e \models_{\mathbb{T}} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\mathbf{e} = \{ v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\} \}$$

Let
$$e \models_{\mathbb{T}} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{ v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\} \}$$

$$e \models_{\mathbb{T}} \mathbf{K}(p \lor q)$$

Let
$$e \models_{\mathbb{T}} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{ \nu \mid \nu[p] \ni 1 \text{ or } \nu[q] \ni 1 \text{ or } \nu[r] = \{0, 1\} \}$$

$$e \models_{\mathbb{T}} \mathbf{K}(p \lor q)$$

$$\iff \text{ for all } \nu, \ \nu \in e \Rightarrow \nu \models_{\mathbb{T}} (p \lor q)$$

Let
$$e \models_{\mathrm{T}} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{ \nu \mid \nu[p] \ni 1 \text{ or } \nu[q] \ni 1 \text{ or } \nu[r] = \{0, 1\} \}$$

$$e \models_{\mathrm{T}} \mathbf{K}(p \lor q)$$

$$\Leftrightarrow \text{ for all } \nu, \ \nu \in e \Rightarrow \nu \models_{\mathrm{T}} (p \lor q)$$

$$\Leftrightarrow \text{ for all } \nu, \ \nu \in e \Rightarrow \nu \models_{\mathrm{T}} p \text{ or } \nu \models_{\mathrm{T}} q$$

Let
$$e \models_{\mathrm{T}} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{ v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0,1\} \}$$

$$e \models_{\mathrm{T}} \mathbf{K}(p \lor q)$$

$$\Leftrightarrow \text{ for all } v, \ v \in e \Rightarrow v \models_{\mathrm{T}} (p \lor q)$$

$$\Leftrightarrow \text{ for all } v, \ v \in e \Rightarrow v \models_{\mathrm{T}} p \text{ or } v \models_{\mathrm{T}} q$$

$$\Leftrightarrow \text{ for all } v, \ v \in e \Rightarrow v[p] \ni 1 \text{ or } v[q] \ni 1 \quad \mathbf{X}$$

Let
$$e \models_{\mathbb{T}} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{ \nu \mid \nu[p] \ni 1 \text{ or } \nu[q] \ni 1 \text{ or } \nu[r] = \{0, 1\} \}$$

$$e \models_{\mathbb{T}} \mathbf{K}(p \lor q) \quad \mathbf{X}$$

Let
$$e \models_{\mathrm{T}} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{ v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\} \}$$

$$e \models_{\mathrm{T}} \mathbf{K}(p \lor q) \quad \mathbf{X}$$

$$e \models_{\mathrm{T}} \neg \mathbf{K}p$$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{ \nu \mid \nu[p] \ni 1 \text{ or } \nu[q] \ni 1 \text{ or } \nu[r] = \{0, 1\} \}$$

$$e \models_{T} \mathbf{K}(p \lor q) \quad \mathbf{X}$$

$$e \models_{T} \neg \mathbf{K}p$$

$$\iff e \models_{F} \mathbf{K}p$$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

• $e = \{v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\}\}$
• $e \models_{T} \mathbf{K}(p \lor q) \quad \mathbf{X}$
• $e \models_{T} \neg \mathbf{K}p$
 $\iff e \models_{T} \mathbf{K}p$
 $\iff e \models_{T} \mathbf{K}p$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\}\}$$

$$e \models_{T} \mathbf{K}(p \lor q) \quad \mathbf{X}$$

$$e \models_{T} \neg \mathbf{K}p$$

$$\Leftrightarrow e \models_{T} \mathbf{K}p$$

$$\Leftrightarrow e \models_{T} \mathbf{K}p$$

$$\Leftrightarrow for \text{ some } v, v \in e \text{ and } v \not\models_{T} p$$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\}\}$$

$$e \models_{T} \mathbf{K}(p \lor q) \quad \mathbf{X}$$

$$e \models_{T} \neg \mathbf{K}p$$

$$\Leftrightarrow e \models_{T} \mathbf{K}p$$

$$\Leftrightarrow e \models_{T} \mathbf{K}p$$

$$\Leftrightarrow for \text{ some } v, \ v \in e \text{ and } v \not\models_{T} p$$

$$\Leftrightarrow \text{ for some } v, \ v \in e \text{ and } v[p] \not\ni 1 \quad \mathbf{V}$$

Let
$$e \models_{\mathrm{T}} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{ v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\} \}$$

$$e \models_{\mathrm{T}} \mathbf{K}(p \lor q) \quad \checkmark$$

$$e \models_{\mathrm{T}} \neg \mathbf{K}p \quad \checkmark$$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{ \nu \mid \nu[p] \ni 1 \text{ or } \nu[q] \ni 1 \text{ or } \nu[r] = \{0, 1\} \}$$

$$e \models_{T} \mathbf{K}(p \lor q) \not$$

$$e \models_{T} \neg \mathbf{K}p \not$$

$$e \models_{T} \neg \mathbf{K}p \not$$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\}\}$$

$$e \models_{T} \mathbf{K}(p \lor q) \quad \mathbf{X}$$

$$e \models_{T} \neg \mathbf{K}p \quad \mathbf{V}$$

$$e \models_{T} \neg \mathbf{K}p \quad \mathbf{V}$$

$$e \models_{T} \neg \mathbf{K} \neg p$$

$$\iff \text{ for some } v, \ v \in e \text{ and } v \not\models_{T} \neg p$$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\}\}$$

$$e \models_{T} \mathbf{K}(p \lor q) \not X$$

$$e \models_{T} \neg \mathbf{K}p \not \checkmark$$

$$e \models_{T} \neg \mathbf{K}p \not \checkmark$$

$$e \models_{T} \neg \mathbf{K}p \not \downarrow$$

$$for \text{ some } v, \ v \in e \text{ and } v \not\models_{T} \neg p$$

$$\Leftrightarrow \text{ for some } v, \ v \in e \text{ and } v \not\models_{T} p$$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\}\}$$

$$e \models_{T} \mathbf{K}(p \lor q) \not$$

$$e \models_{T} \neg \mathbf{K}p \checkmark$$

$$e \models_{T} \neg \mathbf{K}p \checkmark$$

$$e \models_{T} \neg \mathbf{K} \neg p$$

$$\Leftrightarrow \text{ for some } v, \ v \in e \text{ and } v \not\models_{T} \neg p$$

$$\Leftrightarrow \text{ for some } v, \ v \in e \text{ and } v \not\models_{T} p$$

$$\Leftrightarrow \text{ for some } v, \ v \in e \text{ and } v \not\models_{T} p$$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{ v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\} \}$$

$$e \models_{T} \mathbf{K}(p \lor q) \not$$

$$e \models_{T} \neg \mathbf{K}p \not$$

$$e \models_{T} \neg \mathbf{K}p \not$$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

• $e = \{v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\}\}$
• $e \models_{T} \mathbf{K}(p \lor q) \not$
• $e \models_{T} \neg \mathbf{K}p \not$
• $e \models_{T} \neg \mathbf{K}p \not$
• $e \models_{T} \neg \mathbf{K} \neg p \not$
• $e \models_{T} \mathbf{K}(r \lor \neg r)$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\}\}$$

$$e \models_{T} \mathbf{K}(p \lor q) \quad \mathbf{X}$$

$$e \models_{T} \neg \mathbf{K}p \quad \mathbf{X}$$

$$e \models_{T} \neg \mathbf{K}p \quad \mathbf{X}$$

$$e \models_{T} \neg \mathbf{K} \neg p \quad \mathbf{X}$$

$$e \models_{T} \mathbf{K}(r \lor \neg r)$$

$$\iff \text{ for all } v, \ v \in e \Rightarrow v \models_{T} (r \lor \neg r)$$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\}\}$$

$$e \models_{T} \mathbf{K}(p \lor q) \not \times$$

$$e \models_{T} \neg \mathbf{K}p \not \checkmark$$

$$e \models_{T} \neg \mathbf{K}p \not \checkmark$$

$$e \models_{T} \neg \mathbf{K}\neg p \not \checkmark$$

$$e \models_{T} \mathbf{K}(r \lor \neg r)$$

$$\Leftrightarrow \text{ for all } v, \ v \in e \Rightarrow v \models_{T} r \text{ or } v \models_{F} r$$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\}\}$$

$$e \models_{T} \mathbf{K}(p \lor q) \land$$

$$e \models_{T} \neg \mathbf{K}p \checkmark$$

$$e \models_{T} \neg \mathbf{K}p \checkmark$$

$$e \models_{T} \neg \mathbf{K} \neg p \checkmark$$

$$e \models_{T} \mathbf{K}(r \lor \neg r)$$

$$\Leftrightarrow \text{ for all } v, \ v \in e \Rightarrow v \models_{T} r \text{ or } v \models_{F} r$$

$$\Leftrightarrow \text{ for all } v, \ v \in e \Rightarrow v[r] \ni 0 \text{ or } v[r] \ni 1$$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$e = \{ v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\} \}$$

$$e \models_{T} \mathbf{K}(p \lor q) \quad \mathbf{X}$$

$$e \models_{T} \neg \mathbf{K}p \quad \mathbf{V}$$

$$e \models_{T} \neg \mathbf{K}p \quad \mathbf{V}$$

$$e \models_{T} \nabla \mathbf{K} \neg r \quad \mathbf{V}$$

$$e \models_{T} \mathbf{K}(r \lor \neg r)$$

$$\Leftrightarrow \text{ for all } v, \ v \in e \Rightarrow v \models_{T} r \text{ or } v \models_{F} r$$

$$\Leftrightarrow \text{ for all } v, \ v \in e \Rightarrow v[r] \ni 0 \text{ or } v[r] \ni 1$$

$$\Leftrightarrow \text{ for all } v, \ v \in e \Rightarrow v[r] \neq \{\} \quad \mathbf{X}$$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

• $e = \{v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\}\}$
• $e \models_{T} \mathbf{K}(p \lor q) \not$
• $e \models_{T} \neg \mathbf{K}p \not$
• $e \models_{T} \neg \mathbf{K}p \not$
• $e \models_{T} \neg \mathbf{K} \neg p \not$
• $e \models_{T} \mathbf{K}(r \lor \neg r) \not$

Let
$$e \models_{T} \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

• $e = \{v \mid v[p] \ni 1 \text{ or } v[q] \ni 1 \text{ or } v[r] = \{0, 1\}\}$
• $e \models_{T} \mathbf{K}(p \lor q) \not$
• $e \models_{T} \neg \mathbf{K}p \not$
• $e \models_{T} \neg \mathbf{K}p \not$
• $e \models_{T} \neg \mathbf{K} \neg p \not$
• $e \models_{T} \mathbf{K}(r \lor \neg r) \not$

So $\mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r))$ really doesn't entail much...

■ Not all tautologies are known $\not\approx \mathbf{K}(p \lor \neg p)$ falsified by $e = \{v\}$ for $v[p] = \{\}$

■ Not all tautologies are known $\not\approx \mathbf{K}(p \lor \neg p)$ falsified by $e = \{v\}$ for $v[p] = \{\}$

• Knowledge is not closed under logical consequence $\not\approx \mathbf{K}p \wedge \mathbf{K}(p \to q) \to \mathbf{K}q$ falsified by $e = \{v\}$ for $v[p] = \{0, 1\}$ and $v[q] \not\ni 1$

■ Not all tautologies are known $\not\approx \mathbf{K}(p \lor \neg p)$ falsified by $e = \{v\}$ for $v[p] = \{\}$

- Knowledge is not closed under logical consequence $\not\approx \mathbf{K}p \wedge \mathbf{K}(p \to q) \to \mathbf{K}q$ falsified by $e = \{v\}$ for $v[p] = \{0, 1\}$ and $v[q] \not\supseteq 1$
- Knowledge is not closed under equivalence $\not\approx \mathbf{K}p \leftrightarrow \mathbf{K}(p \land (q \lor \neg q))$ falsified by $e = \{v\}$ for v[p] = 1 and $v[q] = \{\}$

■ Not all tautologies are known $\not\approx \mathbf{K}(p \lor \neg p)$ falsified by $e = \{v\}$ for $v[p] = \{\}$

- Knowledge is not closed under logical consequence $\not\approx \mathbf{K}p \wedge \mathbf{K}(p \to q) \to \mathbf{K}q$ falsified by $e = \{v\}$ for $v[p] = \{0, 1\}$ and $v[q] \not\ni 1$
- Knowledge is not closed under equivalence $\not\approx \mathbf{K}p \leftrightarrow \mathbf{K}(p \land (q \lor \neg q))$ falsified by $e = \{v\}$ for v[p] = 1 and $v[q] = \{\}$
- Inconsistent knowledge does not imply knowing everything $\not\approx \mathbf{K}(p \land \neg p) \rightarrow \mathbf{K}q$ falsified by $e = \{v\}$ for $v[p] = \{0, 1\}$ and $v[q] \not\ge 1$

Complexity

None of the sources of complexity we identified on slide 7 remains.

Is reasoning easier now?

Complexity

None of the sources of complexity we identified on slide 7 remains.

Is reasoning easier now?

Bad news: Not in general.

Theorem: complexity

 \mathbf{O} KB $\models \mathbf{K} \phi$ is co-NP-complete.

Complexity

None of the sources of complexity we identified on slide 7 remains.

Is reasoning easier now?

Bad news: Not in general.

Theorem: complexity

 \mathbf{O} KB $\models \mathbf{K} \phi$ is co-NP-complete.

Let p_1, \ldots, p_n be the propositions in KB and ϕ .

$$\mathsf{KB} \models \phi \iff \mathbf{O}(\mathsf{KB} \land \underbrace{\bigwedge_{i}(p_{i} \lor \neg p_{i})}_{\mathsf{K}}) \models \mathbf{K}(\phi \lor \underbrace{\bigvee_{i}(p_{i} \land \neg p_{i})}_{\mathsf{K}})$$

prevent "conflicting information" ignore "never heard of" worlds

Complexity (2)

<u>Good news</u>: Reasoning gets very easy when KB and ϕ are in CNF.

Theorem: decision procedure for CNF KB, ϕ

Let $\mathrm{KB} \stackrel{\text{\tiny def}}{=} c_1 \wedge \ldots \wedge c_m$ and $\phi \stackrel{\text{\tiny def}}{=} d_1 \wedge \ldots \wedge d_n$ for clauses c_i, d_j . **O** $\mathrm{KB} \models \mathbf{K} \phi$ is decidable in $\mathcal{O}(m \cdot n)$. **O** $\mathrm{KB} \models \mathbf{K} \phi \iff$ for every d_j , there is a c_i with $c_i \subseteq d_j$.

$$\underbrace{\mathsf{Ex.:}}_{\mathbf{C}} \mathbf{O}((p \lor \neg q) \land q) \coloneqq \mathbf{K}(p \lor \neg q \lor r) \text{ since } \{p, \neg q\} \subseteq \{p, \neg q, r\}.$$
$$\mathbf{O}((p \lor \neg q) \land q) \not\approx \mathbf{K}p \text{ since } \{p, \neg q\} \not\subseteq \{p\}, \ \{q\} \not\subseteq \{p\}.$$

Proof on paper.

The First-Order Case

Generalise to first-order $\mathcal{O\!L}$ (function symbols aside):

- Predicates: $P(t_1, \ldots, t_j)$ where t_i is variable or standard name
- **Quantification:** $\exists x \alpha$

The First-Order Case

Generalise to first-order \mathcal{OL} (function symbols aside):

- Predicates: $P(t_1, \ldots, t_j)$ where t_i is variable or standard name
- **Quantification:** $\exists x \alpha$

Generalise the true and false support semantics to this language:

Definition: multi-valued world, first-order case

 $P(\vec{n})$ is **primitive** iff all n_i are standard names. A **multi-valued world** ν is a function from the primitive atomic formulas to $\{\{\}, \{0\}, \{1\}, \{0, 1\}\}$.

• $e, v \models_{T} \exists x \alpha \iff e, v \models_{T} \alpha_{n}^{x}$ for some standard name n $e, v \models_{F} \exists x \alpha \iff e, v \models_{F} \alpha_{n}^{x}$ for every standard name n

Complexity in the First-Order Case

Bad news: Too complex.

Theorem: complexity, first-order case

OKB \models **K** α is undecidable.

Complexity in the First-Order Case

Bad news: Too complex.

Theorem: complexity, first-order case

 \mathbf{O} KB $\models \mathbf{K} \alpha$ is undecidable.

Let P_1, \ldots, P_n be the predicate symbols in KB and ϕ .

$$\mathbf{KB} \models \phi \iff \mathbf{O}(\mathbf{KB} \land \underbrace{\bigwedge_{i} \forall \vec{x} (P_{i}(\vec{x}) \lor \neg P_{i}(\vec{x}))}_{\mathsf{V}}) \approx \mathbf{K}(\phi \lor \underbrace{\bigvee_{i} \forall \vec{x} (P_{i}(\vec{x}) \land \neg P_{i}(\vec{x}))}_{\mathsf{V}})$$

prevent "conflicting information"

ignore "never heard of" worlds

Limited Belief – First Attempt

Limited Belief – Second Attempt

Data structures and algorithms for ASP solvers

Limited Belief — Second Attempt

What went wrong in the First Attempt?

- "Believe or not", no way of controlling how much to "think"
- Knowledge is very weak, not closed under forward chaining
- Still very complex in the worst case

Limited Belief — Second Attempt

What went wrong in the First Attempt?

- "Believe or not", no way of controlling how much to "think"
- Knowledge is very weak, not closed under forward chaining
- Still very complex in the worst case
- Idea: stratify beliefs into levels
 - Use $\mathbf{K}_k \alpha$ to say " α is known at level k"
 - Level 0: explicit beliefs
 - Level k + 1: level k plus some inferences

Limited Belief — Second Attempt

What went wrong in the First Attempt?

- "Believe or not", no way of controlling how much to "think"
- Knowledge is very weak, not closed under forward chaining
- Still very complex in the worst case
- Idea: stratify beliefs into levels
 - Use $\mathbf{K}_k \alpha$ to say " α is known at level k"
 - Level 0: explicit beliefs
 - Level k + 1: level k plus some inferences

Simplification: propositional logic for now, no nested O, K.

What should count as explicit belief?

If $\alpha \in KB$, then $OKB \models K_0 \alpha$

What should count as explicit belief?

If
$$\alpha \in KB$$
, then $\mathbf{O}KB \models \mathbf{K}_0 \alpha$

• If $p \in \operatorname{KB}$ and $p \to q \in \operatorname{KB}$, then $\operatorname{\mathbf{O}KB} \models \operatorname{\mathbf{K}}_0 q$

What should count as explicit belief?

If
$$\alpha \in KB$$
, then $\mathbf{O}KB \models \mathbf{K}_0 \alpha$

If
$$p \in \operatorname{KB}$$
 and $p \to q \in \operatorname{KB}$, then $\operatorname{OKB} \models \operatorname{K}_0 q$

If
$$p \in \operatorname{KB}$$
 and $p \to q \in \operatorname{KB}$ and $q \to r \in \operatorname{KB}$, then $\mathbf{O}\operatorname{KB} \models \mathbf{K}_0 r$

What should count as explicit belief?

If
$$\alpha \in KB$$
, then $\mathbf{O}KB \models \mathbf{K}_0 \alpha$

🔳 If
$$p\in ext{KB}$$
 and $p
ightarrow q\in ext{KB}$, then $\mathbf{O} ext{KB} \models \mathbf{K}_0 q$

If
$$p \in \text{KB}$$
 and $p \rightarrow q \in \text{KB}$ and $q \rightarrow r \in \text{KB}$, then $\mathbf{O}\text{KB} \models \mathbf{K}_0 r$

If $p_1,\ldots,p_j\in \mathrm{KB}$ and $p_1\wedge\ldots\wedge p_j o q\in \mathrm{KB}$, then $\mathbf{O}\mathrm{KB} \models \mathbf{K}_0 q$

What should count as explicit belief?

If
$$\alpha \in KB$$
, then $\mathbf{O}KB \models \mathbf{K}_0 \alpha$

• If $p \in \operatorname{KB}$ and $p \to q \in \operatorname{KB}$, then $\operatorname{\mathbf{O}KB} \models \operatorname{\mathbf{K}}_0 q$

If $p \in \operatorname{KB}$ and $p \to q \in \operatorname{KB}$ and $q \to r \in \operatorname{KB}$, then $\operatorname{\mathbf{O}KB} \models \operatorname{\mathbf{K}}_0 r$

If $p_1, \ldots, p_j \in \text{KB}$ and $p_1 \land \ldots \land p_j \rightarrow q \in \text{KB}$, then \mathbf{O} KB $\models \mathbf{K}_0 q$

If $P(n) \in \text{KB}$ and $\forall x (P(x) \rightarrow Q(x)) \in \text{KB}$, then $\mathbf{O}\text{KB} \models \mathbf{K}_0 Q(n)$

What should not count as explicit belief?

Things that are not obvious (requires to consider different cases).

For example, only one of the following KBs entails $\exists x (P(x) \land Q(x))$:

KB ₁	KB ₂
$P(a) \lor P(e) \lor P(f)$	$P(a) \lor Q(e) \lor Q(c)$
$P(a) \lor P(e) \lor Q(f)$	$Q(d) \lor P(b) \lor Q(a)$
$P(a) \lor P(e) \lor P(c)$	$P(a) \lor P(e) \lor P(f)$
$P(a) \lor P(e) \lor Q(c)$	$P(c) \lor Q(e) \lor P(a)$
$Q(a) \lor P(b) \lor P(d)$	$Q(a) \lor Q(b) \lor Q(g)$
$Q(a) \lor P(b) \lor Q(c)$	$P(a) \lor P(e) \lor Q(f)$
$Q(a) \lor Q(b) \lor P(g)$	$Q(b) \lor Q(a) \lor P(g)$
$Q(a) \lor Q(b) \lor Q(g)$	$Q(a) \lor P(d) \lor P(b)$

What should not count as explicit belief?

Things that are not obvious (requires to consider different cases).

For example, only one of the following KBs entails $\exists x (P(x) \land Q(x))$:

	KB ₁	KB ₂
\checkmark	$P(a) \lor P(e) \lor P(f)$	$P(a) \lor Q(e) \lor Q(c)$
\checkmark	$P(a) \lor P(e) \lor Q(f)$	$Q(d) \lor P(b) \lor Q(a)$
\checkmark	$P(a) \lor P(e) \lor P(c)$	$P(a) \lor P(e) \lor P(f)$
\checkmark	$P(a) \lor P(e) \lor Q(c)$	$P(c) \lor Q(e) \lor P(a)$
\checkmark	$Q(a) \lor P(b) \lor P(d)$	$Q(a) \lor Q(b) \lor Q(g)$
\checkmark	$Q(a) \lor P(b) \lor Q(c)$	$P(a) \lor P(e) \lor Q(f)$
\checkmark	$Q(a) \lor Q(b) \lor P(g)$	$Q(b) \lor Q(a) \lor P(g)$
\checkmark	$Q(a) \lor Q(b) \lor Q(g)$	$Q(a) \lor P(d) \lor P(b)$

Let $w \models P(a) \land P(d) \land Q(b) \land Q(c)$. Then $w \models KB_1$ but $w \not\models \exists x (P(x) \land Q(x))$.

What should not count as explicit belief?

Things that are not obvious (requires to consider different cases).

For example, only one of the following KBs entails $\exists x (P(x) \land Q(x))$:

KB ₁	KB ₂
$P(a) \lor P(e) \lor P(f)$	$P(a) \lor Q(e) \lor Q(c)$
$P(a) \lor P(e) \lor Q(f)$	$Q(d) \lor P(b) \lor Q(a)$
$P(a) \lor P(e) \lor P(c)$	$P(a) \lor P(e) \lor P(f)$
$P(a) \lor P(e) \lor Q(c)$	$P(c) \lor Q(e) \lor P(a)$
$Q(a) \vee P(b) \vee P(d)$	$Q(a) \lor Q(b) \lor Q(g)$
$Q(a) \lor P(b) \lor Q(c)$	$P(a) \lor P(e) \lor Q(f)$
$Q(a) \lor Q(b) \lor P(g)$	$Q(b) \lor Q(a) \lor P(g)$
$Q(a) \lor Q(b) \lor Q(g)$	$Q(a) \lor P(d) \lor P(b)$

Let $w \models KB_2$.

What should not count as explicit belief?

Things that are not obvious (requires to consider different cases).

For example, only one of the following KBs entails $\exists x (P(x) \land Q(x))$:

KB ₁	KB ₂	
$P(a) \lor P(e) \lor P(f)$	$P(a) \lor Q(e) \lor Q(c)$	\checkmark
$P(a) \lor P(e) \lor Q(f)$	$Q(d) \lor P(b) \lor Q(a)$	
$P(a) \lor P(e) \lor P(c)$	$P(a) \lor P(e) \lor P(f)$	\checkmark
$P(a) \lor P(e) \lor Q(c)$	$P(c) \lor Q(e) \lor P(a)$	\checkmark
$Q(a) \lor P(b) \lor P(d)$	$Q(a) \lor Q(b) \lor Q(g)$	
$Q(a) \lor P(b) \lor Q(c)$	$P(a) \lor P(e) \lor Q(f)$	\checkmark
$Q(a) \lor Q(b) \lor P(g)$	$Q(b) \lor Q(a) \lor P(g)$	
$Q(a) \lor Q(b) \lor Q(g)$	$Q(a) \lor P(d) \lor P(b)$	

Let $w \models KB_2 \land P(a)$.

What should not count as explicit belief?

Things that are not obvious (requires to consider different cases).

For example, only one of the following KBs entails $\exists x (P(x) \land Q(x))$:

KB ₁	KB ₂	
$P(a) \lor P(e) \lor P(f)$	$P(a) \lor Q(e) \lor Q(c)$	\checkmark
$P(a) \lor P(e) \lor Q(f)$	$Q(d) \lor P(b) \lor Q(a)$	
$P(a) \lor P(e) \lor P(c)$	$P(a) \lor P(e) \lor P(f)$	\checkmark
$P(a) \lor P(e) \lor Q(c)$	$P(c) \lor Q(e) \lor P(a)$	\checkmark
$Q(a) \lor P(b) \lor P(d)$	$Q(a) \lor Q(b) \lor Q(g)$	
$Q(a) \lor P(b) \lor Q(c)$	$P(a) \lor P(e) \lor Q(f)$	\checkmark
$Q(a) \lor Q(b) \lor P(g)$	$Q(b) \lor Q(a) \lor P(g)$	
$Q(a) \lor Q(b) \lor Q(g)$	$Q(a) \vee P(d) \vee P(b)$	

Let $w \models KB_2 \land P(a) \land \neg Q(a)$.

What should not count as explicit belief?

Things that are not obvious (requires to consider different cases).

For example, only one of the following KBs entails $\exists x (P(x) \land Q(x))$:

KB ₁	KB ₂	
$P(a) \lor P(e) \lor P(f)$	$P(a) \lor Q(e) \lor Q(c)$	\checkmark
$P(a) \lor P(e) \lor Q(f)$	$Q(d) \lor P(b) \lor Q(a)$	\checkmark
$P(a) \lor P(e) \lor P(c)$	$P(a) \lor P(e) \lor P(f)$	\checkmark
$P(a) \lor P(e) \lor Q(c)$	$P(c) \lor Q(e) \lor P(a)$	\checkmark
$Q(a) \lor P(b) \lor P(d)$	$Q(a) \lor Q(b) \lor Q(g)$	
$Q(a) \lor P(b) \lor Q(c)$	$P(a) \lor P(e) \lor Q(f)$	\checkmark
$Q(a) \lor Q(b) \lor P(g)$	$Q(b) \lor Q(a) \lor P(g)$	
$Q(a) \lor Q(b) \lor Q(g)$	$Q(a) \vee P(d) \vee P(b)$	\checkmark

Let $w \models KB_2 \land P(a) \land \neg Q(a) \land P(b)$.

What should not count as explicit belief?

Things that are not obvious (requires to consider different cases).

For example, only one of the following KBs entails $\exists x (P(x) \land Q(x))$:

KB ₁	KB ₂	
$P(a) \lor P(e) \lor P(f)$	$P(a) \lor Q(e) \lor Q(c)$	\checkmark
$P(a) \lor P(e) \lor Q(f)$	$Q(d) \lor P(b) \lor Q(a)$	\checkmark
$P(a) \lor P(e) \lor P(c)$	$P(a) \lor P(e) \lor P(f)$	\checkmark
$P(a) \lor P(e) \lor Q(c)$	$P(c) \lor Q(e) \lor P(a)$	\checkmark
$Q(a) \lor P(b) \lor P(d)$	$Q(a) \lor Q(b) \lor Q(g)$	
$Q(a) \lor P(b) \lor Q(c)$	$P(a) \lor P(e) \lor Q(f)$	\checkmark
$Q(a) \lor Q(b) \lor P(g)$	$Q(b) \lor Q(a) \lor P(g)$	
$Q(a) \lor Q(b) \lor Q(g)$	$Q(a) \vee P(d) \vee P(b)$	\checkmark

Let $w \models KB_2 \land P(a) \land \neg Q(a) \land P(b) \land \neg Q(b)$.

What should not count as explicit belief?

Things that are not obvious (requires to consider different cases).

For example, only one of the following KBs entails $\exists x (P(x) \land Q(x))$:

KB ₁	KB ₂	
$P(a) \lor P(e) \lor P(f)$	$P(a) \lor Q(e) \lor Q(c)$	\checkmark
$P(a) \lor P(e) \lor Q(f)$	$Q(d) \lor P(b) \lor Q(a)$	\checkmark
$P(a) \lor P(e) \lor P(c)$	$P(a) \lor P(e) \lor P(f)$	\checkmark
$P(a) \lor P(e) \lor Q(c)$	$P(c) \lor Q(e) \lor P(a)$	\checkmark
$Q(a) \lor P(b) \lor P(d)$	$Q(a) \lor Q(b) \lor Q(g)$	\checkmark
$Q(a) \lor P(b) \lor Q(c)$	$P(a) \lor P(e) \lor Q(f)$	\checkmark
$Q(a) \lor Q(b) \lor P(g)$	$Q(b) \lor Q(a) \lor P(g)$	\checkmark
$Q(a) \lor Q(b) \lor Q(g)$	$Q(a) \vee P(d) \vee P(b)$	\checkmark

Let $w \models \operatorname{KB}_2 \land P(a) \land \neg Q(a) \land P(b) \land \neg Q(b) \land P(g) \land Q(g)$. Then $w \models \exists x (P(x) \land Q(x))$.

Level 0: only simple inferences (unit propagation, subsumption)

- Level 0: only simple inferences (unit propagation, subsumption)
- Level 1: one case split, i.e., branch on p and $\neg p$ for some atom p

- Level 0: only simple inferences (unit propagation, subsumption)
- Evel 1: one case split, i.e., branch on p and $\neg p$ for some atom p
- Level k: k case splits

- Level 0: only simple inferences (unit propagation, subsumption)
- Level 1: one case split, i.e., branch on p and $\neg p$ for some atom p
- Level k: k case splits

Ex.: Let KB
$$\stackrel{\text{\tiny def}}{=} ((p \lor r) \land (q \lor \neg r)).$$

At level 0, we do not know $(p \lor q)$

- Level 0: only simple inferences (unit propagation, subsumption)
- Level 1: one case split, i.e., branch on p and $\neg p$ for some atom p
- Level k: k case splits

Ex.: Let KB
$$\stackrel{\text{\tiny def}}{=} ((p \lor r) \land (q \lor \neg r)).$$

- At level 0, we do not know $(p \lor q)$
- At level 1, we can split cases for *r*:

$$\blacktriangleright \text{ KB} \land r \implies q \implies (p \lor q)$$

$$\blacktriangleright \text{ KB} \land \neg r \implies p \implies (p \lor q)$$

- Level 0: only simple inferences (unit propagation, subsumption)
- Level 1: one case split, i.e., branch on p and $\neg p$ for some atom p
- Level k: k case splits

Ex.: Let
$$\text{KB} \stackrel{\text{def}}{=} ((p \lor r) \land (q \lor \neg r)).$$

At level 0, we do not know $(p \lor q)$
At level 1, we can split cases for r :
KB $\land r \implies q \implies (p \lor q)$
KB $\land \neg r \implies p \implies (p \lor q)$

Semantic representation: set of clauses instead of set of worlds

- Set of worlds \approx disjunction of conjunctions (DNF)
- Set of clauses \approx conjunction of disjunctions (CNF)
- CNF is often more compact than DNF

Setups, Unit Propagation, Subsumption

- Identify clause $\ell_1 \lor \ldots \lor \ell_j$ with $\{\ell_1, \ldots, \ell_j\}$
- We write $\overline{\ell}$ to flip the sign of ℓ , e.g., \overline{p} is $\neg p$, and $\overline{\neg p}$ is p

Recall: empty clause is unsatisfiable

Setups, Unit Propagation, Subsumption

Identify clause $\ell_1 \lor \ldots \lor \ell_j$ with $\{\ell_1, \ldots, \ell_j\}$

- We write $\overline{\ell}$ to flip the sign of ℓ , e.g., \overline{p} is $\neg p$, and $\overline{\neg p}$ is p
- Recall: empty clause is unsatisfiable

Definition: unit propagation, subsumption, setup

A **setup** *s* is a (possibly infinite) set of ground clauses. **Unit propagation** infers $c \setminus {\overline{\ell}}$ from *c* and ℓ . **Subsumption** infers $c \cup d$ from *c*. UP(*s*) closes *s* under unit propagation. UP⁺(*s*) adds subsumed clauses. UP⁻(*s*) removes subsumed clauses.

$$\underline{Ex.}: c_1 = (p \lor q \lor r), \quad c_2 = (p \lor q \lor \neg r)$$

$$= UP(\{c_1, c_2\}) = \{c_1, c_2\}$$

$$= UP(\{c_1, c_2, r\}) = \{c_1, c_2, r, (p \lor q)\}$$

$$= UP(\{c_1, c_2, \neg r\}) = \{c_1, c_2, \neg r, (p \lor q)\}$$

$$= UP^+(\{c_1, c_2, \neg r\}) = \{c_1, c_2, \neg r, (p \lor q)\} \cup \{c \mid c \supseteq \neg r \text{ or } c \supseteq (p \lor q)\}$$

$$= UP^-(\{c_1, c_2, \neg r\}) = \{\neg r, (p \lor q)\}$$

$$\begin{split} \underline{\mathsf{Ex.}}: c_1 &= (p \lor q \lor r), \ c_2 &= (p \lor q \lor \neg r) \\ & = \mathsf{UP}(\{c_1, c_2\}) = \{c_1, c_2\} \\ & = \mathsf{UP}(\{c_1, c_2, r\}) = \{c_1, c_2, r, (p \lor q)\} \\ & = \mathsf{UP}(\{c_1, c_2, \neg r\}) = \{c_1, c_2, \neg r, (p \lor q)\} \\ & = \mathsf{UP}^+(\{c_1, c_2, \neg r\}) = \{c_1, c_2, \neg r, (p \lor q)\} \cup \{c \mid c \supseteq \neg r \text{ or } c \supseteq (p \lor q)\} \\ & = \mathsf{UP}^-(\{c_1, c_2, \neg r\}) = \{\neg r, (p \lor q)\} \end{split}$$

Unit propagation = forward chaining

UP(s) can be computed in linear time (if *s* is finite).

Definition: semantics of limited belief

 $\blacksquare \ s \models c \iff c \in \mathsf{UP}^+(s) \qquad \qquad \text{if } c \text{ is a clause}$

s \approx ($\alpha \lor \beta$) \iff *s* $\approx \alpha$ or *s* $\approx \beta$ if ($\alpha \lor \beta$) is not a clause

Definition: semantics of limited belief

$$s \approx c \iff c \in UP^+(s)$$
 if *c* is a clause

$$s \approx (\alpha \lor \beta) \iff s \approx \alpha \text{ or } s \approx \beta$$
 if $(\alpha \lor \beta)$ is not a clause

• $s \models \neg(\alpha \lor \beta) \iff s \models \neg \alpha \text{ and } s \models \neg \beta$

Definition: semantics of limited belief

a
$$s \models c \iff c \in UP^+(s)$$
 if c is a clause
b $s \models (\alpha \lor \beta) \iff s \models \alpha \text{ or } s \models \beta$ if $(\alpha \lor \beta)$ is not a clause
b $s \models \neg(\alpha \lor \beta) \iff s \models \neg \alpha$ and $s \models \neg \beta$
b $s \models \neg \neg \alpha \iff s \models \alpha$

Definition: semantics of limited belief

■
$$s \models c \iff c \in UP^+(s)$$
 if c is a clause
■ $s \models (\alpha \lor \beta) \iff s \models \alpha$ or $s \models \beta$ if $(\alpha \lor \beta)$ is not a clause
■ $s \models \neg(\alpha \lor \beta) \iff s \models \neg \alpha$ and $s \models \neg \beta$
■ $s \models \neg \neg \alpha \iff s \models \alpha$
■ $s \models K_0 \varphi \iff s$ is obviously inconsistent or $s \models \varphi$
■ $s \models K_{k+1} \varphi \iff$ for some atomic proposition P ,
(1) $s \cup \{P\} \models K_k \varphi$ and
(2) $s \cup \{\neg P\} \models K_k \varphi$

s is *obviously inconsistent* when UP(s) contains the empty clause.

Definition: semantics of limited belief

■
$$s \models c \iff c \in UP^+(s)$$
 if c is a clause
■ $s \models (\alpha \lor \beta) \iff s \models \alpha$ or $s \models \beta$ if $(\alpha \lor \beta)$ is not a clause
■ $s \models \neg(\alpha \lor \beta) \iff s \models \neg \alpha$ and $s \models \neg \beta$
■ $s \models \neg \neg \alpha \iff s \models \alpha$
■ $s \models K_0 \varphi \iff s$ is obviously inconsistent or $s \models \varphi$
■ $s \models K_{k+1} \varphi \iff$ for some atomic proposition P ,
(1) $s \cup \{P\} \models K_k \varphi$ and
(2) $s \cup \{\neg P\} \models K_k \varphi$

 $\blacksquare s \models \mathbf{O} \varphi \iff s \models \phi \text{ and } s' \not\models \phi \text{ for all } s' \text{ with } \mathsf{UP}^+(s') \subsetneq \mathsf{UP}^+(s)$

s is *obviously inconsistent* when UP(s) contains the empty clause.

Definition: semantics of limited belief

■
$$s \models c \iff c \in UP^+(s)$$
 if c is a clause
■ $s \models (\alpha \lor \beta) \iff s \models \alpha$ or $s \models \beta$ if $(\alpha \lor \beta)$ is not a clause
■ $s \models \neg (\alpha \lor \beta) \iff s \models \neg \alpha$ and $s \models \neg \beta$
■ $s \models \neg \neg \alpha \iff s \models \alpha$
■ $s \models K_0 \varphi \iff s$ is obviously inconsistent or $s \models \varphi$
■ $s \models K_{k+1} \varphi \iff$ for some atomic proposition P ,
(1) $s \cup \{P\} \models K_k \varphi$ and
(2) $s \cup \{\neg P\} \models K_k \varphi$
■ $s \models \neg K_k \varphi \iff s \not\models K_k \varphi$
■ $s \models \neg O \varphi \iff s \models \varphi$ and $s' \not\models \varphi$ for all s' with $UP^+(s') \subsetneq UP^+(s)$
■ $s \models \neg O \varphi \iff s \not\models O \varphi$

s is *obviously inconsistent* when UP(s) contains the empty clause.

Let $s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$

Let $s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$

$$\blacksquare \ \mathsf{UP}^{\scriptscriptstyle +}(s) = \mathsf{UP}^{\scriptscriptstyle +}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$$

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\blacksquare UP^+(s) = UP^+(\{(p \lor q \lor r), (p \lor q \lor \neg r)\})$$

s
$$\approx$$
 K₀($p \lor q$)

 $\iff s$ is obv. inconsistent or $s \succcurlyeq (p \lor q)$

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\blacksquare \ \mathsf{UP}^{+}(s) = \mathsf{UP}^{+}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$$

- $\blacksquare \ s \models \mathbf{K}_0(p \lor q)$
 - \iff *s* is obv. inconsistent or *s* \models ($p \lor q$)
 - $\iff s$ is obv. inconsistent or $(p \lor q) \in UP^{+}(s)$ X

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\blacksquare \ \mathsf{UP}^{\scriptscriptstyle +}(s) = \mathsf{UP}^{\scriptscriptstyle +}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$$

 $\blacksquare \ s \models \mathbf{K}_0(p \lor q) \quad \mathbf{X}$

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\blacksquare \ \mathsf{UP}^{+}(s) = \mathsf{UP}^{+}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$$

s
$$\approx$$
 K₀ $(p \lor q)$ **X**

s \approx **K**₁($p \lor q$)

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

u $\mathsf{UP}^+(s) = \mathsf{UP}^+(\{(p \lor q \lor r), (p \lor q \lor \neg r)\})$
s $\models \mathbf{K}_0(p \lor q) \checkmark$
s $\models \mathbf{K}_1(p \lor q)$
 \iff for some atom *P*, (1) and (2) succeed:
(1) $s \cup \{P\} \models \mathbf{K}_0(p \lor q)$

(2)
$$s \cup \{\neg P\} \models \mathbf{K}_0(p \lor q)$$

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

UP⁺ $(s) = UP^{+}(\{(p \lor q \lor r), (p \lor q \lor \neg r)\})$
s $\models \mathbf{K}_{0}(p \lor q) \not$
s $\models \mathbf{K}_{1}(p \lor q)$
 \iff for some atom *P*, (1) and (2) succeed:
(1) $s \cup \{P\} \models \mathbf{K}_{0}(p \lor q)$
 $\iff s \cup \{P\}$ is obv. inconsistent or $(p \lor q) \in UP^{+}(s \cup \{P\})$

(2)
$$s \cup \{\neg P\} \approx \mathbf{K}_0 (p \lor q)$$

 $\iff s \cup \{\neg P\}$ is obv. inconsistent or $(p \lor q) \in \mathsf{UP}^+(s \cup \{\neg P\})$

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$UP^{+}(s) = UP^{+}(\{(p \lor q \lor r), (p \lor q \lor \neg r)\})$$

$$s \models \mathbf{K}_{0}(p \lor q) \quad \mathbf{X}$$

$$s \models \mathbf{K}_{1}(p \lor q)$$

$$\iff splitting on r succeeds:$$

$$(1) \ s \cup \{r\} \models \mathbf{K}_{0}(p \lor q)$$

$$\iff s \cup \{r\} \text{ is obv. inconsistent or } (p \lor q) \in UP^{+}(s \cup \{r\})$$

(2)
$$s \cup \{\neg r\} \approx \mathbf{K}_0 (p \lor q)$$

 $\iff s \cup \{\neg r\}$ is obv. inconsistent or $(p \lor q) \in \mathsf{UP}^+(s \cup \{\neg r\})$

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\blacksquare \mathsf{UP}^{+}(s) = \mathsf{UP}^{+}(\{(p \lor q \lor r), (p \lor q \lor \neg r)\})$$

- **s** \approx **K**₀($p \lor q$) **X**
- $\blacksquare \ s \models \mathbf{K}_1(p \lor q)$
 - ← splitting on *r* succeeds:

(1) $s \cup \{r\} \models \mathbf{K}_0(p \lor q)$

 $\iff s \cup \{r\} \text{ is obv. inconsistent or } (p \lor q) \in \mathsf{UP}^*(s \cup \{r\}) \quad \checkmark$ because UP infers $(p \lor q)$ from $(p \lor q \lor \neg r)$ and r

(2)
$$s \cup \{\neg r\} \models \mathbf{K}_0(p \lor q)$$

 $\iff s \cup \{\neg r\} \text{ is obv. inconsistent or } (p \lor q) \in \mathsf{UP}^{+}(s \cup \{\neg r\}) \quad \checkmark$ because UP infers $(p \lor q)$ from $(p \lor q \lor r)$ and $\neg r$

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\blacksquare \ \mathsf{UP}^{+}(s) = \mathsf{UP}^{+}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$$

s
$$\models$$
 K₀ $(p \lor q)$ **X**

 $\blacksquare \ s \models \mathbf{K}_1(p \lor q) \checkmark$

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\blacksquare \ \mathsf{UP}^{+}(s) = \mathsf{UP}^{+}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$$

s
$$\approx$$
 K₀ $(p \lor q)$ **X**

$$\blacksquare \ s \models \mathbf{K}_1(p \lor q) \quad \checkmark$$

s
$$\approx \neg \mathbf{K}_0 p$$

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\blacksquare \ \mathsf{UP}^{+}(s) = \mathsf{UP}^{+}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$$

s
$$\approx$$
 K₀ $(p \lor q)$ **X**

- $\blacksquare \ s \models \mathbf{K}_1(p \lor q) \quad \checkmark$
- \bullet s $\models \neg \mathbf{K}_0 p$

 $\iff s$ is not obv. inconsistent and $p \notin \mathsf{UP}^{\scriptscriptstyle +}(s)$ 🖌

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\blacksquare \ \mathsf{UP}^{+}(s) = \mathsf{UP}^{+}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$$

s
$$\approx$$
 K₀($p \lor q$) **X**

$$\blacksquare \ s \models \mathbf{K}_1(p \lor q) \quad \checkmark$$

$$\bullet$$
 s \models \neg **K**₀ p \checkmark

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\blacksquare \ \mathsf{UP}^{+}(s) = \mathsf{UP}^{+}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$$

s
$$\approx$$
 K₀($p \lor q$) **X**

$$\blacksquare \ s \models \mathbf{K}_1(p \lor q) \quad \checkmark$$

$$\bullet \ s \models \neg \mathbf{K}_0 p \quad \checkmark$$

$$\bullet s \models \neg \mathbf{K}_0 \neg p$$

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$UP^{+}(s) = UP^{+}(\{(p \lor q \lor r), (p \lor q \lor \neg r)\})$$

$$s \models \mathbf{K}_{0}(p \lor q) \checkmark$$

$$s \models \mathbf{K}_{1}(p \lor q) \checkmark$$

$$s \models \neg \mathbf{K}_{0}p \checkmark$$

$$s \models \neg \mathbf{K}_{0}\neg p$$

$$\iff s \text{ is not obv. inconsistent and } \neg p \notin UP^{+}(s) \checkmark$$

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\blacksquare \ \mathsf{UP}^{+}(s) = \mathsf{UP}^{+}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$$

s
$$\approx$$
 K₀($p \lor q$) **X**

$$\blacksquare \ s \models \mathbf{K}_1(p \lor q) \quad \checkmark$$

$$\bullet \ s \models \neg \mathbf{K}_0 p \quad \checkmark$$

$$\bullet \ s \models \neg \mathbf{K}_0 \neg p \quad \checkmark$$

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

u UP⁺ $(s) = UP^{+}(\{(p \lor q \lor r), (p \lor q \lor \neg r)\})$
s $\models \mathbf{K}_{0}(p \lor q) \checkmark$
s $\models \mathbf{K}_{1}(p \lor q) \checkmark$
s $\models \neg \mathbf{K}_{0}p \checkmark$
s $\models \neg \mathbf{K}_{0}\neg p \checkmark$

But what about $\neg \mathbf{K}_1 \neg p$? And $\neg \mathbf{K}_2 \neg p$? And so on?

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$UP^{+}(s) = UP^{+}(\{(p \lor q \lor r), (p \lor q \lor \neg r)\})$$

$$s \models \mathbf{K}_{0}(p \lor q) \checkmark$$

$$s \models \mathbf{K}_{1}(p \lor q) \checkmark$$

$$s \models \neg \mathbf{K}_{0}p \checkmark$$

$$s \models \neg \mathbf{K}_{0}\neg p \checkmark$$

But what about $\neg \mathbf{K}_1 \neg p$? And $\neg \mathbf{K}_2 \neg p$? And so on?

 \mathbf{K}_k is incomplete (see first example). So how to find out with certainty that p is unknown?

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$UP^{+}(s) = UP^{+}(\{(p \lor q \lor r), (p \lor q \lor \neg r)\})$$

$$s \models \mathbf{K}_{0}(p \lor q) \not$$

$$s \models \mathbf{K}_{1}(p \lor q) \not$$

$$s \models \neg \mathbf{K}_{0}p \not$$

$$s \models \neg \mathbf{K}_{0}\neg p \not$$

But what about $\neg \mathbf{K}_1 \neg p$? And $\neg \mathbf{K}_2 \neg p$? And so on?

 \mathbf{K}_k is incomplete (see first example). So how to find out with certainty that p is unknown?

Need a dual operator to $\mathbf{K}_k \phi$, call it $\mathbf{M}_k \phi$, to say that ϕ is possible.

Semantics of Limited Belief (2)

The semantics of unlimited $M\,\alpha$ in ${\cal OL}$ is:

Definition: semantics M

•
$$e, w \models \mathbf{M} \alpha \iff$$
 for some $w, w \in e$ and $e, w \models \alpha$

Note:
$$e, w \models \mathbf{M} \alpha \iff e, w \models \neg \mathbf{K} \neg \alpha$$

Definition: semantics \mathbf{M}_k

- **s** \approx **M**₀ $\varphi \iff$ *s* is *obviously consistent* and *s* $\approx \varphi$
- $\blacksquare \ s \models \mathbf{M}_{k+1} \phi \iff \text{for some literal } L, \ s \cup \{L\} \models \mathbf{M}_k \phi$
- $\blacksquare \ s \models \neg \mathbf{M}_k \phi \iff s \not\models \mathbf{M}_k \phi$

s is *obviously consistent* when UP⁻(*s*) does not contain the empty clause and does not contain any clauses that contain complementary literals ($c_1, c_2 \in UP^-(s), P \in c_1, \neg P \in c_2$ for some *P*)

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\blacksquare \ \mathsf{UP}^{+}(s) = \mathsf{UP}^{+}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$$

s
$$\approx$$
 K₀ $(p \lor q)$ **X**

- $\blacksquare \ s \models \mathbf{K}_1(p \lor q) \checkmark$
- **s** \approx **M**₀*p*

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\blacksquare \ \mathsf{UP}^{+}(s) = \mathsf{UP}^{+}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$$

s
$$\approx$$
 K₀ $(p \lor q)$ **X**

- $\blacksquare \ s \models \mathbf{K}_1(p \lor q) \checkmark$
- **s** \approx **M**₀*p*

Let $s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$

- $\blacksquare \ \mathsf{UP}^{\scriptscriptstyle +}(s) = \mathsf{UP}^{\scriptscriptstyle +}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$
- **s** \approx **K**₀($p \lor q$) **X**
- $\blacksquare \ s \models \mathbf{K}_1(p \lor q) \quad \checkmark$
- **s** \models **M**₀p

 $\iff s$ is obv. consistent and $s \succcurlyeq p$

- $\blacksquare \ \operatorname{UP}^{\scriptscriptstyle +}(s) = \operatorname{UP}^{\scriptscriptstyle +}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$
- **s** \approx **K**₀($p \lor q$) **X**
- $\blacksquare \ s \models \mathbf{K}_1(p \lor q) \quad \checkmark$
- $s \approx \mathbf{M}_0 p$
 - $\iff s$ is obv. consistent and $s \succcurlyeq p$
 - \iff s is obv. consistent and $p \in UP^+(s) \times$ because s is not obv. consistent (r occurs pos. and neg. in UP⁻(s)) and also $p \notin UP^+(s)$

Let
$$s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$$

$$\blacksquare \ \mathsf{UP}^{+}(s) = \mathsf{UP}^{+}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$$

s
$$\approx$$
 K₀ $(p \lor q)$ **X**

$$\blacksquare \ s \models \mathbf{K}_1(p \lor q) \quad \checkmark$$

s \approx **M**₀p **X**

- $\blacksquare \ \mathsf{UP}^{\scriptscriptstyle +}(s) = \mathsf{UP}^{\scriptscriptstyle +}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$
- **s** \approx **K**₀($p \lor q$) **X**
- $\blacksquare \ s \models \mathbf{K}_1(p \lor q) \quad \checkmark$
- \bullet s \approx M₀p \times
- **s** \models **M**₁*p*

- $\blacksquare \ \operatorname{UP}^{\scriptscriptstyle +}(s) = \operatorname{UP}^{\scriptscriptstyle +}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$
- **s** \approx **K**₀($p \lor q$) **X**
- $\blacksquare \ s \models \mathbf{K}_1(p \lor q) \checkmark$
- \bullet s \approx M₀p \times
- **s** \approx **M**₁*p*
 - \iff for some atom *P*, $s \cup \{P\} \models \mathbf{M}_0 p$

- $\blacksquare \ \operatorname{UP}^{\scriptscriptstyle +}(s) = \operatorname{UP}^{\scriptscriptstyle +}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$
- **s** \approx **K**₀($p \lor q$) **X**
- $\blacksquare \ s \models \mathbf{K}_1(p \lor q) \checkmark$
- \bullet s \approx M₀p \checkmark
- \bullet s \approx M₁p
 - \iff for some atom *P*, $s \cup \{P\} \models \mathbf{M}_0 p$
 - $\iff s \cup \{P\}$ is obv. consistent and $s \cup \{P\} \models p$

Let $s \models \mathbf{O}((p \lor q \lor r) \land (p \lor q \lor \neg r)).$

- $\blacksquare \ \operatorname{UP}^{\scriptscriptstyle +}(s) = \operatorname{UP}^{\scriptscriptstyle +}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$
- **s** \approx **K**₀($p \lor q$) **X**
- $\blacksquare \ s \models \mathbf{K}_1(p \lor q) \checkmark$
- \bullet s \approx M₀p \times
- \bullet s \approx M₁p

$$\iff s \cup \{p\} \models \mathbf{M}_0 p$$

 $\iff s \cup \{p\} \text{ is obv. consistent and } s \cup \{p\} \models p \quad \checkmark$ because s is obv. consistent (UP⁻(s \cup \{p\}) = {p}) and p \in UP⁺(s \cup {p})

- $\blacksquare \ \mathsf{UP}^{\scriptscriptstyle +}(s) = \mathsf{UP}^{\scriptscriptstyle +}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$
- **s** \approx **K**₀($p \lor q$) **X**
- $\blacksquare \ s \models \mathbf{K}_1(p \lor q) \quad \checkmark$
- \bullet s \approx M₀p \times
- \bullet $s \models \mathbf{M}_1 p \checkmark$

- $\blacksquare \ \operatorname{UP}^{\scriptscriptstyle +}(s) = \operatorname{UP}^{\scriptscriptstyle +}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$
- **s** \approx **K**₀($p \lor q$) **X**
- $\blacksquare \ s \models \mathbf{K}_1(p \lor q) \quad \checkmark$
- \bullet s \approx M₀p \times
- \bullet s \models M₁p \checkmark
- **s** \models **M**₀¬*p* **×**

- $\blacksquare \ \operatorname{UP}^{\scriptscriptstyle +}(s) = \operatorname{UP}^{\scriptscriptstyle +}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$
- **s** \approx **K**₀($p \lor q$) **X**
- $\blacksquare \ s \models \mathbf{K}_1(p \lor q) \quad \checkmark$
- \bullet s \approx M₀p \times
- \bullet s \models M₁p \checkmark
- **s** \approx **M**₀ $\neg p$ **X**
- $\blacksquare s \models \mathbf{M}_1 \neg p \quad \mathbf{X}$

- $\blacksquare \ \operatorname{UP}^{\scriptscriptstyle +}(s) = \operatorname{UP}^{\scriptscriptstyle +}(\{(p \lor q \lor r), \ (p \lor q \lor \neg r)\})$
- $\bullet \ s \models \mathbf{K}_0(p \lor q) \quad \mathbf{X}$
- $\blacksquare \ s \models \mathbf{K}_1(p \lor q) \quad \checkmark$
- \bullet s \approx M₀p \times
- \bullet s \approx M₁p \checkmark
- **s** \models **M**₀¬*p* **×**
- **s** \models **M**₁¬*p* **×**
- **s** \approx **M**₂ $\neg p$ \checkmark

Some Properties

Theorem: monotonicity

 $\approx \mathbf{K}_k \phi \to \mathbf{K}_{k+1} \phi. \\ \approx \mathbf{M}_k \phi \to \mathbf{M}_{k+1} \phi.$

Definition: proper⁺ KB

A KB is proper⁺ when it is a conjunction of clauses (CNF).

Let KB be proper⁺ of the form $c_1 \land \ldots \land c_j$.

Theorem: unique-model property

 $s \models \mathbf{O}$ KB \iff UP⁺(s) =UP⁺ $(\{c_1, \ldots, c_j\}).$

Some Properties (2)

Let KB be proper⁺.

Theorem: soundness

Theorem: eventual completeness

 $\mathbf{O}\mathrm{KB} \models \mathbf{K} \phi \implies \mathbf{O}\mathrm{KB} \models \mathbf{K}_k \phi \text{ for large enough } k.$ $\mathbf{O}\mathrm{KB} \models \mathbf{M} \phi \implies \mathbf{O}\mathrm{KB} \models \mathbf{M}_k \phi \text{ for large enough } k.$

Theorem: complexity

$$\begin{split} \mathbf{O}\mathrm{KB} &\models \mathbf{K} \boldsymbol{\varphi} \text{ and } \mathbf{O}\mathrm{KB} \models \mathbf{M} \boldsymbol{\varphi} \text{ is tractable for small } k:\\ \mathcal{O}(2^k \cdot (|\mathrm{KB}| + |\boldsymbol{\varphi}|)^{k+3}). \end{split}$$

Generalisation of the Logic of Limited Belief

Introspection

Extend semantics to keep track of original setup without splits

- Representation theorem translates to limited belief
- First-order logic
 - $\blacktriangleright \ s \models \exists x \varphi \iff s \models \varphi_n^x \text{ for some } n$
 - ▶ Proper⁺ means CNF without \exists , i.e., $\forall \vec{x} \bigwedge_i c_i$

Generalisation of the Logic of Limited Belief

Introspection

Extend semantics to keep track of original setup without splits

Representation theorem translates to limited belief

First-order logic

- $\blacktriangleright \ s \models \exists x \varphi \iff s \models \varphi_n^x \text{ for some } n$
- ▶ Proper⁺ means CNF without \exists , i.e., $\forall \vec{x} \bigwedge_i c_i$

Let KB be proper⁺.

Theorem: soundness

 $\begin{array}{l} \mathbf{O}\mathrm{KB} \coloneqq \mathbf{K}_k \varphi \implies \mathbf{O}\mathrm{KB} \models \mathbf{K}_k \varphi. \\ \mathbf{O}\mathrm{KB} \coloneqq \mathbf{M}_k \varphi \implies \mathbf{O}\mathrm{KB} \models \mathbf{M}_k \varphi. \end{array}$

Theorem: decidability

 \mathbf{O} KB $\approx \sigma$ is decidable.

Does Limited Belief Work?

Experiment: Sudoku

Fill 9 × 9 board with numbers 1,...,9 such that no identical numbers in rows, columns, 3 × 3 blocks

Has a unique solution

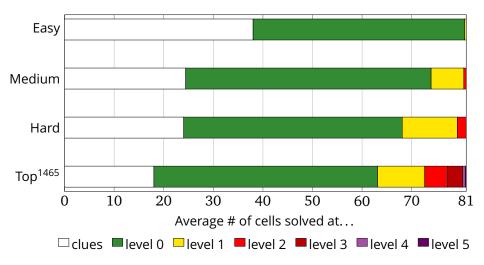
Difficulty depends on how many and which clues we get

> Newspaper: easy (\approx 38 clues), medium (\approx 24 clues), hard (\approx 24 clues)

Top 1465: extremely difficult (18 clues, proven minimum is 17)

Question: do belief level and difficulty correlate?

Sudoku with Limited Belief



- Limited Belief First Attempt
- Limited Belief Second Attempt
- Implementation Techniques

Implementation of a Solver

- Same techniques can be used for
 - Propositional Satisfiability
 - Answer Set Programs
 - Limited Belief

Implementation of a Solver

- Same techniques can be used for
 - Propositional Satisfiability
 - Answer Set Programs
 - Limited Belief
- Solvers operate on sets of ground clauses
 - Recall: a clause is a disjunction of literals
 - SAT: find a model
 - ASP: find a stable model
 - Limited Belief: case splits, subsumption

Implementation of a Solver

- Same techniques can be used for
 - Propositional Satisfiability
 - Answer Set Programs
 - Limited Belief
- Solvers operate on sets of ground clauses
 - Recall: a clause is a disjunction of literals
 - SAT: find a model
 - ASP: find a stable model
 - Limited Belief: case splits, subsumption
- Data structures and algorithms:
 - Davis-Putnam-Logemann-Loveland (DPLL) algorithm
 - Watched-Literal Scheme
 - Conflict-Driven Clause Learning (CDCL)

While SAT is NP-complete for propositional logic and for ASP, modern solvers can solve large instances (millions of variables).

DPLL Algorithm

Definition: DPLL algorithm

A literal ℓ is **assigned** in *s* iff $\ell \in s$ or $\overline{\ell} \in s$.

Input: set of clauses s

Output: 1 iff *s* is satisfiable in propositional logic

 $\mathbf{DPLL}(s)$ procedure:

- 1. If *s* contains the empty clause, return 0
- 2. If all literals are assigned in *s*, return 1
- 3. Select some unassigned literal ℓ
- 4. Return $\min\{\text{DPLL}(\text{UP}(s \cup \{\ell\})), \text{DPLL}(\text{UP}(s \cup \{\overline{\ell}\}))\}$

DPLL Algorithm

Definition: DPLL algorithm

A literal ℓ is **assigned** in *s* iff $\ell \in s$ or $\overline{\ell} \in s$.

Input: set of clauses s

Output: 1 iff *s* is satisfiable in propositional logic

 $\ensuremath{\mathsf{DPLL}}(s)$ procedure:

- 1. If *s* contains the empty clause, return 0
- 2. If all literals are assigned in *s*, return 1
- 3. Select some unassigned literal ℓ
- 4. Return $\min\{\text{DPLL}(\text{UP}(s \cup \{\ell\})), \text{DPLL}(\text{UP}(s \cup \{\overline{\ell}\}))\}$

Theorem: sound and complete

DPLL is sound and complete for SAT in propositional logic.

DPLL Algorithm

Definition: DPLL algorithm

A literal ℓ is **assigned** in *s* iff $\ell \in s$ or $\overline{\ell} \in s$.

Input: set of clauses s

Output: 1 iff *s* is satisfiable in propositional logic

 $\ensuremath{\mathsf{DPLL}}(s)$ procedure:

- 1. If *s* contains the empty clause, return 0
- 2. If all literals are assigned in *s*, return 1
- 3. Select some unassigned literal ℓ
- 4. Return $\min\{\text{DPLL}(\text{UP}(s \cup \{\ell\})), \text{DPLL}(\text{UP}(s \cup \{\overline{\ell}\}))\}$

Theorem: sound and complete

DPLL is sound and complete for SAT in propositional logic.

How to select literal? Prefer ones that trigger UP

DPLL uses backtracking:

- 1. Add ℓ to *s*, close under unit propagation
- 2. (recursive calls)
- 3. Remove ℓ from *s*, undo the unit propagation

DPLL uses backtracking:

- 1. Add ℓ to *s*, close under unit propagation
- 2. (recursive calls)
- 3. Remove ℓ from *s*, undo the unit propagation

Watched-literal scheme

- s implements as stack
- Step 1 pushes onto *s*, leaves old clauses unchanged
- Step 3 pops from (shrinks) s
- s is kept closed under UP

DPLL uses backtracking:

- 1. Add ℓ to *s*, close under unit propagation
- 2. (recursive calls)
- 3. Remove ℓ from *s*, undo the unit propagation

Watched-literal scheme

- s implements as stack
- Step 1 pushes onto *s*, leaves old clauses unchanged
- Step 3 pops from (shrinks) s
- s is kept closed under UP

Watched-Literal Scheme: Observation

Let *s* be a set of clauses which is closed under unit propagation. Let $c \in s$ with $|c| \geq 2$. If *c* contains at least two unassigned literals, select two of them as *watched* literals; otherwise select two of them randomly. When we add a new literal ℓ to *s*, then unit propagation of *c* with all the unit clauses in *s* together with ℓ produces a new unit clause *only if* $\overline{\ell}$ is one of the watched literals.

Why?

- Case 1: Suppose there are two unassigned literals in *c* that are not assigned initially. Then the watched literals ℓ_1, ℓ_2 are unassigned. Suppose unit propagation of *c* with all the unit clauses in *s* together with ℓ produces a new unit clause *c'*. Then |c'| = 1 < |c|, so either $\ell_1 \notin c$ or $\ell_2 \notin c$. Since ℓ_1, ℓ_2 were not assigned before adding ℓ , either ℓ_1 or ℓ_2 must be $\overline{\ell}$.
- Case 2: There are no two unassigned literals in *c*. Then there is at most one unassigned literal ℓ_1 in *c*, in which case we have ℓ_1 already as a unit clause in *s*.

Definition: watched literals

For every clause $c \in s$ with $|c| \ge 2$, mark two literals as **watched**.

Definition: watched literals

For every clause $c \in s$ with $|c| \ge 2$, mark two literals as **watched**.

AddUnit(ℓ) procedure:

- 1. Push ℓ onto s.
- 2. If $\overline{\ell} \in s$, mark *s* as inconsistent and return.
- 3. For every $c \in s$ with $|c| \ge 2$, check if $\overline{\ell}$ is watched. If yes, propagate the unit clauses from s with c to infer c'. If |c'| = 0, mark s as inconsistent. If |c'| = 1, add c' to s (i.e., recursive call to **AddUnit**(c')). If |c'| > 1, select literals from c' as new watched literals for c.

Definition: watched literals

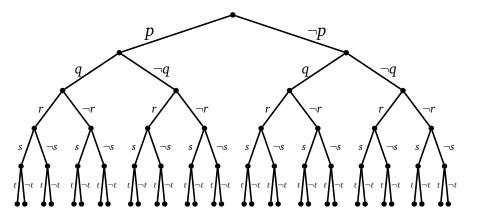
For every clause $c \in s$ with $|c| \ge 2$, mark two literals as **watched**.

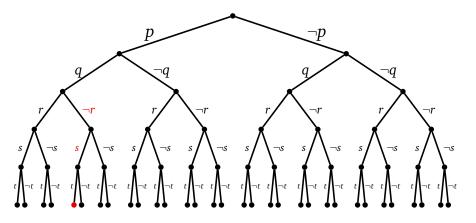
 $\textbf{AddUnit}(\ell)$ procedure:

- 1. Push ℓ onto s.
- 2. If $\overline{\ell} \in s$, mark *s* as inconsistent and return.
- 3. For every $c \in s$ with $|c| \ge 2$, check if $\overline{\ell}$ is watched. If yes, propagate the unit clauses from s with c to infer c'. If |c'| = 0, mark s as inconsistent. If |c'| = 1, add c' to s (i.e., recursive call to **AddUnit**(c')). If |c'| > 1, select literals from c' as new watched literals for c.

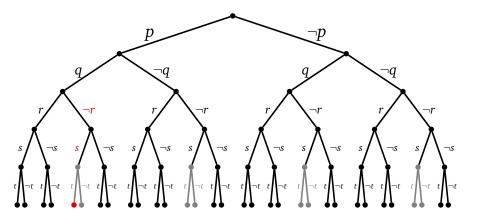
Backtrack procedure:

- 1. Store $n \coloneqq |s|$
- 2. (recursive calls)
- 3. Pop from *s* until |s| = n





Conflict caused by $\neg r$ and s! Add conflict clause $(r \lor \neg s)$.



Conflict caused by $\neg r$ and s! Add conflict clause $(r \lor \neg s)$. Implicitly prunes future subtrees.

Learn from conflicts

- Why did a conflict occur?
- > Analyse, find reason, feed back negation of reason to *s*

Learn from conflicts

- Why did a conflict occur?
- > Analyse, find reason, feed back negation of reason to s
- Consider a conflict caused by l₁,..., l_k
 ▶ UP of l₁,..., l_k with c₁ ∈ s infers l_{k+1}
 ▶ UP of l₁,..., l_k with c₂ ∈ s infers l_{k+1}
 ▶ Then s entails l₁ ∨ ... ∨ l_k

Learn from conflicts

- Why did a conflict occur?
- Analyse, find reason, feed back negation of reason to s

Consider a conflict caused by l₁,..., l_k
 ▶ UP of l₁,..., l_k with c₁ ∈ s infers l_{k+1}
 ▶ UP of l₁,..., l_k with c₂ ∈ s infers l_{k+1}
 ▶ Then s entails l₁ ∨ ... ∨ l_k

Theorem: sound and complete

DPLL + CDCL is sound and complete for SAT in propositional logic.

Example on paper