
Tractable Reasoning with Limited Belief
Christoph Schwering

UNSW Sydney

COMP4418, Week 8



Computational Aspects of Reasoning
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OKB |= α reduces to KB |= φ1, . . . , KB |= φk (Representation Theorem)
I No modal reasoning necessary (no O, no K )
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First-order case: KB |= φ is only semidecidable
I There is a procedure that always halts if KB |= φ
I But it might not terminate if KB 6|= φ

Propositional case: KB |= φ is intractable (or P = NP)
I KB |= φ is co-NP-complete
I co-NP contains all problems whose complement is in NP
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Some Options We Have

1. We could use a standard theorem prover and set a timeout.
ButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButBut: The underlying logic would be hopelessly complex.

2. We could restrict the expressivity of our representation language.
I Horn logic
I Description logics
ButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButButBut: Humans can deal with very complex representations.
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Logical Omniscience
Some sources of complexity:
� All tautologies are known
E.g., |= K(p ∨ ¬p)

� Knowledge is closed under logical consequence
E.g., |= Kp ∧ K(p→ q)→ Kq

� Knowledge is closed under equivalence
E.g., |= Kp↔ K(p ∧ (q ∨ ¬q))

� Inconsistent knowledge implies knowing everything (incl. nonsense)
E.g., |= K(p ∧ ¬p)→ Kq
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Limited Belief

� Want to weaken the entailment relation |=, call it |≈.

� Should be sound: OKB |≈ Kα =⇒ OKB |= Kα

� Should be incomplete: OKB |= Kα 6=⇒ OKB |≈ Kα

� Should be easy to compute OKB |≈ Kα

This is different from restricting expressiveness:
� Horn logic, description logics restrict the language
� Limited belief restricts the semantics (mainly)
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Overview of the Lecture

� Limited Belief – First Attempt

� Limited Belief – Second Attempt
� Data structures and algorithms for ASP solvers
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Limited Belief— First Attempt
Idea: Allow more models as part of epistemic state e

Why?
� Larger e corresponds to fewer beliefs
� e |= Kφ ⇐⇒ for all w ∈ e, w |= φ

� For ê ⊇ e: ê |= Kφ =⇒ e |= Kφ

ê {w
| w
|=
φ
}

e

SimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplificationSimplification: propositional logic for now, no nested O, K .
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Multi-Valued Worlds

Definition: multi-valued world
Amulti-valued world v is a function from the atomic propositions
to {{}, {0}, {1}, {0,1}}.

An epistemic state e is a set of multi-valued worlds.

� v[p] = {}means “never heard of it”
� v[p] = {0}means “false”
� v[p] = {1}means “true”
� v[p] = {0,1}means “conflicting information”

We will define true support and false support.
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The Semantics of True and False Support
Definition: semantics of true and false support
� e, v |=T P ⇐⇒ v[P] 3 1

e, v |=F P ⇐⇒ v[P] 3 0

� e, v |=T ¬α ⇐⇒ e, v |=F α

e, v |=F ¬α ⇐⇒ e, v |=T α

� e, v |=T (α ∨ β) ⇐⇒ e, v |=T α or e, v |=T β

e, v |=F (α ∨ β) ⇐⇒ e, v |=F α and e, v |=F β

� e, v |=T (α ∧ β) ⇐⇒ e, v |=T α and e, v |=T β

e, v |=F (α ∧ β) ⇐⇒ e, v |=F α or e, v |=F β

� e, v |=T Kα ⇐⇒ for all v′, v′ ∈ e⇒ e, v′ |=T α

e, v |=F Kα ⇐⇒ e, v 6|=T Kα

� e, v |=T Oα ⇐⇒ for all v′, v′ ∈ e⇔ e, v′ |=T α

e, v |=F Oα ⇐⇒ e, v 6|=T Oα

OKB |≈ Kα ⇐⇒ for all e, v, e, v |=T OKB⇒ e, v |=T Kα
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Some Properties
� Not all tautologies are known
6|≈ K(p ∨ ¬p)
falsified by e = {v} for v[p] = {}

� Knowledge is not closed under logical consequence
6|≈ Kp ∧ K(p→ q)→ Kq
falsified by e = {v} for v[p] = {0, 1} and v[q] /3 1

� Knowledge is not closed under equivalence
6|≈ Kp↔ K(p ∧ (q ∨ ¬q))
falsified by e = {v} for v[p] = 1 and v[q] = {}

� Inconsistent knowledge does not imply knowing everything
6|≈ K(p ∧ ¬p)→ Kq
falsified by e = {v} for v[p] = {0, 1} and v[q] /3 1
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Complexity
None of the sources of complexity we identified on slide 7 remains.
Is reasoning easier now?

Bad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad newsBad news: Not in general.
Theorem: complexity
OKB |≈ Kφ is co-NP-complete.

Let p1, . . . , pn be the propositions in KB and φ.
KB |= φ ⇐⇒ O(KB ∧

∧
i(pi ∨ ¬pi)︸ ︷︷ ︸prevent “conflicting information”

) |≈ K(φ ∨
∨

i(pi ∧ ¬pi)︸ ︷︷ ︸ignore “never heard of” worlds
)
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Theorem: complexity
OKB |≈ Kφ is co-NP-complete.

Let p1, . . . , pn be the propositions in KB and φ.
KB |= φ ⇐⇒ O(KB ∧

∧
i(pi ∨ ¬pi)︸ ︷︷ ︸prevent “conflicting information”

) |≈ K(φ ∨
∨

i(pi ∧ ¬pi)︸ ︷︷ ︸ignore “never heard of” worlds
)
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Complexity (2)
Good newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood newsGood news: Reasoning gets very easy when KB and φ are in CNF.
Theorem: decision procedure for CNF KB, φ
Let KB def

= c1 ∧ . . . ∧ cm and φ def
= d1 ∧ . . . ∧ dn for clauses ci, dj.

OKB |≈ Kφ is decidable inO(m · n).
OKB |≈ Kφ ⇐⇒ for every dj, there is a ci with ci ⊆ dj.

Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.: O((p ∨ ¬q) ∧ q) |≈ K(p ∨ ¬q ∨ r) since {p,¬q} ⊆ {p,¬q, r}.
O((p ∨ ¬q) ∧ q) 6|≈ Kp since {p,¬q} 6⊆ {p}, {q} 6⊆ {p}.

Proof on paper.
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The First-Order Case
Generalise to first-orderOL (function symbols aside):
� Predicates: P(t1, . . . , tj) where ti is variable or standard name
� Quantification: ∃xα

Generalise the true and false support semantics to this language:
Definition: multi-valued world, first-order case
P(~n) is primitive iff all ni are standard names.Amulti-valued world v is a function from the primitive atomic
formulas to {{}, {0}, {1}, {0,1}}.
� e, v |=T ∃xα ⇐⇒ e, v |=T αx

n for some standard name n
e, v |=F ∃xα ⇐⇒ e, v |=F αx

n for every standard name n
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Complexity in the First-Order Case
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Overview of the Lecture

� Limited Belief – First Attempt
� Limited Belief – Second Attempt

� Data structures and algorithms for ASP solvers
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Limited Belief— Second Attempt
What went wrong in the First Attempt?
� “Believe or not”, no way of controlling how much to “think”
� Knowledge is very weak, not closed under forward chaining
� Still very complex in the worst case

Idea: stratify beliefs into levels
� Use Kkα to say “α is known at level k”
� Level 0: explicit beliefs
� Level k + 1: level k plus some inferences

: propositional logic for now, no nested O, K .
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Easy Inferences

What should count as explicit belief?
� If α ∈ KB, then OKB |≈ K0α

� If p ∈ KB and p→ q ∈ KB, then OKB |≈ K0q

� If p ∈ KB and p→ q ∈ KB and q→ r ∈ KB, then OKB |≈ K0r

� If p1, . . . , pj ∈ KB and p1 ∧ . . . ∧ pj → q ∈ KB, then OKB |≈ K0q

� If P(n) ∈ KB and ∀x (P(x)→ Q(x)) ∈ KB, then OKB |≈ K0Q(n)
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Hard Inferences
What should not count as explicit belief?
Things that are not obvious (requires to consider different cases).
For example, only one of the following KBs entails ∃x (P(x) ∧Q(x)):

KB1 KB2

3

P(a) ∨ P(e) ∨ P(f) P(a) ∨ Q(e) ∨ Q(c)

3

3

P(a) ∨ P(e) ∨ Q(f) Q(d) ∨ P(b) ∨ Q(a)

3

3

P(a) ∨ P(e) ∨ P(c) P(a) ∨ P(e) ∨ P(f)

3

3

P(a) ∨ P(e) ∨ Q(c) P(c) ∨ Q(e) ∨ P(a)

3

3

Q(a) ∨ P(b) ∨ P(d) Q(a) ∨ Q(b) ∨ Q(g)

3

3

Q(a) ∨ P(b) ∨ Q(c) P(a) ∨ P(e) ∨ Q(f)

3

3

Q(a) ∨ Q(b) ∨ P(g) Q(b) ∨ Q(a) ∨ P(g)

3

3

Q(a) ∨ Q(b) ∨ Q(g) Q(a) ∨ P(d) ∨ P(b)

3

Let w |= P(a) ∧ P(d) ∧ Q(b) ∧ Q(c).
Then w |= KB1 but w 6|= ∃x (P(x) ∧ Q(x)).
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Semantic Model of Belief Levels
� Level 0: only simple inferences (unit propagation, subsumption)

� Level 1: one case split, i.e., branch on p and ¬p for some atom p

� Level k: k case splits

Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.Ex.: Let KB def
= ((p ∨ r) ∧ (q ∨ ¬r)).

� At level 0, we do not know (p ∨ q)
� At level 1, we can split cases for r:

I KB ∧ r =⇒ q =⇒ (p ∨ q)
I KB ∧ ¬r =⇒ p =⇒ (p ∨ q)

Semantic representation: set of clauses instead of set of worlds
� Set of worlds≈ disjunction of conjunctions (DNF)
� Set of clauses≈ conjunction of disjunctions (CNF)
� CNF is often more compact than DNF
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Setups, Unit Propagation, Subsumption

� Identify clause `1 ∨ . . . ∨ `j with {`1, . . . , `j}
� We write ` to flip the sign of `, e.g., p is ¬p, and ¬p is p
� Recall: empty clause is unsatisfiable

Definition: unit propagation, subsumption, setup
A setup s is a (possibly infinite) set of ground clauses.
Unit propagation infers c \ {`} from c and `.
Subsumption infers c ∪ d from c.
UP(s) closes s under unit propagation.
UP+(s) adds subsumed clauses.
UP−(s) removes subsumed clauses.

21 / 39



Setups, Unit Propagation, Subsumption

� Identify clause `1 ∨ . . . ∨ `j with {`1, . . . , `j}
� We write ` to flip the sign of `, e.g., p is ¬p, and ¬p is p
� Recall: empty clause is unsatisfiable

Definition: unit propagation, subsumption, setup
A setup s is a (possibly infinite) set of ground clauses.
Unit propagation infers c \ {`} from c and `.
Subsumption infers c ∪ d from c.
UP(s) closes s under unit propagation.
UP+(s) adds subsumed clauses.
UP−(s) removes subsumed clauses.

21 / 39



Examples
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� UP({c1, c2}) = {c1, c2}

� UP({c1, c2, r}) = {c1, c2, r, (p ∨ q)}

� UP({c1, c2,¬r}) = {c1, c2,¬r, (p ∨ q)}

� UP+({c1, c2,¬r}) = {c1, c2,¬r, (p ∨ q)} ∪ {c | c ⊇ ¬r or c ⊇ (p ∨ q)}

� UP−({c1, c2,¬r}) = {¬r, (p ∨ q)}

Unit propagation = forward chaining
UP(s) can be computed in linear time (if s is finite).
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Semantics of Limited Belief
Definition: semantics of limited belief
� s |≈ c ⇐⇒ c ∈ UP+(s) if c is a clause
� s |≈ (α ∨ β) ⇐⇒ s |≈ α or s |≈ β if (α ∨ β) is not a clause

� s |≈ ¬(α ∨ β) ⇐⇒ s |≈ ¬α and s |≈ ¬β
� s |≈ ¬¬α ⇐⇒ s |≈ α

� s |≈ K0φ ⇐⇒ s is obviously inconsistent or s |≈ φ

� s |≈ Kk+1φ ⇐⇒ for some atomic proposition P,
(1) s ∪ {P} |≈ Kkφ and(2) s ∪ {¬P} |≈ Kkφ

� s |≈ ¬Kkφ ⇐⇒ s 6|≈ Kkφ

� s |≈ Oφ ⇐⇒ s |≈ φ and s′ 6|≈ φ for all s′ with UP+(s′) ( UP+(s)
� s |≈ ¬Oφ ⇐⇒ s 6|≈ Oφ

s is obviously inconsistent when UP(s) contains the empty clause.
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Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).

� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q)

7

� s |≈ K1(p ∨ q)

3

� s |≈ ¬K0p

3

� s |≈ ¬K0¬p

3
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Semantics of Limited Belief (2)
The semantics of unlimitedMα inOL is:
Definition: semanticsM

� e,w |= Mα ⇐⇒ for some w, w ∈ e and e,w |= α

NoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNote: e,w |= Mα ⇐⇒ e,w |= ¬K¬α

Definition: semanticsMk

� s |≈ M0φ ⇐⇒ s is obviously consistent and s |≈ φ

� s |≈ Mk+1φ ⇐⇒ for some literal L, s ∪ {L} |≈ Mkφ

� s |≈ ¬Mkφ ⇐⇒ s 6|≈ Mkφ

s is obviously consistent when UP−(s) does not contain the empty
clause and does not contain any clauses that contain
complementary literals (c1, c2 ∈ UP−(s), P ∈ c1, ¬P ∈ c2 for some P)
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Examples
Let s |≈ O((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)).
� UP+(s) = UP+({(p ∨ q ∨ r), (p ∨ q ∨ ¬r)})
� s |≈ K0(p ∨ q) 7

� s |≈ K1(p ∨ q) 3

� s |≈ M0p

7

� s |≈ M1p

3

� s |≈ M0¬p 7

� s |≈ M1¬p 7

� s |≈ M2¬p 3
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Some Properties
Theorem: monotonicity
|≈ Kkφ→ Kk+1φ.
|≈ Mkφ→ Mk+1φ.

Definition: proper+ KB
A KB is proper+ when it is a conjunction of clauses (CNF).

Let KB be proper+ of the form c1 ∧ . . . ∧ cj.

Theorem: unique-model property
s |≈ OKB ⇐⇒ UP+(s) = UP+({c1, . . . , cj}).
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Some Properties (2)
Let KB be proper+.
Theorem: soundness
OKB |≈ Kkφ =⇒ OKB |= Kφ.
OKB |≈ Mkφ =⇒ OKB |= Mφ.

Theorem: eventual completeness
OKB |= Kφ =⇒ OKB |≈ Kkφ for large enough k.
OKB |= Mφ =⇒ OKB |≈ Mkφ for large enough k.

Theorem: complexity
OKB |= Kφ and OKB |= Mφ is tractable for small k:

O(2k · (|KB|+ |φ|)k+3).
28 / 39



Generalisation of the Logic of Limited Belief
� Introspection

I Extend semantics to keep track of original setup without splits
I Representation theorem translates to limited belief

� First-order logic
I s |≈ ∃xφ ⇐⇒ s |≈ φx

n for some n
I Proper+ means CNF without ∃, i.e., ∀~x ∧

i ci

Let KB be proper+.
Theorem: soundness
OKB |≈ Kkφ =⇒ OKB |= Kkφ.
OKB |≈ Mkφ =⇒ OKB |= Mkφ.

Theorem: decidability
OKB |≈ σ is decidable.
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Does Limited Belief Work?
Experiment: Sudoku
� Fill 9 × 9 board with numbers 1,. . . ,9 such that no identical
numbers in rows, columns, 3 × 3 blocks

� Has a unique solution
� Difficulty depends on how many and which clues we get

I Newspaper: easy (≈ 38 clues), medium (≈ 24 clues), hard (≈ 24 clues)
I Top 1465: extremely difficult (18 clues, proven minimum is 17)

� Question: do belief level and difficulty correlate?
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Sudoku with Limited Belief

0 10 20 30 40 50 60 70 81

Top1465
Hard

Medium

Easy

Average # of cells solved at. . .
clues level 0 level 1 level 2 level 3 level 4 level 5
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Overview of the Lecture

� Limited Belief – First Attempt
� Limited Belief – Second Attempt
� Implementation Techniques
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Implementation of a Solver
� Same techniques can be used for

I Propositional Satisfiability
I Answer Set Programs
I Limited Belief

� Solvers operate on sets of ground clauses
I Recall: a clause is a disjunction of literals
I SAT: find a model
I ASP: find a stable model
I Limited Belief: case splits, subsumption

� Data structures and algorithms:
I Davis-Putnam-Logemann-Loveland (DPLL) algorithm
I Watched-Literal Scheme
I Conflict-Driven Clause Learning (CDCL)

While SAT is NP-complete for propositional logic and for ASP,
modern solvers can solve large instances (millions of variables).

33 / 39



Implementation of a Solver
� Same techniques can be used for

I Propositional Satisfiability
I Answer Set Programs
I Limited Belief

� Solvers operate on sets of ground clauses
I Recall: a clause is a disjunction of literals
I SAT: find a model
I ASP: find a stable model
I Limited Belief: case splits, subsumption

� Data structures and algorithms:
I Davis-Putnam-Logemann-Loveland (DPLL) algorithm
I Watched-Literal Scheme
I Conflict-Driven Clause Learning (CDCL)

While SAT is NP-complete for propositional logic and for ASP,
modern solvers can solve large instances (millions of variables).

33 / 39



Implementation of a Solver
� Same techniques can be used for

I Propositional Satisfiability
I Answer Set Programs
I Limited Belief

� Solvers operate on sets of ground clauses
I Recall: a clause is a disjunction of literals
I SAT: find a model
I ASP: find a stable model
I Limited Belief: case splits, subsumption

� Data structures and algorithms:
I Davis-Putnam-Logemann-Loveland (DPLL) algorithm
I Watched-Literal Scheme
I Conflict-Driven Clause Learning (CDCL)

While SAT is NP-complete for propositional logic and for ASP,
modern solvers can solve large instances (millions of variables).

33 / 39



DPLL Algorithm
Definition: DPLL algorithm
A literal ` is assigned in s iff ` ∈ s or ` ∈ s.
Input: set of clauses s
Output: 1 iff s is satisfiable in propositional logic
DPLL(s) procedure:
1. If s contains the empty clause, return 0
2. If all literals are assigned in s, return 1
3. Select some unassigned literal `
4. Returnmin{DPLL(UP(s ∪ {`})),DPLL(UP(s ∪ {`}))}

Theorem: sound and complete
DPLL is sound and complete for SAT in propositional logic.

How to select literal? Prefer ones that trigger UP
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Watched-Literal Scheme

� DPLL uses backtracking:
1. Add ` to s, close under unit propagation2. (recursive calls)3. Remove ` from s, undo the unit propagation

� Watched-literal scheme
I s implements as stack
I Step 1 pushes onto s, leaves old clauses unchanged
I Step 3 pops from (shrinks) s
I s is kept closed under UP
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Watched-Literal Scheme: Observation
Let s be a set of clauses which is closed under unit propagation. Let
c ∈ s with |c| ≥ 2. If c contains at least two unassigned literals,
select two of them as watched literals; otherwise select two of them
randomly. When we add a new literal ` to s, then unit propagation
of c with all the unit clauses in s together with ` produces a new
unit clause only if ` is one of the watched literals.
Why?
� Case 1: Suppose there are two unassigned literals in c that are
not assigned initially. Then the watched literals `1, `2 areunassigned. Suppose unit propagation of c with all the unit
clauses in s together with ` produces a new unit clause c′.
Then |c′| = 1 < |c|, so either `1 /∈ c or `2 /∈ c. Since `1, `2 werenot assigned before adding `, either `1 or `2 must be `.

� Case 2: There are no two unassigned literals in c. Then there is
at most one unassigned literal `1 in c, in which case we have `1already as a unit clause in s.
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Watched-Literal Scheme
Definition: watched literals
For every clause c ∈ s with |c| ≥ 2, mark two literals as watched.

AddUnit(`) procedure:
1. Push ` onto s.
2. If ` ∈ s, mark s as inconsistent and return.
3. For every c ∈ s with |c| ≥ 2, check if ` is watched.

If yes, propagate the unit clauses from s with c to infer c′.
If |c′| = 0, mark s as inconsistent.
If |c′| = 1, add c′ to s (i.e., recursive call to AddUnit(c′)).
If |c′| > 1, select literals from c′ as new watched literals for c.

Backtrack procedure:
1. Store n := |s|
2. (recursive calls)
3. Pop from s until |s| = n

Example on paper
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Conflict-Driven Clause Learning
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Conflict caused by ¬r and s! Add conflict clause (r ∨ ¬s).
Implicitly prunes future subtrees.
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Conflict-Driven Clause Learning
� Learn from conflicts

I Why did a conflict occur?
I Analyse, find reason, feed back negation of reason to s

� Consider a conflict caused by `1, . . . , `k
I UP of `1, . . . , `k with c1 ∈ s infers `k+1
I UP of `1, . . . , `k with c2 ∈ s infers `k+1

Then s entails `1 ∨ . . . ∨ `k

Theorem: sound and complete
DPLL + CDCL is sound and complete for SAT in propositional logic.
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