COMP2121: Microprocessors and Interfacing

Number Systems

http://www.cse.unsw.edu.au/~cs2121
Lecturer: Hui Wu
Term 2, 2019

1

Overview

- Positional notation
- Decimal, hexadecimal, octal and binary
- Converting decimal to any other
- One' complement
- Two's complement
- Two's complement overflow
- Signed and unsigned comparisons
- Strings
- Sign extension
- IEEE Floating Point Number Representation
- Floating Point Number Operations

Numbers: positional notation

${ }^{\circ}$ Number Base B => B symbols per digit:

- Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Base 2 (Binary): 0,1
${ }^{\circ}$ Number representation:
- $\left(a_{n} a_{n-1} \ldots a_{1} \cdot b_{1} \ldots b_{m-1} b_{m}\right)_{B}$ is a number of base (radix) B
$\square \mathrm{n}$ digits in the integer part and m digits in the fractional part.
The base B can be omitted if $\mathrm{B}=10$.
- value $=a_{n} \times B^{n-1}+a_{n-1} \times B^{n-2}+\ldots+a_{2} \times B^{1}+a_{1} \times B^{0}$

$$
+b_{1} \times B^{-1}+b_{2} \times B^{-2}+\ldots+b_{m-1} \times B^{-(m-1)}+b_{m} \times B^{-m}
$$

3

Typical Number Systems (1/2)

${ }^{\circ}$ Binary system

- Base 2
- Digits (bits): 0,1
- $(11010.101)_{2}=$ $1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2+0 \times 1+1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}$ $=26.625$
${ }^{\circ}$ Octal system:
- Base 8.
- Digits: $0,1,2,3,4,5,6,7$
$\cdot(605.24)_{8}=6 \times 8^{2}+0 \times 8^{1}+5 \times 8^{0}+2 \times 8^{-1}+4 \times 8^{-2}=389.3125$

Hex to Binary Conversion

${ }^{\circ}$ HEX is a more compact representation of Binary!
${ }^{\circ}$ Each hex digit represents 16 decimal values.
${ }^{\circ}$ Four binary digits represent 16 decimal values.
${ }^{\circ}$ Therefore, each hex digit can replace four binary digits (bits).
${ }^{\circ}$ Example:

$$
\left.\begin{array}{rl}
& \left(\begin{array}{llllllll}
3 & \text { B } & 9 & \text { A } & \text { C } & \text { A } & 0 & 0
\end{array}\right)_{16} \\
= & \left(\begin{array}{lllll}
0011 & 1011 & 1001 & 1010 & 1100
\end{array}\right. \\
1010 & 0000
\end{array} 0000\right)_{2} .
$$

7

Octal to Binary Conversion

${ }^{\circ}$ Each octal digit represents 8 decimal values.
${ }^{\circ}$ Three binary digits represent 8 decimal values.

- Therefore, each octal digit can replace three binary digits (bits).
${ }^{\circ}$ Example:

$$
\left.\left.\begin{array}{rl}
& \left(\begin{array}{lccccccc}
3 & 7 & 1 & 2 & 4 & 5 & 0 & 1
\end{array}\right)_{8} \\
= & \left(\begin{array}{lll}
011 & 111 & 001
\end{array}\right. \\
010 & 100
\end{array} 101000001\right)_{2}\right)
$$

Converting from Decimal to Any Other (1/7)

o Use division method if a decimal number is an integer.
${ }^{\circ}$ Let D be a decimal integer such that

$$
\begin{aligned}
D & =\left(a_{n} a_{n-1} \ldots a_{1}\right)_{B} \\
& =a_{n} B^{n-1}+a_{n-1} B^{n-2}+\ldots+a_{2} B^{1}+a_{1} B^{0}
\end{aligned}
$$

${ }^{\circ}$ Notice that

$$
\begin{aligned}
& a_{1}=D \% B \\
& a_{2}=(D / B) \% B \\
& \ldots
\end{aligned}
$$

In general, $\mathrm{a}_{\mathrm{i}}=\left(\left(\mathrm{D} / \mathrm{B}^{\mathrm{i}-1}\right) \% \mathrm{~B} \quad(\mathrm{i}=1,2, \ldots \mathrm{n})\right.$
Where / is the division operator and \% the modulus operator as in C.

9

Converting from Decimal to Any Other (2/7)

The conversion procedure is shown in C as follows:

D2B-Integer-Converter(int B, long int D)

```
{ int i, A[];
```

 long int x ;
 \(\mathrm{i}=0\);
 \(\mathbf{x}=\mathbf{D}\);
 while (\(\mathrm{x}!=\mathbf{0}\))
 \{ \(\mathrm{A}[\mathrm{i}]=\mathrm{x} \% \mathrm{~B}\);
 \(\mathbf{x}=\mathbf{x} / \mathbf{B}\);
 i++; ;
 \}

11

Converting from Decimal to Any Other (4/7)

Example 2: Convert 138 to a binary number.

Division	Quotient	Remainder
$138 / 2$	69	0
$69 / 2$	34	1
$34 / 2$	17	0
$17 / 2$	8	1
$8 / 2$	4	0
$4 / 2$	2	0
$2 / 2$	1	0
$1 / 2$	0	1

Therefore, $138=(10001010)_{2}$

Converting from Decimal to Any Other (5/7)

o Use multiplication method if the decimal number is a fractional number.
o Let D be a fractional decimal number such that

$$
\begin{aligned}
\mathrm{D} & =\left(0 . \mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{m}-1} \mathrm{~b}_{\mathrm{m}}\right)_{\mathrm{B}} \\
& =\mathrm{b}_{1} \mathrm{~B}^{-1}+\mathrm{b}_{2} \mathrm{~B}^{-2}+\ldots+\mathrm{b}_{\mathrm{m}-1} \mathrm{~B}^{-(m-1)}+\mathrm{b}_{\mathrm{m}} \mathrm{~B}^{-\mathrm{m}}
\end{aligned}
$$

${ }^{\circ}$ Notice that
$\mathrm{b}_{1}=$ floor $(\mathrm{D} \times \mathrm{B})$
$\mathrm{b}_{2}=$ floor $(\operatorname{frac}(\mathrm{D} \times \mathrm{B}) \times \mathrm{B})$

In general, $\mathrm{b}_{\mathrm{i}}=$ floor $\left(\operatorname{frac}\left(\mathrm{D} \times \mathrm{B}^{\mathrm{i}-1}\right) \times \mathrm{B}\right)(\mathrm{i}=1,2, \ldots \mathrm{~m})$
Where floor(x) is the integer part of x and $\operatorname{frac}(x)$ is the fractional part of x.

Converting from Decimal to Any Other (6/7)

The conversion procedure is shown in C as follows:
D2B-Fractional-Converter(int B, double D)
\{ int i, A $]$;
double \mathbf{x};
$\mathrm{i}=\mathbf{0}$;
$\mathbf{x}=\mathbf{D}$;
while ($\mathrm{x}!=\mathbf{0}$)
\{ $\mathrm{A}[\mathrm{i}]=$ floor $(\mathbf{x} * \mathrm{~B})$;
$\mathbf{x}=\mathbf{x} * \mathrm{~B}-\mathrm{A}[\mathrm{i}]$;
i++; $\}$
\}

Converting from Decimal to Any Other (7/7)

Example 3: Convert 0.6875 to a binary number.

Multiplication	Integer	Fractional
$0.6875 \times 2=1.375$	1	0.375
$0.375 \times 2=0.75$	0	0.75
$0.75 \times 2=1.5$	1	0.5
$0.5 \times 2=1.0$	1	0.0
Therefore, $0.6875=(0.1011)_{2}$		

Which Base Should We Use?

${ }^{\circ}$ Decimal: Great for humans; most arithmetic is done with these.
${ }^{\circ}$ Binary: This is what computers use, so get used to them. Become familiar with how to do basic arithmetic with them $(+,-, *, /)$.
${ }^{\circ}$ Hex: Terrible for arithmetic; but if we are looking at long strings of binary numbers, it's much easier to convert them to hex in order to look at four bits at a time.

How Do We Tell the Difference?

${ }^{\circ}$ When dealing with AVR microcontrollers:

- Hex numbers are preceded with " $\$$ " or "0x"

$$
-\$ 10==0 \times 10=10_{16}=16_{10}
$$

- Binary numbers are preceded with " 0 b "
- Octal numbers are preceded with "0" (zero)
- Everything else by default is Decimal

Inside the Computer

${ }^{\circ}$ To a computer, numbers are always in binary; all that matters is how they are printed out: binary, decimal, hex, etc.
${ }^{\circ}$ As a result, it doesn't matter what base a number in C is in...

- $32_{10}==0 \times 20==100000_{2}$
${ }^{\circ}$ Only the value of the number matters.

Bits Can Represent Everything

${ }^{\circ}$ Characters?

- 26 letter $=>5$ bits
- upper/lower case + punctuation
=> 7 bits (in 8) (ASCII)
- Rest of the world's languages $=>16$ bits (unicode)
${ }^{\circ}$ Logical values?
- 0 -> False, 1 => True
${ }^{\circ}$ Colors ?
${ }^{\circ}$ Locations / addresses? commands?
${ }^{\circ}$ But N bits $=>$ only 2^{N} things

What If Too Big?

${ }^{\circ}$ Numbers really have an infinite number of digits

- with almost all being zero except for a few of the rightmost digits: e.g: $0000000 \ldots 000098=98$
- Just don't normally show leading zeros
${ }^{\circ}$ Computers have fixed number of digits
- Adding two n-bit numbers may produce an ($\mathrm{n}+1$)-bit result.
- Since registers' length (8 bits on AVR) is fixed, this is a problem.
- If the result of add (or any other arithmetic operation), cannot be represented by a register, overflow is said to have occurred

An Overflow Example

${ }^{\circ}$ Example (using 4-bit numbers):

+15	1111
+3	0011
+18	10010

- But we don't have room for 5-bit solution, so the solution would be 0010 , which is +2 , which is wrong.

How To Handle Overflow?

${ }^{\circ}$ Some languages detect overflow (Ada), some don't (C and JAVA)
${ }^{\circ}$ AVR has N, Z, C and V flags to keep track of overflow

- Will cover details later

Comparison

${ }^{\circ}$ How do you tell if $\mathrm{X}>\mathrm{Y}$?
${ }^{\circ}$ See if $\mathrm{X}-\mathrm{Y}>0$

How to Represent Negative Numbers?

${ }^{\circ}$ So far, unsigned numbers
${ }^{\circ}$ Obvious solution: define leftmost bit to be sign!

- 0 => +, 1 => -
- Rest of bits can be numerical value of number
${ }^{\circ}$ Representation called sign and magnitude
${ }^{\circ}$ On AVR $+1_{\text {ten }}$ would be: $\underline{0} 0000001$
${ }^{\circ}$ And $-1_{\text {ten }}$ in sign and magnitude would be: 10000001

Shortcomings of Sign and Magnitude?

${ }^{\circ}$ Arithmetic circuit more complicated

- Special steps depending whether signs are the same or not
${ }^{\circ}$ Also, two zeros.
- $0 \times 00=+0_{\text {ten }}$
- $0 \times 80=-0_{\text {ten }}$ (assuming 8 bit integers).
- What would it mean for programming?
${ }^{\circ}$ Sign and magnitude abandoned because another solution was better

Another Try: Complement the Bits

${ }^{\circ}$ Examples: $7_{10}=00000111_{2} \quad-7_{10}=11111000_{2}$
${ }^{\circ}$ Called one's Complement.
${ }^{\circ}$ The one's complement of an integer X is $2^{\mathrm{p}}-\mathrm{X}-1$, where p is the number of integer bits.

Questions:

${ }^{\circ}$ What is -00000000_{2} ?
${ }^{\circ}$ How many positive numbers in N bits?
${ }^{\circ}$ How many negative numbers in N bits?

Shortcomings of Ones Complement?

${ }^{\circ}$ Arithmetic not too hard
${ }^{\circ}$ Still two zeros

- $0 \times 00=+0_{\text {ten }}$
- $0 \times \mathrm{xFF}=-0_{\text {ten }}$ (assuming 8 bit integers).
${ }^{\circ}$ One's complement was eventually abandoned because another solution is better

Two's Complement

- The two's complement of an integer X is
$2^{\mathrm{p}-\mathrm{X}}$,
where p is the number of integer bits
${ }^{\circ}$ Bit p is the "sign" bit. Negative number if it is 1 ; positive number otherwise.
${ }^{\circ}$ Examples:
$-7_{10}=00000111_{2} \quad-1_{10}=11111111_{2}$
$--2_{10}=11111110_{2} \quad-7_{10}=11111001_{2}$

Two's Complement Formula

${ }^{\circ}$ Given a two's complement representation
$\mathrm{d}_{\mathrm{p}} \mathrm{d}_{\mathrm{p}-1} \ldots \mathrm{~d}_{1} \mathrm{~d}_{0}$, its value is
$\mathrm{d}_{\mathrm{p}}\left(-2^{\mathrm{p}}\right)+\mathrm{d}_{\mathrm{p}-1} 2^{\mathrm{p}-1}+\ldots+\mathrm{d}_{1} 2^{1}+\mathrm{d}_{0} 2^{0}$

- Example:
- Two's complement representation 11110011
$=1 \times\left(-2^{7}\right)+1 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+0 \times 2^{2}+$
$1 \times 2^{1}+1 \times 2^{0}$
$=00001101_{2}$

Two's Complement's Arithmetic Examples

${ }^{\circ}$ Example 1: $20-4=16$
${ }^{\circ}$ Assume 8 bit architecture.

$$
\begin{aligned}
20-4 & =20+(-4) \\
& =00010100_{\mathrm{two}}-00000100_{\mathrm{two}} \\
= & 00010100_{\mathrm{two}} \\
& +11111100_{\mathrm{two}} \\
& =100010000_{\mathrm{two}}
\end{aligned}
$$

Carry Most significant bit (msb) No overflow.

Two's Complement's Arithmetic Examples

${ }^{\circ}$ Example 2: $-127-2=-129$?
${ }^{\circ}$ - 127 - 2
$=-01111111_{\mathrm{two}}-00000010_{\mathrm{two}}$
$=10000001_{\text {two }}$
$+11111110_{\text {two }}$
$=101111111_{\text {two }}$
Carry msb Overflow

Two's Complement's Arithmetic Examples

${ }^{\circ}$ Example 3: $127+2=129$?
${ }^{\circ} 127+2$
$=01111111_{\mathrm{two}}+00000010_{\mathrm{two}}$
$=01111111_{\mathrm{two}}$
$+00000010_{\text {two }}$
$=10000001_{\text {two }}$
msb Overflow

When Overflow Occurs?

The 'two's complement overflow' occurs when:

- both the msb's being added are 0 and the msb of the result is 1
- both the msb's being added are 1 and the msb of the result is 0

How AVR Computes Overflow Flag V?

Instruction: add $R d, R$
$\mathrm{V}=\mathrm{Rd} 7 \cdot \mathrm{Rr} 7 \cdot \mathrm{NOT}(\mathrm{R} 7)+\mathrm{NOT}(\mathrm{Rd} 7) \cdot \mathrm{NOT}(\mathrm{Rr} 7) \cdot \mathrm{R} 7$
NOT : negation

+ : bit-wise or
\cdot : bit-wise and

Signed vs. Unsigned Numbers

${ }^{\circ} \mathrm{C}$ declaration int

- Declares a signed number
- Uses two's complement
${ }^{\circ} \mathrm{C}$ declaration unsigned int
- Declares a unsigned number
- Treats 32-bit number as unsigned integer, so most significant bit is part of the number, not a sign bit
${ }^{\circ}$ NOTE:
- Hardware does all arithmetic in 2's complement.
- It is up to programmer to interpret numbers as signed or unsigned.

Signed and Unsigned Numbers in AVR(1/2)

${ }^{\circ}$ AVR microcontrollers support only 8 bit signed and unsigned integers.
${ }^{\circ}$ Multi-byte signed and unsigned integers can be implemented by software.
${ }^{\circ}$ Question: How to compute

$$
\begin{aligned}
& 10001110011100001110001100101010_{\text {two }} \\
& +01110000110010001000110001110001_{\text {two }} \\
& \text { on AVR? }
\end{aligned}
$$

Signed and Unsigned Numbers in AVR (2/2)

${ }^{\circ}$ Solution: Four-byte integer addition can be done by using four one-byte integer additions taking carries into account (lowest bytes are added first).
$1000111001110000 \quad 1110001100101010$
$+01110000+11001000+10001100+01110001$

The result is $11111111001110010110111110011011_{\text {two }}$

Signed v. Unsigned Comparison

- $\mathrm{X}=11111100_{\text {two }}$
- $\mathrm{Y}=00000010_{\mathrm{two}}$
- Is $\mathrm{X}>\mathrm{Y}$?
- unsigned: YES
- signed: NO

Signed v. Unsigned Comparison (Hardware Help)

$$
\begin{aligned}
& { }^{\circ} \mathrm{X}=11111100_{\mathrm{two}} \\
& { }^{\circ} \mathrm{Y}=00000010_{\mathrm{two}} \\
& \begin{aligned}
& \circ \\
& \mathrm{Is} \\
& \mathrm{X}>\mathrm{Y} ? \text { Do the Subtraction } \mathrm{X}-\mathrm{Y} \text { and check result } \\
& \mathrm{X}-\mathrm{Y}=11111100_{\mathrm{two}}-00000010_{\mathrm{two}} \\
&= 11111100_{\mathrm{two}} \\
& \quad{ }^{+} 11111110_{\mathrm{two}} \\
& \quad= 111111010_{\mathrm{two}}
\end{aligned}
\end{aligned}
$$

Hardware needs to keep

- a special bit (S flag in AVR) which indicates the result of signed comparison, and
- a special bit (C flag in AVR) which indicates the result of unsigned comparison.

Signed v. Unsigned Comparison (Hardware Help)

${ }^{\circ} \mathrm{X}=11111100_{\mathrm{two}}$
${ }^{\circ} \mathrm{Y}=00000010_{\text {two }}$
${ }^{\circ}$ Is $\mathrm{X}>\mathrm{Y}$? Do the Subtraction $\mathrm{X}-\mathrm{Y}$ and check result

$$
\begin{aligned}
\mathrm{X}-\mathrm{Y} & =11111100_{\mathrm{two}}-00000010_{\mathrm{two}} \\
= & 11111100_{\mathrm{two}} \\
& +11111110_{\mathrm{two}} \\
= & 111111010_{\mathrm{two}}
\end{aligned}
$$

Hardware needs to keep

- a special bit (S flag in AVR) which indicates the result of signed comparison, and
- a special bit (C flag in AVR) which indicates the result of unsigned comparison.

Numbers Are Stored at Addresses

${ }^{\circ}$ Memory is a place to store bits
${ }^{\circ}$ A word is a fixed number of bits (eg, 16 in AVR assembler) at an address
${ }^{\circ}$ Addresses have fixed number of bits
${ }^{\circ}$ Addresses are naturally represented as unsigned numbers
${ }^{\circ}$ How multi-byte numbers are stored in memory is determined by the endianness.
${ }^{\circ}$ On AVR, programmers choose the endianess.

Beyond Integers (Characters)

${ }^{\circ} 8$-bit bytes represent characters, nearly every computer uses American Standard Code for Information Interchange (ASCII)

No. charNo.char32		No.char 64 @	No.char 80 P	No. 96 char	No. char	
		112 p				
33	491		65 A	81 Q	97 a	113 q
34	502	66 B	82 R	98 b	114	
35 \#	513	67 C	83 S	99 c	115	
				.	. .	
47 /	63 ?	790	95	1110	127 DEL	

- Uppercase $+32=$ Lowercase (e.g, $\mathrm{B}+32=\mathrm{b}$)
- $\operatorname{tab}=9$, carriage return $=13$, backspace $=8$, Null $=0$

Strings

${ }^{\circ}$ Characters normally combined into strings, which have variable length

- e.g., "Cal", "M.A.D", "COMP3221"
${ }^{\circ}$ How to represent a variable length string?

1) 1st position of string reserved for length of string (Pascal)
2) an accompanying variable has the length of string (as in a structure)
3) last position of string is indicated by a character used to mark end of string (C)
${ }^{\circ} \mathrm{C}$ uses 0 (Null in ASCII) to mark the end of a string

Example String

${ }^{\circ}$ How many bytes to represent string "Popa"?

- What are values of the bytes for "Popa"?

Strings in C: Example

```
* String simply an array of char
void strcpy (char x[],char y[])
    {
        int i=0; /* declare and
initialize i*/
    while ((x[i]=y[i])!='\0') /* 0 */
    i=i+1; /* copy and test byte */
    }
```


String in AVR Assembly Language

- .db "Hello\n" ; This is equivalent to
.db 'H', 'e', ‘l', 'l', ‘o', ‘n’
- What does the following instruction do?
ldi r 4, ' 1 '

Sign Extension (1/4)

${ }^{\circ}$ Remember that negative numbers in computers are represented in 2's complements.
${ }^{\circ}$ How to extend a binary number of m bits in 2 's complement to an equivalent binary number of $\mathrm{m}+\mathrm{n}$ bits?

Example 1: $x=(0100)_{2}=4$
Since x is a positive number,

$$
\begin{aligned}
\mathrm{x} & =(00000100)_{2} \\
& =(000000000100)_{2}
\end{aligned}
$$

In general, if a number is positive, add $n 0$'s to its left. This procedure is called sign extension.

Sign Extension (2/4)

${ }^{\circ}$ Example 2: $\mathrm{x}=(1100)_{2}=-4$
Since x is negative,

$$
\begin{aligned}
x & =\left(\begin{array}{lll}
1111 & 1100
\end{array}\right)_{2} \\
& =\left(\begin{array}{lll}
11111111 & 1100
\end{array}\right)_{2}
\end{aligned}
$$

In general, if a number is negative, add $n 1$'s to its left. This procedure is called sign extension.

Sign Extension (3/4)

${ }^{\circ}$ How to add two binary numbers of different lengths?
\square Sign-extend the shorter number such that it has the same length as the longer number, and then add both numbers.
Example 3: $x=(11010100)_{2}=-44$,

$$
y=(0100)_{2}=4
$$

$\mathrm{x}+\mathrm{y}=$?
Since y is positive, $y=(00000100)_{2}$.
$x+y=(11010100)_{2}+(00000100)_{2}$
$=(11011000)_{2}=-40$

Sign Extension (4/4)

Example 4: $x=(11010100)_{2}=-44$,

$$
y=(1100)_{2}=-4
$$

$\mathrm{x}+\mathrm{y}=$?
Since y is negative, $y=(11111100)_{2}$.

$$
\begin{aligned}
x+y & =(11010100)_{2}+(11111100)_{2} \\
& =(11010000)_{2}=-48
\end{aligned}
$$

Scientific Notation

- Normalized form: no leadings 0 (exactly one non-zero digit to the left of decimal point)
- Alternatives to representing $1 / 1,000,000,000$
-Normalized: $\quad 1.0 * 10^{-9}$
-Not normalized: $\quad 0.1 * 10^{-8}, 10.0 * 10^{-10}$
How to represent 0 in Normalized form?

Scientific Notation for Binary Numbers

- Computer arithmetic that supports it is called floating point, because it represents numbers where binary point is not fixed, as it is for integers
- Declare such variables in C as float (single precision floating point number) or double (double precision floating point number).

Floating Point Representation

Normal form

Sign bit Significand Exponent

- How many bits for significand (mantissa) x?
- How many bits for exponent y
- Is y stored in its original value or in transformed value?
- How to represent +infinity and -infinity?
- How to represent 0 ?

Overflow and Underflow

- What if result is too large?
-Overflow!
Overflow => Positive exponent larger than the value that can be represented in exponent field
- What if result too small?
 Underflow!}
\square Underflow $=>$ Negative exponent smaller than the value that can be represented in Exponent field
- How to reduce the chance of overflow or underflow?

IEEE 754 FP Standard—Single Precision

- Bit 31 for sign
$\square=1$ for negative numbers, 0 for positive numbers
- Bits 23-30 for biased exponent

The real exponent $=\mathrm{E}-127$
$\square 127$ is called bias.

- Bits 0-22 for significand

55

IEEE 754 FP Standard-Single Precision (Cont.)

The value V of a single precision FP number is determined as follows:

- If $0<\mathrm{E}<255$ then $\mathrm{V}=(-1)^{\mathrm{S}} * 2^{\mathrm{E}-127 *}$.F where " $1 . \mathrm{F}$ " is intended to represent the binary number created by prefixing F with an implicit leading 1 and a binary point.
- If $\mathrm{E}=255$ and F is nonzero, then $\mathrm{V}=\mathrm{NaN}$ ("Not a number")
- If $\mathrm{E}=255$ and F is zero and S is 1 , then $\mathrm{V}=$-Infinity
- If $E=255$ and F is zero and S is 0 , then $V=$ Infinity
- If $\mathrm{E}=0$ and F is nonzero, then $\mathrm{V}=(-1)^{\mathrm{s}} * 2^{-126} * 0 . \mathrm{F}$. These are unnormalized numbers or subnormal numbers.
- If $E=0$ and F is 0 and S is 1 , then $V=-0$
- If $E=0$ and F is 0 and S is 0 , then $V=0$

IEEE 754 FP Standard—Single Precision (Cont.)

Subnormal numbers reduce the chance of underflow.

- Without subnormal numbers, the smallest positive number is 2^{-127}
- With subnormal numbers, the smallest positive number is $0.00000000000000000000001 * 2-126=2^{-(126+23)}=2^{-149}$

IEEE 754 FP Standard—Double Precision

- Bit 63 for sign

S=1 for negative numbers, 0 for positive numbers

- Bits 52-62 for biased exponent

The real exponent $=\mathrm{E}-1023$
$\square 1023$ is called bias.

- Bits 0-51 for significand

IEEE 754 FP Standard-Double Precision (Cont.)

The value V of a double precision FP number is determined as follows:

- If $0<\mathrm{E}<2047$ then $\mathrm{V}=(-1)^{\mathrm{S}} * 2^{\mathrm{E}-1023 *} 1 . \mathrm{F}$ where "1.F" is intended to represent the binary number created by prefixing F with an implicit leading 1 and a binary point.
- If $\mathrm{E}=2047$ and F is nonzero, then $\mathrm{V}=\mathrm{NaN}$ ("Not a number")
- If $E=2047$ and F is zero and S is 1 , then $V=$-Infinity
- If $E=2047$ and F is zero and S is 0 , then $V=$ Infinity
- If $\mathrm{E}=0$ and F is nonzero, then $\mathrm{V}=(-1)^{\mathrm{S}} * 2^{-1022} * 0 . \mathrm{F}$. These are
unnormalized numbers or subnormal numbers.
- If $E=0$ and F is 0 and S is 1 , then $V=-0$
- If $\mathrm{E}=0$ and F is 0 and S is 0 , then $\mathrm{V}=0$

Implementing FP Addition by Software

How to implement $\mathrm{x}+\mathrm{y}$ where x and y are two single precision FP numbers?

Step 1: Convert x and y into IEEE format
Step 2: Align two significands if two exponents are different.

- Let e1 and e2 are the exponents of x and y , respectively, and assume e $1>e 2$. Shift the significand (including the implicit 1) of y right e $1-\mathrm{e} 2$ bits to compensate for the change in exponent.

Step 3: Add two (adjusted) significands.
Step 4: Normalize the result.

An Example

How to implement $\mathrm{x}+\mathrm{y}$ where $\mathrm{x}=2.625$ and $\mathrm{y}=-4.75$?
Step 1: Convert x and y into IEEE format

$$
\begin{aligned}
\mathrm{x}=2.625 & \rightarrow 10.101(\text { Binary }) \\
& \rightarrow 1.0101 * 2^{1}(\text { Normal form }) \\
& \rightarrow 1.0101 * 2^{128}(\text { IEEE format }) \\
& \rightarrow 01000000001010000000000000000000
\end{aligned}
$$

Comments: The fraction part can be converted by multiplication. (This is the inverse of the division method for integers.)
$0.625 \times 2=1.251$ (the most significant bit in fraction)
$0.25 \times 2=0.5 \quad 0$
$0.5 \times 2=1.0 \quad 1$ (the least significant bit in fraction)

61

An Example (Cont.)

$$
\begin{aligned}
\mathrm{y}=-4.75 & \rightarrow-100.11(\text { Binary }) \\
& \rightarrow-1.0011 * 2^{2}(\text { Normal form }) \\
& \rightarrow-1.0011 * 2^{129}(\text { IEEE format }) \\
& \rightarrow 11000000100110000000000000000000
\end{aligned}
$$

Step 2: Align two significands.
The significand of $\mathrm{x}=1.0101 \rightarrow 0.10101$ (After shift right 1 bit)

Comments: $x=0.10101 * 2{ }^{129}$ and $y=-1.0011 * 2{ }^{129}$ after the alignment.

An Example (Cont.)

Step 3: Add two (adjusted) significands.
$0.10101 \longleftarrow$ The adjusted significand of x
$-1.00110 \longleftarrow$ The significand of y
$=-0.10001 \longleftarrow$ The significand of $\mathrm{x}+\mathrm{y}$

Step 4: Normalize the result.

$$
\begin{aligned}
\text { Result }= & -0.10001 * 2^{129} \rightarrow-1.0001 * 2^{128} \\
\rightarrow & 11000000000010000000000000000000 \\
& (\text { Normal form })
\end{aligned}
$$

Reading

1. http://cch.loria.fr/documentation/IEEE754/numerical _comp_guide/index.html.
2. http://www.cs.berkeley.edu/~wkahan/ieee754status/7 54story.html.

Reading Material

1. Appendix A in Microcontrollers ands Microcomputers.
