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COMP2121: Microprocessors and 
Interfacing

Number Systems 

http://www.cse.unsw.edu.au/~cs2121

Lecturer:  Hui Wu

Term 2, 2019
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Overview

• Positional notation
• Decimal, hexadecimal, octal and binary
• Converting decimal to any other
• One’ complement
• Two’s complement
• Two’s complement overflow
• Signed and unsigned comparisons
• Strings
• Sign extension

• IEEE Floating Point Number Representation

• Floating Point Number Operations  
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° Number Base B => B symbols per digit:
• Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• Base   2 (Binary): 0, 1

° Number representation: 

• (anan-1 ... a1.b1 … b m-1bm)B is a number of base (radix) B

 n digits in the integer part and m digits in the fractional part. 

 The base B can be omitted if B=10.

• value = anBn-1 + an-1Bn-2 + ... + a2B1 + a1B0

+ b1B-1 + b2B-2 + ... + bm-1B-(m-1) + bm B-m

Numbers: positional notation
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° Binary system
• Base 2  

• Digits (bits): 0,1

• (11010.101)2 = 

124 + 123 + 022 + 12 + 01 + 12-1 + 02-2 + 12-3

= 26.625

° Octal system: 

• Base 8.

• Digits: 0, 1, 2, 3, 4, 5, 6, 7 

• (605.24)8 = 682 + 081 + 580 + 28-1 + 48-2 = 389.3125

Typical Number Systems (1/2)
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° Hexadecimal system 
• Base 16

• Digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
A  10

 B  11

 C  12

 D  13

 E  14

 F  15

• (8F0D.2C)16 = (8163) + (15162) + (0161) + (13160) + 
(216-1) + (C16-2) = 36621.171875

Typical Number Systems (2/2)
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• Examples:
• 1010 1100 0101 (binary) 

= ? (hex)

• 10111 (binary) 
= 0001 0111 (binary) 
= ? (hex)

• 3F9(hex) 
= ? (binary)

Decimal vs. Hexadecimal vs. Binary

00        0 0000
01 1 0001
02        2 0010
03 3 0011
04        4 0100
05 5 0101
06        6 0110
07 7 0111
08        8 1000
09 9 1001
10        A 1010
11 B 1011
12        C 1100
13 D 1101
14        E 1110
15 F 1111
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Hex to Binary Conversion

° HEX is a more compact representation of Binary! 

° Each hex digit represents 16 decimal values.

° Four binary digits represent 16 decimal values.

° Therefore, each hex digit can replace four binary  

digits (bits).

° Example:

(3       B       9      A       C      A       0       0)16

= (0011 1011 1001 1010 1100 1010 0000 0000)2 
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Octal to Binary Conversion

° Each octal digit represents 8 decimal values.

° Three binary digits represent 8 decimal values.

° Therefore, each octal digit can replace three binary  

digits (bits).

° Example:
(3     7     1     2     4     5     0     1)8

= (011 111 001 010 100 101 000 001)2
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Converting from Decimal to Any Other (1/7)

o Use division method if a decimal number is an integer. 

° Let D be a decimal integer such that 

D= (anan-1 ... a1)B 

= an Bn-1 + an-1 Bn-2 + ... + a2 B1 + a1B0

° Notice that 

a1 = D%B

a2 = (D/B)%B

…

In general, ai = ((D/Bi-1)%B  (i=1, 2, … n) 

Where / is the division operator and  %  the modulus operator as 
in C.  
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Converting from Decimal to Any Other (2/7)

The conversion procedure is shown in C as follows:

D2B-Integer-Converter(int B, long int D)  

{ int i, A[];

long int x;

i=0;  

x=D;

while (x!=0) 

{ A[i] =x%B ; 

x=x/B ; 

i++;}

} 
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Converting from Decimal to Any Other (3/7)

Example 1: Convert 5630 to a hex number. 

Division       Quotient    Remainder  Remainder in hex

5630/16         352               14             E

351/16            21                15             F 

21/16              1                   5              5

1/16                0                   1              1

Therefore, 5630=(15FE)16
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Converting from Decimal to Any Other (4/7)
Example 2: Convert 138 to a binary number. 

Division       Quotient    Remainder 

138/2             69               0

69/2               34               1

34/2               17               0

17/2                8                1

8/2                 4                0

4/2                 2                0

2/2                 1                0  

1/2                 0                1                  

Therefore, 138=(10001010)2
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Converting from Decimal to Any Other (5/7)
o Use multiplication method if the decimal number is a fractional 
number.

o Let D be a fractional decimal number such that 

D=(0.b1b2 … bm-1bm)B 

=b1B-1 + b2B-2 + ... + bm-1B-(m-1) + bmB-m

° Notice that 

b1 = floor(DB)

b2 = floor(frac(DB)B)

…

In general, bi = floor(frac(DBi-1)B)  (i=1, 2, … m)

Where floor(x) is the integer part of x and frac(x) is the fractional 
part of x. 
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Converting from Decimal to Any Other (6/7)
The conversion procedure is shown in C as follows:

D2B-Fractional-Converter(int B, double D)  

{ int i, A[];

double x;   

i=0;  

x=D;

while (x!=0) 

{ A[i] = floor(x*B) ; 

x = x*B-A[i] ; 

i++ ;}

} 
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Converting from Decimal to Any Other (7/7)

Example 3: Convert 0.6875 to a binary number.

Multiplication                    Integer       Fractional  

0.6875  2 = 1.375           1                0.375

0.375  2 = 0.75               0                0.75

0.75  2 = 1.5 1                0.5

0.5  2 = 1.0                     1                0.0

Therefore, 0.6875=(0.1011)2
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° Decimal: Great for humans; most arithmetic is done 
with these.

° Binary: This is what computers use, so get used to 
them.  Become familiar with how to do basic arithmetic 
with them (+,-,*,/).

° Hex: Terrible for arithmetic; but if we are looking at 
long strings of binary numbers, it’s much easier to 
convert them to hex in order to look at four bits at a 
time.

Which Base Should We Use?
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° When dealing with AVR microcontrollers:
• Hex numbers are preceded with “$” or “0x” 

-$10 == 0x10 == 1016 == 1610

• Binary numbers are preceded with “0b”

• Octal numbers are preceded with “0” (zero)

• Everything else by default is Decimal

How Do We Tell the Difference?
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° To a computer, numbers are always in binary; all 
that matters is how they are printed out: binary, 
decimal, hex, etc.

° As a result, it doesn’t matter what base a number 
in C is in...

• 3210 == 0x20 == 1000002

° Only the value of the number matters.

Inside the Computer
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° Characters?
• 26 letter => 5 bits

• upper/lower case + punctuation 
=> 7 bits (in 8) (ASCII)

• Rest of the world’s languages => 16 bits   (unicode)

° Logical values?
• 0 -> False, 1 => True

° Colors ?

° Locations / addresses? commands?

° But N bits => only 2N things

Bits Can Represent Everything
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° Numbers really have an infinite number of digits
- with almost all being zero except for a few of the 
rightmost digits: e.g: 0000000 … 000098 == 98

- Just don’t normally show leading zeros

° Computers have fixed number of digits
- Adding two n-bit numbers may produce an (n+1)-bit 
result.
- Since registers’ length (8 bits on AVR) is fixed, this is 
a problem.

- If the result of add (or any other arithmetic 
operation), cannot be represented by a register, 
overflow is said to have occurred

What If Too Big?
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° Example (using 4-bit numbers):
+15 1111

+3 0011

+18 10010

• But we don’t have room for 5-bit solution, so the 
solution would be 0010, which is +2, which is wrong.

An Overflow Example
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° Some languages detect overflow (Ada), some don’t 
(C and JAVA)

° AVR has N, Z, C and V flags to keep track of 
overflow

• Will cover details later

How To Handle Overflow?

21
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Comparison

° How do you tell if X > Y ?

° See if X - Y > 0
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How to Represent Negative Numbers?

° So far, unsigned numbers

° Obvious solution: define leftmost bit to be sign!
• 0 => +, 1 => -

• Rest of bits can be numerical value of number

° Representation called sign and magnitude

° On AVR +1ten would be: 0000 0001

° And - 1ten in sign and magnitude would be: 1000 0001

23
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Shortcomings of Sign and Magnitude?

° Arithmetic circuit more complicated
• Special steps depending whether signs are the same or not

° Also, two zeros.

• 0x00 = +0ten 

• 0x80 = -0ten (assuming 8 bit integers).
• What would it mean for programming?

° Sign and magnitude abandoned because another 
solution was better
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Another Try: Complement the Bits

° Examples: 710 = 000001112 -710 = 111110002

° Called one’s Complement.

° The one’s complement of an integer X is

2p-X-1, where p is the number of integer bits.

Questions:

° What is -000000002 ?

° How many positive numbers in N bits?

° How many negative numbers in N bits?

25
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Shortcomings of Ones Complement?

° Arithmetic not too hard

° Still two zeros

• 0x00 = +0ten

• 0xFF = -0ten (assuming 8 bit integers).

° One’s complement was eventually abandoned because 
another solution is better
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Two’s Complement

° The two’s complement of an integer X is

2p-X,

where p is the number of integer bits

° Bit p is the “sign” bit. Negative number if it is 1; 
positive number otherwise.

° Examples:

– 710 = 000001112 -110 = 111111112

– -210 = 111111102        -710 = 111110012 

27
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Two’s Complement Formula

° Given a two’s complement representation

dpdp-1…d1d0, its value is

dp (–2p)+ dp-1 2p-1 + ... + d1 21 + d0 20

° Example:
– Two’s complement representation 11110011

= 1 (–27)+ 1  26 + 1  25 + 1  24 + 0 23 + 0 22 + 
1 21 + 1  20 

= 000011012
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° Example 1: 20 – 4 = 16

° Assume 8 bit architecture.

20 – 4 = 20 + (–4) 

= 0001 0100two – 0000 0100two 

=   0001 0100two

+ 1111 1100two

=   10001 0000two

Carry    Most significant bit (msb)     No overflow.

Two’s Complement’s Arithmetic Examples

29
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° Example 2:  –127 – 2 = – 129?

° – 127 – 2

= – 0111 1111two – 0000 0010two

=   1000 0001two

+ 1111 1110two

=   10111 1111two

Carry  msb    Overflow

Two’s Complement’s Arithmetic Examples
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° Example 3:  127 + 2 = 129?

° 127 + 2

=   0111 1111two + 0000 0010two

=   0111 1111two

+ 0000 0010two

=   1000 0001two

msb       Overflow

Two’s Complement’s Arithmetic Examples
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When Overflow Occurs?

The ‘two’s complement overflow’ occurs when:

• both the msb’s being added are 0 and the msb of the
result is 1

• both the msb’s being added are 1 and the msb of the
result is 0

34

How AVR Computes Overflow Flag V?

Instruction: add Rd, R

V=Rd7•Rr7• NOT(R7)+NOT(Rd7)•NOT(Rr7)•R7

NOT : negation

+ : bit-wise or

• : bit-wise and

33
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° C declaration int
• Declares a signed number

• Uses two’s complement

° C declaration unsigned int
• Declares a unsigned number

• Treats 32-bit number as unsigned integer, so most significant 
bit is part of the number, not a sign bit

° NOTE:
• Hardware does all arithmetic in 2’s complement.

• It is up to programmer to interpret numbers as signed or 
unsigned.

Signed vs. Unsigned Numbers

36

° AVR microcontrollers support only 8 bit signed and 
unsigned integers.

° Multi-byte signed and unsigned integers can be 
implemented by software.

° Question: How to compute

10001110 01110000 11100011 00101010two

+ 01110000 11001000 10001100 01110001two

on AVR?

Signed and Unsigned Numbers in 
AVR(1/2)

35
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° Solution: Four-byte integer addition can be done by 
using four one-byte integer additions taking carries into 
account (lowest bytes are added first). 

10001110     01110000     11100011      00101010

+ 01110000  + 11001000  + 10001100  + 01110001

= 11111110   100111000   101101111    010011011     

Carry bits   

The result is 11111111 00111001 01101111 10011011two

Signed and Unsigned Numbers in 
AVR (2/2)

38

• X = 1111 1100two

• Y = 0000 0010two

• Is X > Y?

– unsigned: YES

– signed: NO

Signed v. Unsigned Comparison

37
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Signed v. Unsigned Comparison (Hardware Help)

° X = 1111 1100two

° Y = 0000 0010two

° Is X > Y? Do the Subtraction X – Y and check result

X – Y = 1111 1100two – 0000 0010two

=   1111 1100two

+ 1111 1110two

=   11111 1010two

Hardware needs to keep 

• a special bit ( S flag in AVR) which indicates the result of 
signed comparison, and

• a special bit (C flag in AVR) which indicates the result of 
unsigned comparison. 
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Signed v. Unsigned Comparison (Hardware Help)

° X = 1111 1100two

° Y = 0000 0010two

° Is X > Y? Do the Subtraction X – Y and check result

X – Y = 1111 1100two – 0000 0010two

=   1111 1100two

+ 1111 1110two

=   11111 1010two

Hardware needs to keep 

• a special bit ( S flag in AVR) which indicates the result of 
signed comparison, and

• a special bit (C flag in AVR) which indicates the result of 
unsigned comparison. 

39

40



21

41

Numbers Are Stored at Addresses

° Memory is a place to store bits

° A word is a fixed number of bits 
(eg, 16 in AVR assembler) at an 
address

° Addresses have fixed number of 
bits

° Addresses are naturally 
represented as unsigned numbers

° How multi-byte numbers are 
stored in memory is determined by 
the endianness.

° On AVR, programmers choose the 
endianess.  

0x0000

0x0001 

0x0002

0xF…F
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Beyond Integers (Characters)

° 8-bit bytes represent characters, nearly every computer
uses American Standard Code for Information Interchange
(ASCII)

32  48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
... ... ... ... ... ...
47 / 63 ? 79 O 95 _ 111 o 127 DEL

No. No. No. No. No. No.char char char char char
char

• Uppercase + 32 = Lowercase (e.g, B+32=b)

• tab=9, carriage return=13, backspace=8, Null=0

41
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Strings

° Characters normally combined into strings, which have 
variable length

• e.g., “Cal”, “M.A.D”, “COMP3221”

° How to represent a variable length string?
1) 1st position of string reserved for length of string (Pascal)

2) an accompanying variable has the length of string (as in a 
structure)

3) last position of string is indicated by a character used to mark 
end of string (C)

° C uses 0 (Null in ASCII) to mark the end of a string

44

° How many bytes to represent string “Popa”?

° What are values of the bytes for “Popa”?

Example String

32  48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
... ... ... ... ... ...
47 / 63 ? 79 O 95 _ 111 o 127 DEL

No. No. No. No. No. No.char char char char charchar

° 80, 111, 112, 97, 0 DEC
° 50,   6F,   70, 61, 0 HEX

43

44



23

45

Strings in C: Example

° String simply an array of char

void strcpy (char x[],char y[])

{
int i=0;  /* declare and 

initialize i*/
while ((x[i]=y[i])!=’\0’) /* 0 */ 
i=i+1;  /* copy and test byte */ 

}

46

String in AVR Assembly Language

• .db “Hello\n” ; This is equivalent to

.db ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\n’

• What does the following instruction do?

ldi r4, ‘1’

45
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Sign Extension (1/4)

° Remember that negative numbers in computers are 
represented in 2’s complements.

° How to extend a binary number of m bits in 2’s 
complement to an equivalent binary number of m+n 
bits?

Example 1: x = (0100)2 = 4

Since x is a positive number, 

x = (0000 0100)2

= (0000 0000 0100)2

In general, if a number is positive, add n 0’s to its left. 
This procedure is called sign extension. 
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Sign Extension (2/4)

° Example 2: x = (1100)2 = -4

Since x is negative, 

x = (1111 1100)2

= (1111 1111 1100)2

In general, if a number is negative, add n 1’s to its 
left. This procedure is called sign extension.

47
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Sign Extension (3/4)

° How to add two binary numbers of different lengths?
 Sign-extend the shorter number such that it has the same 
length as the longer number, and then add both numbers. 

Example 3: x = (11010100)2 = -44, 

y = (0100)2 = 4

x+y=?

Since y is positive, y=(00000100)2.

x+y = (11010100)2 + (00000100)2

= (11011000)2 = -40 
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Sign Extension (4/4)

Example 4: x = (11010100)2 = -44, 

y = (1100)2 = -4

x+y=?

Since y is negative, y=(11111100)2.

x+y = (11010100)2 + (11111100)2

= (11010000)2 = -48 

49
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Scientific Notation

6.02 x 1023

Radix (base)Decimal point

• Normalized form: no leadings 0 
(exactly one non-zero digit to the  left of decimal point)

• Alternatives to representing 1/1,000,000,000

–Normalized: 1.0 * 10-9

–Not normalized: 0.1 * 10-8,10.0 * 10-10

How to represent 0 in Normalized form?

Integer
Exponent

52

Scientific Notation for Binary Numbers

1.01 x 2-12

Radix (base)Binary point

Integer
Exponent

• Computer arithmetic that supports it is called floating point, 
because it represents numbers where binary point is not fixed, as 
it is for integers

– Declare such variables in C as float (single precision floating point  
number) or double (double precision floating point number). 
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Floating Point Representation

Normal form:   +(-) 1.x * 2 y

Sign bit      Significand       Exponent

• How many bits for significand (mantissa)  x?

• How many bits for exponent y

• Is y stored in its original value or in transformed value?

• How to represent +infinity and –infinity?

• How to represent 0?

54

Overflow and Underflow

• What if result is too large? 

 Overflow!

 Overflow => Positive exponent larger than the value that 
can be represented in exponent field

• What if result too small? 

 Underflow!

 Underflow => Negative exponent smaller than the value 
that can be represented in Exponent field

• How to reduce the chance of overflow or underflow?

53
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IEEE 754 FP Standard—Single 
Precision

S  EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF 
31 30                23 22                                     1 0

Sign bit Biased Exponent Significand

Bits

• Bit 31 for sign

 S=1 for negative numbers, 0 for positive numbers

• Bits 23-30 for biased exponent

 The real exponent = E –127

 127 is called bias.

• Bits 0-22 for significand

56

IEEE 754 FP Standard—Single 
Precision (Cont.)

The value V of a single precision FP number is determined as follows: 

• If 0<E<255 then V=(-1) S * 2 E-127 * 1.F  where "1.F" is intended to 
represent the binary number created by prefixing F with an implicit 
leading 1 and a binary point. 

• If E = 255 and F is nonzero, then V=NaN ("Not a number") 

• If E = 255 and F is zero and S is 1, then V= -Infinity 

• If E = 255 and F is zero and S is 0, then V=Infinity 

• If E = 0 and F is nonzero, then V=(-1) S * 2 -126 * 0.F. These are 
unnormalized numbers or subnormal numbers. 

• If E = 0 and F is 0 and S is 1, then V=-0 

• If E = 0 and F is 0 and S is 0, then V=0 

55
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IEEE 754 FP Standard—Single 
Precision (Cont.)

Subnormal numbers reduce the chance of underflow.

• Without subnormal numbers, the smallest positive number is 
2 –127

• With subnormal numbers, the smallest positive number is 
0.00000000000000000000001 *2 -126 =2 –(126+23) =2-149
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IEEE 754 FP Standard—Double 
Precision

S  EEEEEEEEEEE  FFFFFFFFFF…FFFFFFFFFFFFF 
63 62                         52 51                                         1 0

Sign bit Biased Exponent Significand

Bits

• Bit 63 for sign

 S=1 for negative numbers, 0 for positive numbers

• Bits 52-62 for biased exponent

 The real exponent = E –1023

 1023 is called bias.

• Bits 0-51 for significand
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IEEE 754 FP Standard—Double 
Precision (Cont.)

The value V of a double precision FP number is determined as follows: 

• If 0<E<2047 then V=(-1) S * 2 E-1023 * 1.F  where "1.F" is intended to 
represent the binary number created by prefixing F with an implicit leading 1 
and a binary point. 

• If E = 2047 and F is nonzero, then V=NaN ("Not a number") 

• If E = 2047 and F is zero and S is 1, then V= -Infinity 

• If E = 2047 and F is zero and S is 0, then V=Infinity 

• If E = 0 and F is nonzero, then V=(-1) S * 2 -1022 * 0.F. These are 
unnormalized numbers or subnormal numbers. 

• If E = 0 and F is 0 and S is 1, then V=-0 

• If E = 0 and F is 0 and S is 0, then V=0 
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Implementing FP Addition  by 
Software

How to implement x+y where x and y are two single 
precision FP numbers?

Step 1: Convert x and y into IEEE format 

Step 2: Align two significands if two exponents are different. 

 Let e1 and e2 are the exponents of x and y, respectively,  and 
assume e1> e2. Shift the significand (including the implicit 
1) of y right e1–e2 bits to compensate for the change in 
exponent. 

Step 3: Add two (adjusted) significands.

Step 4: Normalize the result.

59
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An Example
How to implement x+y where x=2.625 and y= – 4.75?

Step 1: Convert x and y into IEEE format

x=2.625    10.101 (Binary) 

 1.0101 * 21 (Normal form)

 1.0101 * 2128  (IEEE format)

 0 10000000 01010000000000000000000 

Comments:  The fraction part can be converted by multiplication. (This is 
the inverse of the division method for integers.)

0.625 × 2 = 1.25   1 ( the most significant bit in fraction)

0.25 × 2   = 0.5     0

0.5 × 2     = 1.0     1 ( the least significant bit in fraction)

62

An Example (Cont.)

y= – 4.75    – 100.11 (Binary) 

 – 1.0011 * 22 (Normal form)

 – 1.0011 * 2129  (IEEE format)

 1 10000001 00110000000000000000000

Step 2: Align two significands.

The significand of x =  1.0101  0.10101 (After shift 
right 1 bit)

Comments: x=0.10101*2 129 and y= –1.0011 *2 129

after the alignment.

61
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An Example (Cont.)

Step 3: Add two (adjusted) significands.

0.10101          The adjusted significand of x 

– 1.00110          The significand of y

=  – 0. 10001         The significand of x+y

Step 4: Normalize the result.

Result = – 0. 10001 * 2129   – 1.0001 * 2128 

 1 10000000 00010000000000000000000

(Normal form)
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Reading 

1. http://cch.loria.fr/documentation/IEEE754/numerical
_comp_guide/index.html.

2. http://www.cs.berkeley.edu/~wkahan/ieee754status/7
54story.html. 
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Reading Material

1. Appendix A in Microcontrollers ands Microcomputers.
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