COMP2121: Microprocessors and
Interfacing

Number Systems

http://www.cse.unsw.edu.au/~cs2121
Lecturer: Hui Wu
Term 2, 2019

Overview

Positional notation

Decimal, hexadecimal, octal and binary
Converting decimal to any other

One’ complement

Two’s complement

Two’s complement overflow

Signed and unsigned comparisons
Strings

Sign extension

IEEE Floating Point Number Representation

Floating Point Number Operations

Numbers: positional notation

° Number Base B => B symbols per digit:
* Base 10 (Decimal): 0, 1,2, 3,4,5,6,7,8,9
* Base 2 (Binary): 0, 1

° Number representation:

*(a,a, ... a;.b; ... b b,)z 1s a number of base (radix) B
U n digits in the integer part and m digits in the fractional part.
U The base B can be omitted if B=10.

s value =a XB™!'+a xB"™2+ .. +a,xB!+axB°

+bxB1+b,xB2+ ... +b, XBM@D+pH xBm™

Typical Number Systems (1/2)

° Binary system
* Base 2
* Digits (bits): 0,1
« (11010.101), =
IXx24 4+ 1x23 4+ 0x22 4+ 1x2 + 0x1 + 1x2-1 + 0x22 + %23
=26.625
° Octal system:
* Base 8.
* Digits: 0, 1,2,3,4,5,6,7

¢ (605.24)g = 6x82 + 0x8! + 5x80 + 2x81 + 4x82 = 389.31245

Typical Number Systems (2/2)

° Hexadecimal system

* Base 16

* Digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
QA= 10
QB> 11
ac=12
QD= 13
QE= 14
QF=>15

« (8FOD.2C),, = (8% 163) + (15x162) + (0x161) + (13x160) +
2x16) + (Cx162) = 36621.171875

Decimal vs. Hexadecimal vs. Binary

» Examples: 8? ? 888(1)
* 1010 1100 0101 (binary) 8% % 88%(1)
=7 (hex) 04 4 0100
05 5 0101

, 06 6 0110

* 10111 (binary) 07 7 0111
=0001 0111 (binary) 83 g %88‘1)

= ? (hex) 100 A 1010
11 B 1011

12 C 1100

- 380 A
= ? (binary) 15 F 1111

Hex to Binary Conversion

° HEX is a more compact representation of Binary!
° Each hex digit represents 16 decimal values.
° Four binary digits represent 16 decimal values.
° Therefore, each hex digit can replace four binary
digits (bits).
° Example:
(3 B 9 A C A 0 0)6
=(0011 1011 1001 1010 1100 1010 0000 0000),

Octal to Binary Conversion

° Each octal digit represents 8 decimal values.

° Three binary digits represent 8 decimal values.

° Therefore, each octal digit can replace three binary
digits (bits).

° Example:
G 7 1 2 4 5 0 1)
= (011 111 001 010 100 101 000 001),

Converting from Decimal to Any Other (1/7)

o Use division method if a decimal number is an integer.
° Let D be a decimal integer such that
D= (a,a,. .- a))p
=a B™'+a B"2+..+a,B!'+a,B°
° Notice that
a, = D%B
a, = (D/B)%B

In general, a, = (D/B*")%B (i=1, 2, ... n)

~ Where / is the division operator and % the modulus operator as
in C. ’

Converting from Decimal to Any Other (2/7)

The conversion procedure is shown in C as follows:
D2B-Integer-Converter(int B, long int D)
{inti, A[];

long int x;

i=0;

x=D;

while (x!=0)

{A[i] =x%B ;
x=x/B ;

i++;}

10

Division Quotient

5630/16 352

351/16 21
21/16 1
1/16 0

Therefore, 5630=(15FE),¢

Converting from Decimal to Any Other (3/7)

Example 1: Convert 5630 to a hex number.

Remainder Remainder in hex

14 E
15 F
5 5
1 1

11

11

Division Quotient
138/2 69

69/2 34

34/2 17

17/2 8

8/2 4

4/2 2

2/2 1

1/2 0

Therefore, 138=(10001010),

Converting from Decimal to Any Other (4/7)

Example 2: Convert 138 to a binary number.

Remainder

0

1
0
1
0
0
0
1

12

Converting from Decimal to Any Other (5/7)

o Use multiplication method if the decimal number is a fractional
number.

o Let D be a fractional decimal number such that
D=(0.b;b, ... b, b,)s
=b,B'+b,B2+ ...+ b, ,B™D +b B™
° Notice that
b, = floor(DxB)
b, = floor(frac(DxB)xB)

In general, b, = floor(frac(DxB')xB) (i=1, 2, ... m)

Where floor(x) is the integer part of x and frac(x) is the fractional
part of x. 13

13

Converting from Decimal to Any Other (6/7)

The conversion procedure is shown in C as follows:
D2B-Fractional-Converter(int B, double D)
{inti, A[];

double x;

i=0;

x=D;

while (x!=0)

{ Ali] = floor(x*B) ;
x =x*B-A[i] ;

i++ 5}

14

Converting from Decimal to Any Other (7/7)

Example 3: Convert 0.6875 to a binary number.

Multiplication Integer Fractional
0.6875 x2=1.375 1 0.375
0.375%x2=0.75 0 0.75
0.75x2=1.5 1 0.5
0.5%x2=1.0 1 0.0

Therefore, 0.6875=(0.1011),

15

Which Base Should We Use?

° Decimal: Great for humans; most arithmetic is done
with these.

° Binary: This is what computers use, so get used to
them. Become familiar with how to do basic arithmetic
with them (+,-,*,/).

° Hex: Terrible for arithmetic; but if we are looking at
long strings of binary numbers, it’s much easier to
convert them to hex in order to look at four bits at a
time.

16

How Do We Tell the Difference?

° When dealing with AVR microcontrollers:
« Hex numbers are preceded with “$” or “0x”
-$10 ==0x10==10,,== 16,
* Binary numbers are preceded with “0b”
* Octal numbers are preceded with “0” (zero)

* Everything else by default is Decimal

17

Inside the Computer

° To a computer, numbers are a}lwa(liys in binary; all
that matters is how they are printed out: binary,
decimal, hex, etc.

© As aresult, it doesn’t matter what base a number
in Cisin...

« 32,, == 0x20 == 100000,

° Only the value of the number matters.

18

Bits Can Represent Everything

° Characters?
* 26 letter => 5 bits

* upper/lower case + punctuation
=> 7 bits (in 8) (ASCII)

* Rest of the world’s languages => 16 bits (unicode)

° Logical values?

* 0 -> False, 1 => True
° Colors ?
° Locations / addresses? commands?

° But N bits => only 2N things

19

What If Too Big?

° Numbers really have an infinite number of digits

- with almost all being zero except for a few of the
rightmost digits: e.g: 0000000 ... 000098 == 98

- Just don’t normally show leading zeros

° Computers have fixed number of digits

- Adding two n-bit numbers may produce an (n+1)-bit
result.

- Since registers’ length (8 bits on AVR) is fixed, this is
a problem.

- If the result of add (or any other arithmetic
operation), cannot be represented by a register,
overflow is said to have occurred

20

20

10

An Overflow Example

° Example (using 4-bit numbers):

+15 1111
3 0011
+18 10010

* But we don’t have room for 5-bit solution, so the
solution would be 0010, which is +2, which is wrong.

21

21

How To Handle Overflow?

° Some languages detect overflow (Ada), some don’t
(C and JAVA)

°©AVR has N, Z, C and V flags to keep track of
overflow

* Will cover details later

22

22

11

Comparison

°Howdoyoutellif X>Y ?
°Seeif X-Y>0

23

23

How to Represent Negative Numbers?

° So far, unsigned numbers

°© Obvious solution: define leftmost bit to be sign!
c0=>+,1=>-
* Rest of bits can be numerical value of number

© Representation called sign and magnitude

°©On AVR +1,_, would be: 0000 0001

° And - 1,,, in sign and magnitude would be: 1000 0001

ten

ten

24

24

12

Shortcomings of Sign and Magnitude?

° Arithmetic circuit more complicated

* Special steps depending whether signs are the same or not

° Also, two zeros.
* 0x00=+0
* 0x80=-0

* What would it mean for programming?

ten

(assuming 8 bit integers).

ten

© Sign and magnitude abandoned because another
solution was better

25

25

Another Try: Complement the Bits

° Examples: 7,,=00000111, -7,,=11111000,

° Called one’s Complement.

° The one’s complement of an integer X is
2r-X-1, where p is the number of integer bits.

Questions:

° What is -00000000, ?

° How many positive numbers in N bits?

° How many negative numbers in N bits?

26

26

13

Shortcomings of Ones Complement?

° Arithmetic not too hard

° Still two zeros
* 0x00=+0
* OxFF =-0

ten

(assuming 8 bit integers).

ten

° One’s complement was eventually abandoned because
another solution is better

27

27

Two’s Complement
° The two’s complement of an integer X is
20X,
where p is the number of integer bits

° Bit p is the “sign” bit. Negative number if it is 1;
positive number otherwise.

° Examples:
- 7,,=00000111, -1,,=11111111,
— -2,,=11111110, -7,,=11111001,

28

28

14

Two’s Complement Formula

° Given a two’s complement representation
d,d,,...d,dy, its value is
d.p(—2p)+ dp_l 20+ L+ d, 21+ d, 20

° Example:
—Two’s complement representation 11110011

=Ix (2P+ 1x 204+ 1x 25+ 1x24+0x 23+ 0x22 +
Ix 21+ 1x20

=00001101,

29

29

Two’s Complement’s Arithmetic Examples

° Example 1: 20-4 =16
° Assume 8 bit architecture.
20-4=20+(-4)
=0001 0100,,,,— 0000 0100,
= 0001 0100y,
+ 1111 1100,
= 10001 0000,
Carry l\'/I\ost significant bit (msb) No overflow.

30

30

15

Two’s Complement’s Arithmetic Examples

° Example 2: —127-2=-129?
°—127-2
=—0111 1111,,,—0000 0010
= 1000 0001
+ 1111 1110,
= JOIIT 1111,
Carry msb Overflow

two

two

31

31

Two’s Complement’s Arithmetic Examples

° Example 3: 127 +2=129?
°©127+2
= Ol11 1111
= OI11 1111,
+ 0000 0010
= 1000 0001,
\rnsb Overflow

o 0000 0010

two

two

32

32

16

When Overflow Occurs?

The ‘two’s complement overflow’ occurs when:

* both the msb’s being added are 0 and the msb of the
result is 1

* both the msb’s being added are 1 and the msb of the
result is 0

33

33

How AVR Computes Overflow Flag V?

Instruction: add Rd, R

V=Rd7<Rr7+¢ NOT(R7)+NOT(Rd7)sNOT(Rr7)*R7
NOT : negation

+ : bit-wise or

* : bit-wise and

34

34

17

Signed vs. Unsigned Numbers

° C declaration int
* Declares a signed number

* Uses two’s complement

° C declaration unsigned int
* Declares a unsigned number

* Treats 32-bit number as unsigned integer, so most significant
bit is part of the number, not a sign bit

°NOTE:

» Hardware does all arithmetic in 2’s complement.

« It is up to programmer to interpret numbers as signed or

unsigned.
g 35

35

Signed and Unsigned Numbers in
AVR(1/2)

¢ AVR microcontrollers support only 8 bit signed and
unsigned integers.

° Multi-byte signed and unsigned integers can be
implemented by software.

° Question: How to compute
10001110 01110000 11100011 00101010
+ 01110000 11001000 10001100 01110001
on AVR?

two

two

36

36

Signed and Unsigned Numbers in
AVR (2/2)

© Solution: Four-byte integer addition can be done by
using four one-byte integer additions taking carries into
account (lowest bytes are added first).

10001110 01110000 11100011 00101010
+01110000 + 11001000 + 10001100 + 01110001
= 11111110 100111000 101101111 010011011
%,'//>
Carry bits
The resultis 11111111 00111001 01101111 10011011

two

37

37

Signed v. Unsigned Comparison

o X=1111 1100,
* Y =0000 0010,
e [sX>Y?
— unsigned: YES
— signed: NO

38

38

19

Signed v. Unsigned Comparison (Hardware Help)

° X =11111100

°Y =0000 0010,,,

°Is X>Y? Do the Subtraction X —Y and check result
X-Y=11111100,,— 0000 0010
1111 1100

T 1111 11104,
11111 1010

two

two

two

two

Hardware needs to keep

* aspecial bit (S flag in AVR) which indicates the result of
signed comparison, and

* a special bit (C flag in AVR) which indicates the result of
unsigned comparison. 39

39

Signed v. Unsigned Comparison (Hardware Help)

° X =11111100
°Y =0000 0010,,,

°Is X>Y? Do the Subtraction X — Y and check result

X-Y=11111100,,— 0000 0010

= 1111 1100

T 1111 11104,

= 11111 1010

two

two

two

two

Hardware needs to keep

* aspecial bit (S flag in AVR) which indicates the result of
signed comparison, and

* aspecial bit (C flag in AVR) which indicates the result of
unsigned comparison. 40

40

20

0x0000

0x0001

0x0002

OxF...F

Numbers Are Stored at Addresses

° Memory is a place to store bits

° A word is a fixed number of bits
(e(tlg, 16 in AVR assembler) at an
address

° Addresses have fixed number of
bits

© Addresses are naturally
represented as unsigned numbers

° How multi-byte numbers are
stored in memory is determined by
the endianness.

© On AVR, programmers choose the
endianess.

41

41

(ASCII)
No. cha
32
33!
34 w
35 #

Beyond Integers (Characters)

© 8-bit bytes represent characters, nearly every computer
uses American Standard Code for Information Interchange

rNo.char No.char No.char No. No. char

48 0 |64 @
491 |65A
502 |66 B
513 |67C

a7/

63? |790

80 P | 96char|112 p
81Q | 97a |113 q
82R | 98b |11l4r
83S | 99¢c |115s

95 111 o |127 DEL

» Uppercase + 32 = Lowercase (e.g, B+32=b)

* tab=9, carriage return=13, backspace=8, Null=0

4

42

21

Strings

° How to represent a variable length string?
1) 1st position of string reserved for length of string (Pascal)

© Characters normally combined into strings, which have
variable length

*e.g., “Cal”, “M.A.D”, “COMP3221”

2) an accompanying variable has the length of string (as in a
structure)

3) last position of string is indicated by a character used to mark
end of string (C)

° C uses 0 (Null in ASCII) to mark the end of a string

43

43

No. cha

32
33!
34"
35 #

a7/

48 0
49 1
50 2
513

63 ?

64 @
65 A
66 B
67 C

79 O

° 80,111, 112,97,0
©50, 6F, 70,61,0

80 P
81 Q
82 R
83 S
95

Example String

° How many bytes to represent string “Popa”™?

° What are values of the bytes for “Popa”?

rNo.char No.char No.char No. char

96 -
97 a
98 b
99 ¢

111 o
DEC
HEX

No. char

112 p
113 g
114 r
115 s

127 DEL

44

44

Strings in C: Example

¢ String simply an array of char
void strcpy (char x[],char y[])
{

int i=0; /* declare and
initialize i*/

while ((x[i]=y[i])!='\0") /* 0 */

i=i+l; /* copy and test byte */

}

45

45
String in AVR Assembly Language
+ .db “Hello\n” ; This is equivalent to
'db CH” (e,, 61” 61” (0,, (\n,
* What does the following instruction do?
Idir4, 1’
46
46

23

Sign Extension (1/4)

° Remember that negative numbers in computers are
represented in 2’s complements.

° How to extend a binary number of m bits in 2’s
com?plement to an equivalent binary number of m+n
bits®

Example 1: x=(0100),=4
Since x is a positive number,
x = (0000 0100),

= (0000 0000 0100),

In general, if a number is positive, add n 0’s to its left.

This procedure is called sign extension.
47

47
Sign Extension (2/4)
° Example 2: x=(1100),=-4
Since x is negative,
x=(11111100),
= (11111111 1100),
In general, if a number is negative, add n 1’s to its
left. This procedure is called sign extension.
48
48

24

Sign Extension (3/4)

° How to add two binary numbers of different lengths?

O Sign-extend the shorter number such that it has the same
length as the longer number, and then add both numbers.

Example 3: x=(11010100), = -44,
y=(0100),=4
x+y=?
Since y is positive, y=(00000100),.
x+y = (11010100), + (00000100),
=(11011000), = -40

49

49

Sign Extension (4/4)

Example 4: x=(11010100), = -44,
y=(1100),=-4
x+y=?
Since y is negative, y=(11111100),.
x+y =(11010100), + (11111100),
=(11010000), = -48

50

50

25

Scientific Notation

6.02 x 1023 ~—Exponent
Integer — I

Decimal point Radix (base)

* Normalized form: no leadings 0))
(exactly one non-zero digit to the left of decimal point)

* Alternatives to representing 1/1,000,000,000
—Normalized: 1.0 * 107
—Not normalized: 0.1 *10%,10.0 * 1010

How to represent 0 in Normalized form?

51

51

Scientific Notation for Binary Numbers

1.01 x 2-12 «—xponent
Integer /l

Binary point Radix (base)

» Computer arithmetic that supports it is called floating point,
because it represents numbers where binary point is not fixed, as
it is for integers

— Declare such variables in C as float (single precision floating point
number) or double (double precision floating point number).

52

52

26

Floating Point Representation

Normal form: +(-) l.x ¥ 27V

R

Sign bit Significand Exponent

* How many bits for significand (mantissa) x?

* How many bits for exponent v

» Is y stored in its original value or in transformed value?
» How to represent +infinity and —infinity?

* How to represent 0?

53

53

Overflow and Underflow

* What if result is too large?
O Overflow!

U Overflow => Positive exponent larger than the value that
can be represented in exponent field

* What if result too small?
U Underflow!

U Underflow => Negative exponent smaller than the value
that can be represented in Exponent field

* How to reduce the chance of overflow or underflow?

54

54

27

IEEE 754 FP Standard—Single
Precision

Sign bit Biased Exponent Significand

/

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF
Bits 3130 2322 10

» Bit 31 for sign

U S=1 for negative numbers, 0 for positive numbers
* Bits 23-30 for biased exponent

U The real exponent = E —127

O 127 is called bias.
* Bits 0-22 for significand

55

55
IEEE 754 FP Standard—Single
Precision (Cont.)
The value V of a single precision FP number is determined as follows:
* If 0<E<255 then V=(-1)8 * 2 E-127 % | F where "1.F" is intended to
represent the binary number created by prefixing F with an implicit
leading 1 and a binary point.
* If E =255 and F is nonzero, then V=NaN ("Not a number")
* If E=255 and F is zero and S is 1, then V= -Infinity
* If E=255 and F is zero and S is 0, then V=Infinity
« If E =0 and F is nonzero, then V=(-1) S * 2 -126 * O F. These are
unnormalized numbers or subnormal numbers.
eIfE=0and Fis 0 and S is 1, then V=-0
eIfE=0andFis 0and S is 0, then V=0
56
56

28

IEEE 754 FP Standard—Single
Precision (Cont.)

Subnormal numbers reduce the chance of underflow.

» Without subnormal numbers, the smallest positive number is
5 127

» With subnormal numbers, the smallest positive number is
0.00000000000000000000001 *2 -126 =2 ~(126+23)=p-149

57

57

IEEE 754 FP Standard—Double
Precision

Sign bit Biased Exponent Significand

,
S EEEEEEEEEEE FFFFFFFFFF...FFFFFFFFFFFFF
Bits 63 62 5251 10

* Bit 63 for sign

U S=1 for negative numbers, 0 for positive numbers
* Bits 52-62 for biased exponent

U The real exponent = E —1023

U 1023 is called bias.

* Bits 0-51 for significand
58

58

29

IEEE 754 FP Standard—Double
Precision (Cont.)

The value V of a double precision FP number is determined as follows:

* If 0<E<2047 then V=(-1)S * 2 E-1023 % | F where "1.F" is intended to
represent the binary number created by prefixing F with an implicit leading 1
and a binary point.

* If E=2047 and F is nonzero, then V=NaN ("Not a number")
* IfE=2047 and F is zero and S is 1, then V= -Infinity
* If E=2047 and F is zero and S is 0, then V=Infinity

« If E =0 and F is nonzero, then V=(-1) S * 2 -1922 * O F, These are
unnormalized numbers or subnormal numbers.

eIfE=0and Fis 0 and S is 1, then V=-0

eIfE=0andFis 0and S is 0, then V=0
59

59

Implementing FP Addition by
Software

How to implement x+y where x and y are two single
precision FP numbers?

Step 1: Convert x and y into IEEE format

Step 2: Align two significands if two exponents are different.

O Letel and €2 are the exponents of x and y, respectively, and
assume e1> e2. Shift the significand (including the implicit
1) of y right el—e2 bits to compensate for the change in
exponent.

Step 3: Add two (adjusted) significands.
Step 4: Normalize the result.

60

60

30

An Example
How to implement x+y where x=2.625 and y= —4.75?
Step 1: Convert x and y into IEEE format
x=2.625 — 10.101 (Binary)
— 1.0101 * 2' (Normal form)
— 1.0101 * 228 (IEEE format)
— 0 10000000 01010000000000000000000

Comments: The fraction part can be converted by multiplication. (This is
the inverse of the division method for integers.)

0.625 x 2=1.25 1 (the most significant bit in fraction)
025x2 =05 0

0.5x2 =1.0 1 (the leastsignificant bit in fraction)]
1

61

An Example (Cont.)

y=—4.75 — —100.11 (Binary)

— —1.0011 * 22 (Normal form)

— —1.0011 * 2'?° (IEEE format)

— 1 10000001 00110000000000000000000
Step 2: Align two significands.

The significand of x = 1.0101 — 0.10101 (After shift
right 1 bit)

Comments: x=0.10101*2 12 and y=-1.0011 *2 12°
after the alignment.

62

62

31

An Example (Cont.)

Step 3: Add two (adjusted) significands.
0.10101 «— The adjusted significand of x
—1.00110 «—— The significand of y
= —0. 10001 «——The significand of x+y

Step 4: Normalize the result.
Result=-10. 10001 * 22 — —1.0001 * 2128
— 110000000 00010000000000000000000

(Normal form)

63

63
Reading
1. http://cch.loria.fr/documentation/IEEE754/numerical
_comp_guide/index.html.
2. http://www.cs.berkeley.edu/~wkahan/ieee754status/7
S4story.html.
64
64

32

1.

Reading Material

Appendix A in Microcontrollers ands Microcomputers.

65

65

33

