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Numbers: positional notation

° Number Base B => B symbols per digit:
* Base 10 (Decimal): 0, 1,2, 3,4,5,6,7,8,9
* Base 2 (Binary): 0, 1

° Number representation:

*(a,a, ... a;.b; ... b b, )z 1s a number of base (radix) B
U n digits in the integer part and m digits in the fractional part.
U The base B can be omitted if B=10.

s value =a XB™!'+a  xB"™2+ .. +a,xB!+axB°

+bxB1+b,xB2+ ... +b, XBM@D+pH xBm™

Typical Number Systems (1/2)

° Binary system
* Base 2
* Digits (bits): 0,1
« (11010.101), =
IXx24 4+ 1x23 4+ 0x22 4+ 1x2 + 0x1 + 1x2-1 + 0x22 + %23
=26.625
° Octal system:
* Base 8.
* Digits: 0, 1,2,3,4,5,6,7

¢ (605.24)g = 6x82 + 0x8! + 5x80 + 2x81 + 4x82 = 389.31245




Typical Number Systems (2/2)

° Hexadecimal system

* Base 16

* Digits:  0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
QA= 10
QB> 11
ac=12
QD= 13
QE= 14
QF=>15

« (8FOD.2C),, = (8% 163) + (15x162) + (0x161) + (13x160) +
2x16) + (Cx162) = 36621.171875

Decimal vs. Hexadecimal vs. Binary

» Examples: 8? ? 888(1)
* 1010 1100 0101 (binary) 8% % 88%(1)
=7 (hex) 04 4 0100
05 5 0101

, 06 6 0110

* 10111 (binary) 07 7 0111
=0001 0111 (binary) 83 g %88‘1)

= ? (hex) 100 A 1010
11 B 1011

12 C 1100

- 380 A
= ? (binary) 15 F 1111




Hex to Binary Conversion

° HEX is a more compact representation of Binary!
° Each hex digit represents 16 decimal values.
° Four binary digits represent 16 decimal values.
° Therefore, each hex digit can replace four binary
digits (bits).
° Example:
(3 B 9 A C A 0 0)6
=(0011 1011 1001 1010 1100 1010 0000 0000),

Octal to Binary Conversion

° Each octal digit represents 8 decimal values.

° Three binary digits represent 8 decimal values.

° Therefore, each octal digit can replace three binary
digits (bits).

° Example:
G 7 1 2 4 5 0 1)
= (011 111 001 010 100 101 000 001),




Converting from Decimal to Any Other (1/7)

o Use division method if a decimal number is an integer.
° Let D be a decimal integer such that
D= (a,a,. .- a))p
=a B™'+a  B"2+..+a,B!'+a,B°
° Notice that
a, = D%B
a, = (D/B)%B

In general, a, = (D/B*")%B (i=1, 2, ... n)

~ Where / is the division operator and % the modulus operator as
in C. ’

Converting from Decimal to Any Other (2/7)

The conversion procedure is shown in C as follows:
D2B-Integer-Converter(int B, long int D)
{inti, A[];

long int x;

i=0;

x=D;

while (x!=0)

{A[i] =x%B ;
x=x/B ;

i++;}
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Division  Quotient

5630/16 352

351/16 21
21/16 1
1/16 0

Therefore, 5630=(15FE),¢

Converting from Decimal to Any Other (3/7)

Example 1: Convert 5630 to a hex number.

Remainder Remainder in hex

14 E
15 F
5 5
1 1

11

11

Division  Quotient
138/2 69

69/2 34

34/2 17

17/2 8

8/2 4

4/2 2

2/2 1

1/2 0

Therefore, 138=(10001010),

Converting from Decimal to Any Other (4/7)

Example 2: Convert 138 to a binary number.

Remainder

0

1
0
1
0
0
0
1

12




Converting from Decimal to Any Other (5/7)

o Use multiplication method if the decimal number is a fractional
number.

o Let D be a fractional decimal number such that
D=(0.b;b, ... b, b,)s
=b,B'+b,B2+ ...+ b, ,B™D +b B™
° Notice that
b, = floor(DxB)
b, = floor(frac(DxB)xB)

In general, b, = floor(frac(DxB')xB) (i=1, 2, ... m)

Where floor(x) is the integer part of x and frac(x) is the fractional
part of x. 13

13

Converting from Decimal to Any Other (6/7)

The conversion procedure is shown in C as follows:
D2B-Fractional-Converter(int B, double D)
{inti, A[];

double x;

i=0;

x=D;

while (x!=0)

{ Ali] = floor(x*B) ;
x =x*B-A[i] ;

i++ 5}

14



Converting from Decimal to Any Other (7/7)

Example 3: Convert 0.6875 to a binary number.

Multiplication Integer  Fractional
0.6875 x2=1.375 1 0.375
0.375%x2=0.75 0 0.75
0.75x2=1.5 1 0.5
0.5%x2=1.0 1 0.0

Therefore, 0.6875=(0.1011),

15

Which Base Should We Use?

° Decimal: Great for humans; most arithmetic is done
with these.

° Binary: This is what computers use, so get used to
them. Become familiar with how to do basic arithmetic
with them (+,-,*,/).

° Hex: Terrible for arithmetic; but if we are looking at
long strings of binary numbers, it’s much easier to
convert them to hex in order to look at four bits at a
time.

16




How Do We Tell the Difference?

° When dealing with AVR microcontrollers:
« Hex numbers are preceded with “$” or “0x”
-$10 ==0x10==10,,== 16,
* Binary numbers are preceded with “0b”
* Octal numbers are preceded with “0” (zero)

* Everything else by default is Decimal

17

Inside the Computer

° To a computer, numbers are a}lwa(liys in binary; all
that matters is how they are printed out: binary,
decimal, hex, etc.

© As aresult, it doesn’t matter what base a number
in Cisin...

« 32,, == 0x20 == 100000,

° Only the value of the number matters.

18




Bits Can Represent Everything

° Characters?
* 26 letter => 5 bits

* upper/lower case + punctuation
=> 7 bits (in 8) (ASCII)

* Rest of the world’s languages => 16 bits (unicode)

° Logical values?

* 0 -> False, 1 => True
° Colors ?
° Locations / addresses? commands?

° But N bits => only 2N things

19

What If Too Big?

° Numbers really have an infinite number of digits

- with almost all being zero except for a few of the
rightmost digits: e.g: 0000000 ... 000098 == 98

- Just don’t normally show leading zeros

° Computers have fixed number of digits

- Adding two n-bit numbers may produce an (n+1)-bit
result.

- Since registers’ length (8 bits on AVR) is fixed, this is
a problem.

- If the result of add (or any other arithmetic
operation), cannot be represented by a register,
overflow is said to have occurred

20

20

10



An Overflow Example

° Example (using 4-bit numbers):

+15 1111
3 0011
+18 10010

* But we don’t have room for 5-bit solution, so the
solution would be 0010, which is +2, which is wrong.

21
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How To Handle Overflow?

° Some languages detect overflow (Ada), some don’t
(C and JAVA)

°©AVR has N, Z, C and V flags to keep track of
overflow

* Will cover details later

22

22
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Comparison

°Howdoyoutellif X>Y ?
°Seeif X-Y>0

23
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How to Represent Negative Numbers?

° So far, unsigned numbers

°© Obvious solution: define leftmost bit to be sign!
c0=>+,1=>-
* Rest of bits can be numerical value of number

© Representation called sign and magnitude

°©On AVR +1,_, would be: 0000 0001

° And - 1,,, in sign and magnitude would be: 1000 0001

ten

ten

24

24

12



Shortcomings of Sign and Magnitude?

° Arithmetic circuit more complicated

* Special steps depending whether signs are the same or not

° Also, two zeros.
* 0x00=+0
* 0x80=-0

* What would it mean for programming?

ten

(assuming 8 bit integers).

ten

© Sign and magnitude abandoned because another
solution was better

25

25

Another Try: Complement the Bits

° Examples: 7,,=00000111, -7,,=11111000,

° Called one’s Complement.

° The one’s complement of an integer X is
2r-X-1, where p is the number of integer bits.

Questions:

° What is -00000000, ?

° How many positive numbers in N bits?

° How many negative numbers in N bits?

26

26
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Shortcomings of Ones Complement?

° Arithmetic not too hard

° Still two zeros
* 0x00=+0
* OxFF =-0

ten

(assuming 8 bit integers).

ten

° One’s complement was eventually abandoned because
another solution is better

27
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Two’s Complement
° The two’s complement of an integer X is
20X,
where p is the number of integer bits

° Bit p is the “sign” bit. Negative number if it is 1;
positive number otherwise.

° Examples:
- 7,,=00000111, -1,,=11111111,
— -2,,=11111110, -7,,=11111001,

28

28
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Two’s Complement Formula

° Given a two’s complement representation
d,d,,...d,dy, its value is
d.p(—2p)+ dp_l 20+ L+ d, 21+ d, 20

° Example:
—Two’s complement representation 11110011

=Ix (2P+ 1x 204+ 1x 25+ 1x24+0x 23+ 0x22 +
Ix 21+ 1x20

=00001101,

29
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Two’s Complement’s Arithmetic Examples

° Example 1: 20-4 =16
° Assume 8 bit architecture.
20-4=20+(-4)
=0001 0100,,,,— 0000 0100,
= 0001 0100y,
+ 1111 1100,
= 10001 0000,
Carry l\'/I\ost significant bit (msb)  No overflow.

30

30
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Two’s Complement’s Arithmetic Examples

° Example 2: —127-2=-129?
°—127-2
=—0111 1111,,,—0000 0010
= 1000 0001
+ 1111 1110,
= JOIIT 1111,
Carry msb Overflow

two

two

31

31

Two’s Complement’s Arithmetic Examples

° Example 3: 127 +2=129?
°©127+2
= Ol11 1111
= OI11 1111,
+ 0000 0010
= 1000 0001,
\rnsb Overflow

o 0000 0010

two

two

32

32
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When Overflow Occurs?

The ‘two’s complement overflow’ occurs when:

* both the msb’s being added are 0 and the msb of the
result is 1

* both the msb’s being added are 1 and the msb of the
result is 0

33

33

How AVR Computes Overflow Flag V?

Instruction: add Rd, R

V=Rd7<Rr7+¢ NOT(R7)+NOT(Rd7)sNOT(Rr7)*R7
NOT : negation

+ : bit-wise or

* : bit-wise and

34

34
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Signed vs. Unsigned Numbers

° C declaration int
* Declares a signed number

* Uses two’s complement

° C declaration unsigned int
* Declares a unsigned number

* Treats 32-bit number as unsigned integer, so most significant
bit is part of the number, not a sign bit

°NOTE:

» Hardware does all arithmetic in 2’s complement.

« It is up to programmer to interpret numbers as signed or

unsigned.
g 35

35

Signed and Unsigned Numbers in
AVR(1/2)

¢ AVR microcontrollers support only 8 bit signed and
unsigned integers.

° Multi-byte signed and unsigned integers can be
implemented by software.

° Question: How to compute
10001110 01110000 11100011 00101010
+ 01110000 11001000 10001100 01110001
on AVR?

two

two

36
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Signed and Unsigned Numbers in
AVR (2/2)

© Solution: Four-byte integer addition can be done by
using four one-byte integer additions taking carries into
account (lowest bytes are added first).

10001110 01110000 11100011 00101010
+01110000 + 11001000 + 10001100 + 01110001
= 11111110 100111000 101101111 010011011
%,'//>
Carry bits
The resultis 11111111 00111001 01101111 10011011

two

37
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Signed v. Unsigned Comparison

o X=1111 1100,
* Y =0000 0010,
e [sX>Y?
— unsigned: YES
— signed: NO

38

38
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Signed v. Unsigned Comparison (Hardware Help)

° X =11111100

°Y =0000 0010,,,

°Is X>Y? Do the Subtraction X —Y and check result
X-Y=11111100,,— 0000 0010
1111 1100

T 1111 11104,
11111 1010

two

two

two

two

Hardware needs to keep

* aspecial bit ( S flag in AVR) which indicates the result of
signed comparison, and

* a special bit (C flag in AVR) which indicates the result of
unsigned comparison. 39

39

Signed v. Unsigned Comparison (Hardware Help)

° X =11111100
°Y =0000 0010,,,

°Is X>Y? Do the Subtraction X — Y and check result

X-Y=11111100,,— 0000 0010

= 1111 1100

T 1111 11104,

= 11111 1010

two

two

two

two

Hardware needs to keep

* aspecial bit ( S flag in AVR) which indicates the result of
signed comparison, and

* aspecial bit (C flag in AVR) which indicates the result of
unsigned comparison. 40

40
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0x0000

0x0001

0x0002

OxF...F

Numbers Are Stored at Addresses

° Memory is a place to store bits

° A word is a fixed number of bits
(e(tlg, 16 in AVR assembler) at an
address

° Addresses have fixed number of
bits

© Addresses are naturally
represented as unsigned numbers

° How multi-byte numbers are
stored in memory is determined by
the endianness.

© On AVR, programmers choose the
endianess.

41

41

(ASCII)
No. cha
32
33!
34 w
35 #

Beyond Integers (Characters)

© 8-bit bytes represent characters, nearly every computer
uses American Standard Code for Information Interchange

rNo.char No.char No.char No. No. char

48 0 |64 @
491 |65A
502 |66 B
513 |67C

a7/

63? |790

80 P | 96char|112 p
81Q | 97a |113 q
82R | 98b |11l4r
83S | 99¢c |115s

95 111 o |127 DEL

» Uppercase + 32 = Lowercase (e.g, B+32=b)

* tab=9, carriage return=13, backspace=8, Null=0

4

42
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Strings

° How to represent a variable length string?
1) 1st position of string reserved for length of string (Pascal)

© Characters normally combined into strings, which have
variable length

*e.g., “Cal”, “M.A.D”, “COMP3221”

2) an accompanying variable has the length of string (as in a
structure)

3) last position of string is indicated by a character used to mark
end of string (C)

° C uses 0 (Null in ASCII) to mark the end of a string

43

43

No. cha

32
33!
34"
35 #

a7/

48 0
49 1
50 2
513

63 ?

64 @
65 A
66 B
67 C

79 O

° 80,111, 112,97,0
©50, 6F, 70,61,0

80 P
81 Q
82 R
83 S
95

Example String

° How many bytes to represent string “Popa”™?

° What are values of the bytes for “Popa”?

rNo.char No.char No.char No. char

96 -
97 a
98 b
99 ¢

111 o
DEC
HEX

No. char

112 p
113 g
114 r
115 s

127 DEL

44
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Strings in C: Example

¢ String simply an array of char
void strcpy (char x[],char y[])
{

int i=0; /* declare and
initialize i*/

while ((x[i]=y[i])!='\0") /* 0 */

i=i+l; /* copy and test byte */

}

45

45
String in AVR Assembly Language
+ .db “Hello\n” ; This is equivalent to
'db CH” (e,, 61” 61” (0,, (\n,
* What does the following instruction do?
Idir4, 1’
46
46
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Sign Extension (1/4)

° Remember that negative numbers in computers are
represented in 2’s complements.

° How to extend a binary number of m bits in 2’s
com?plement to an equivalent binary number of m+n
bits®

Example 1: x=(0100),=4
Since x is a positive number,
x = (0000 0100),

= (0000 0000 0100),

In general, if a number is positive, add n 0’s to its left.

This procedure is called sign extension.
47

47
Sign Extension (2/4)
° Example 2: x=(1100),=-4
Since x is negative,
x=(11111100),
= (11111111 1100),
In general, if a number is negative, add n 1’s to its
left. This procedure is called sign extension.
48
48
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Sign Extension (3/4)

° How to add two binary numbers of different lengths?

O Sign-extend the shorter number such that it has the same
length as the longer number, and then add both numbers.

Example 3: x=(11010100), = -44,
y=(0100),=4
x+y=?
Since y is positive, y=(00000100),.
x+y = (11010100), + (00000100),
=(11011000), = -40

49

49

Sign Extension (4/4)

Example 4: x=(11010100), = -44,
y=(1100),=-4
x+y=?
Since y is negative, y=(11111100),.
x+y =(11010100), + (11111100),
=(11010000), = -48

50

50
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Scientific Notation

6.02 x 1023 ~—Exponent
Integer — I

Decimal point Radix (base)

* Normalized form: no leadings 0 ) )
(exactly one non-zero digit to the left of decimal point)

* Alternatives to representing 1/1,000,000,000
—Normalized: 1.0 * 107
—Not normalized: 0.1 *10%,10.0 * 1010

How to represent 0 in Normalized form?

51

51

Scientific Notation for Binary Numbers

1.01 x 2-12 «—xponent
Integer /l

Binary point Radix (base)

» Computer arithmetic that supports it is called floating point,
because it represents numbers where binary point is not fixed, as
it is for integers

— Declare such variables in C as float (single precision floating point
number) or double (double precision floating point number).

52

52
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Floating Point Representation

Normal form: +(-) l.x ¥ 27V

R

Sign bit  Significand  Exponent

* How many bits for significand (mantissa) x?

* How many bits for exponent v

» Is y stored in its original value or in transformed value?
» How to represent +infinity and —infinity?

* How to represent 0?

53

53

Overflow and Underflow

* What if result is too large?
O Overflow!

U Overflow => Positive exponent larger than the value that
can be represented in exponent field

* What if result too small?
U Underflow!

U Underflow => Negative exponent smaller than the value
that can be represented in Exponent field

* How to reduce the chance of overflow or underflow?

54

54
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IEEE 754 FP Standard—Single
Precision

Sign bit Biased Exponent  Significand

/

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF
Bits 3130 2322 10

» Bit 31 for sign

U S=1 for negative numbers, 0 for positive numbers
* Bits 23-30 for biased exponent

U The real exponent = E —127

O 127 is called bias.
* Bits 0-22 for significand

55

55
IEEE 754 FP Standard—Single
Precision (Cont.)
The value V of a single precision FP number is determined as follows:
* If 0<E<255 then V=(-1)8 * 2 E-127 % | F where "1.F" is intended to
represent the binary number created by prefixing F with an implicit
leading 1 and a binary point.
* If E =255 and F is nonzero, then V=NaN ("Not a number")
* If E=255 and F is zero and S is 1, then V= -Infinity
* If E=255 and F is zero and S is 0, then V=Infinity
« If E =0 and F is nonzero, then V=(-1) S * 2 -126 * O F. These are
unnormalized numbers or subnormal numbers.
eIfE=0and Fis 0 and S is 1, then V=-0
eIfE=0andFis 0and S is 0, then V=0
56
56
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IEEE 754 FP Standard—Single
Precision (Cont.)

Subnormal numbers reduce the chance of underflow.

» Without subnormal numbers, the smallest positive number is
5 127

» With subnormal numbers, the smallest positive number is
0.00000000000000000000001 *2 -126 =2 ~(126+23)=p-149

57
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IEEE 754 FP Standard—Double
Precision

Sign bit Biased Exponent Significand

,
S EEEEEEEEEEE FFFFFFFFFF...FFFFFFFFFFFFF
Bits 63 62 5251 10

* Bit 63 for sign

U S=1 for negative numbers, 0 for positive numbers
* Bits 52-62 for biased exponent

U The real exponent = E —1023

U 1023 is called bias.

* Bits 0-51 for significand
58

58
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IEEE 754 FP Standard—Double
Precision (Cont.)

The value V of a double precision FP number is determined as follows:

* If 0<E<2047 then V=(-1)S * 2 E-1023 % | F where "1.F" is intended to
represent the binary number created by prefixing F with an implicit leading 1
and a binary point.

* If E=2047 and F is nonzero, then V=NaN ("Not a number")
* IfE=2047 and F is zero and S is 1, then V= -Infinity
* If E=2047 and F is zero and S is 0, then V=Infinity

« If E =0 and F is nonzero, then V=(-1) S * 2 -1922 * O F, These are
unnormalized numbers or subnormal numbers.

eIfE=0and Fis 0 and S is 1, then V=-0

eIfE=0andFis 0and S is 0, then V=0
59
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Implementing FP Addition by
Software

How to implement x+y where x and y are two single
precision FP numbers?

Step 1: Convert x and y into IEEE format

Step 2: Align two significands if two exponents are different.

O Letel and €2 are the exponents of x and y, respectively, and
assume e1> e2. Shift the significand (including the implicit
1) of y right el—e2 bits to compensate for the change in
exponent.

Step 3: Add two (adjusted) significands.
Step 4: Normalize the result.

60

60
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An Example
How to implement x+y where x=2.625 and y= —4.75?
Step 1: Convert x and y into IEEE format
x=2.625 — 10.101 (Binary)
— 1.0101 * 2' (Normal form)
— 1.0101 * 228 (IEEE format)
— 0 10000000 01010000000000000000000

Comments: The fraction part can be converted by multiplication. (This is
the inverse of the division method for integers.)

0.625 x 2=1.25 1 (the most significant bit in fraction)
025x2 =05 0

0.5x2 =1.0 1 (the leastsignificant bit in fraction) ]
1

61

An Example (Cont.)

y=—4.75 — —100.11 (Binary)

— —1.0011 * 22 (Normal form)

— —1.0011 * 2'?° (IEEE format)

— 1 10000001 00110000000000000000000
Step 2: Align two significands.

The significand of x = 1.0101 — 0.10101 (After shift
right 1 bit)

Comments: x=0.10101*2 12 and y=-1.0011 *2 12°
after the alignment.

62
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An Example (Cont.)

Step 3: Add two (adjusted) significands.
0.10101 «— The adjusted significand of x
—1.00110 «—— The significand of y
= —0. 10001 «——The significand of x+y

Step 4: Normalize the result.
Result=-10. 10001 * 22 — —1.0001 * 2128
— 110000000 00010000000000000000000

(Normal form)

63
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Reading
1. http://cch.loria.fr/documentation/IEEE754/numerical
_comp_guide/index.html.
2. http://www.cs.berkeley.edu/~wkahan/ieee754status/7
S4story.html.
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1.

Reading Material

Appendix A in Microcontrollers ands Microcomputers.
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