
Assignment 1 Slides
Minesweeper Live Stream



Assignment 1
From a practical perspective . . .

● You will write a C program called Minesweeper
● It will all be in a single file called minesweeper.c
● Submission is through the give system



Sequence of Commands
Commands will always be in a particular sequence:

● First integer is the type of command
● Other integers are the extra information that command needs
● Your program will receive one or more commands
● You will process each command in turn
● After each command has been processed, you will print out the minefield



Submit early, submit often
Using “give” will record your submission and back up your work

● It’s much harder to lose your assignment code if we have it!
● If things go bad, you can roll back to previous versions
● You can access your previous versions using our git repository
● The following link is also available in the assignment page:

https://gitlab.cse.unsw.edu.au/z5555555/20T1-comp1511-ass1_minesweeper/commits/master



How will your code be tested?
Your program will be run with a series of test cases

● These tests will not be exactly the same as our autotests
● Remember to check all possible inputs you can think of
● Writing your own test files is potentially very useful



Marking
How do you earn marks in this assignment?

● Close to a pass (40-50%)
○ A solid attempt at stage one
○ Being able to place some mines
○ Not necessarily dealing with multiple commands

● Pass (50-64%)
○ Code runs without errors
○ A serious attempt has been made at the assignment
○ Able to check how many mines are in rows or columns (hopefully both)
○ A higher mark will be given for completion of stage 1 and dealing with multiple 

commands



Marking Continued
● Credit (65-74%)

○ Successfully implements all of Stage 1
○ Some effort on Stage 2 will push marks higher
○ Code is reasonably readable
○ Shows some use of functions

● Distinction (75-84%)
○ Successfully implements both Stage 1 and 2
○ Any effort on later stages will award more marks
○ Code is easy to understand and readable
○ Uses functions to separate code for readability



Marking Continued
● High Distinction (85%+)

○ Successfully implements Stages 1-3
○ Stage 4 completion will push marks closer to 100%
○ Code is perfectly explained and elegant to read
○ Functions are used extensively to organise code



Free Marks!!!
Yep . . . get them right here!

Make your code understandable and readable!

● Follow the Style Guide
● This means correct indentation and consistent use of bracketing
● Use variable names that are understandable to a reader
● Have clear comments explaining your intentions (even if the code is not 

functional)
● Structure your code file so that different sections are clear
● Use functions to separate repetitive code



Hall of Fame
Extra Challenges that are worth bonus Marcs (not actual marks)

These are optional!

● Use the sleep() function to do animated explosions?
● Add colours to the output so the board looks more interesting and/or 

informative
● Create a reveal function that acts exactly like the game itself (recursive)
● Randomise starting mine locations
● Or any other cool ideas you have!



Questions?
Feel free to ask any questions now!

● Help Sessions have been expanded for one on one consultation if you 
need help with problems

● There's now a Help Session on every day of the week
● Details are on the Course Website


