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Part 2:

Introduction to Binary 

Numbers & Arithmetic
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Decimal vs. binary representation

The decimal number 805 

means

8x102 + 0x101 + 5x100.

The place values, from 

right to left, are 

1,10,100,1000,..., or 

100,101,102,103,... .

The base or radix is 10.

All digits must be less than 

the base, i.e. from 0 to 9.

The binary number 10112

means

1x23 + 0x22 + 1x21 + 1x20.

The place values, from 

right to left, are 1,2,4,8,..., 

or 20,21,22,23,... .

The base or radix is 2 (in 

decimal) or 102 (in binary).

All digits must be less than 

the base, i.e. either 0 or 1.
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Advantages of binary representation

Binary notation is 

convenient for electronic 

processing because:

(1) Only two voltage levels 

are needed to represent all 

digits;

(2) Arithmetic tables are 

simple, and can be 

implemented using logic 

gates.

Addition table:

0+0 = 00   0+1 = 01

1+0 = 01   1+1 = 10

Multiplication table:

0x0 = 0    0x1 = 0

1x0 = 0    1x1 = 1

Each table has 4 entries.   

In decimal, each table 

would have 10010 entries!  

(Notice that 4 = 1002 .)



2/04/2019 4

Converting from base x

While computers work in base 2, people prefer base 10.  

So conversions to and from binary are needed.  We can 

illustrate the methods using a 4-digit integer in an 

arbitrary base.  The number abcdx (base x) means

ax3 + bx2 + cx + d.

This polynomial can be used directly to convert the 

number to decimal.  We can reduce the number of 

arithmetical operations in the conversion by writing the 

polynomial in nested form:

((ax + b) x + c) x + d.
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Converting from base x - Examples

Taking the example from slide 2,

10112 = 1. 23 + 0. 22 + 1. 21 + 1. 20 = 8 + 0 + 2 + 1 = 11

or, in nested form,

10112 = ((1. 2 + 0) . 2 + 1) . 2 + 1 = 11.

Here’s an example in base 7:

410357 = (((4 . 7 + 1) . 7 + 0) . 7 + 3) . 7 + 5 = 9973.

In base 16 (known as hexadecimal or “hex”), we use the 

letters A to F to represent the “digits” 10 to 15 :

FFFFhex = ((15 . 16 + 15) . 16 + 15) . 16 + 15 = 65535.
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Converting to base x

The nested form

((ax + b) x + c) x + d

can be written

abcdx = Cx + d

where  C = Bx + c

where  B = ax + b

where  a = 0x + a.

Now all the above are 

whole numbers, and

a,b,c,d are all less than x, 

being the digits of a base-x

number.  So the equations 

at left imply that d,c,b,a are 

the remainders when abcdx

is divided repeatedly by x.

To convert a whole number 

to base x, divide it 

repeatedly by x until the 

quotient is zero, and write 

the remainders in reverse.
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Converting to base x - Examples

To convert 1110 to binary, 

we repeatedly divide by 2.  

Let us write the quotients 

on the left and remainders 

on the right:

11

5 1

2 1

1 0

0 1

Reading the remainders up 

the column gives 10112.

To convert 9973 to base 7:

9973

1424 5

203 3

29 0

4 1

0 4

The result is 410357.
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Converting fractions from base x

The number abcd. pqrsx (base x) means

ax3 + bx2 + cx + d +  px-1 + qx-2 + rx-3 + sx-4 .

The part to the left of the radix point (.) is the integer part 

and the part to the right is the fractional part.  Again, the 

above expression may be used to convert the number to 

decimal.  (Exercise:  Can you devise a nested form to 

speed up the calculation?)

To convert from decimal to base x, the integer part is 

processed by the repeated-division method, while the 

fractional part requires separate treatment [next slide].
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Converting fractions to base x

The fractional part (red) of 

abcd.pqrsx is

px-1 + qx-2 + rx-3 + sx-4 .

Multiply by x :

p + qx-1 + rx-2 + sx-3 .

Take the fractional part and 

multiply by x again:

q + rx-1 + sx-2 .

Repeat the separate-and-

multiply step until there is

no fractional part left*:

r + sx-1

s + 0.

Now read off the resulting 

integer parts (red) in 

forward order, and you get 

the base-x digits pqrs.

* If the process doesn’t 

terminate itself, stop when 

you’ve got enough digits.
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Example: Convert 11.8125 to base 8

For the integer part, we 

repeatedly divide by 8 

(remainders are in blue):

11

1 3

0 1

Integer part is 13 8 .

For the fractional part, we 

repeatedly multiply by 8 

[next column].

Each line in the table is 8 

times the fractional part of 

the previous line:

.8125

6.5

4.0

Fractional part is .64 8 .

Answer:

11.8125 10 = 13.64 8 .
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Example: Convert 6.410 to base 7

The integer part is trivial:

6

0 6

Integer part is 6 7 .

The fractional part is 4/10.  

Since 10 is not divisible by 

7, repeated multiplication 

by 7 will never cancel the 

denominator and never 

convert the fractional part

to an integer.  So the 

process will not terminate:

.4

2.8

5.6

4.2

1.4

...and this pattern repeats.

Answer: 6.25412541...
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Notes on base conversions

In explaining how to convert to base x [slides 6 & 9], we 

have written the given numbers in powers of x to show 

why the methods work.  In the worked examples, of 

course, we have written the given numbers in decimal.

Because we humans prefer base 10, we use repeated 

division to convert to other bases, and power-series 

expressions to convert to base 10.

But a computer prefers base 2.  So it works the other way 

around, using repeated division to express its results in 

base 10, and power-series expressions to convert human 

input to base 2.
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Octal (base 8)

It is especially easy to convert between octal and binary:

abcdefgh2

= a.27 + b.26 + c.25 + d.24 + e.23 + f.22 + g.2 + h

= (a.2 + b).26 + (c.22 + d.2 + e).23 + (f.22 + g.2 + h)

= (ab2).8
2 + (cde2).8 + (fgh2)

The expressions in parentheses, being less than 8, are the 

octal digits.  The process can also be reversed.  Note that 

one octal digit corresponds to three binary digits because 

8 = 23.  The binary digits (“bits”) are grouped from right 

to left, i.e. away from the radix point.
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Binary-octal conversion - Examples

(1) Convert 10111110101100011010001000 2 to octal :

010 111 110 101 100 011 010 001 000 *

=   2     7     6     5     4     3     2     1     0 8

=   276543210 8 .

(* The leading 0 is optional.  Each conversion of three 

binary digits to one octal digit is done by inspection.)

(2) Fractional parts are grouped from left to right and 

padded with zeros (the proof is left as an exercise).  

Example: Convert 11111111.10001 2 to octal:

011 111 111 . 100 010 2 =  377.42 8 .



2/04/2019 15

Hexadecimal or “hex” (base 16)

We have seen that one octal digit corresponds to 3 bits 

because 8 = 23.  Similarly, one hex digit corresponds to 4 

bits because 16 = 24.  The following generalized example 

includes a fractional part, which must be padded with a 0:

abcdef.ghijklm 2

=   a.25 + b.24 + c.23 + d.22 + e.2 + f

+ g.2-1 + h.2-2 + i.2-3 + j.2-4 + k.2-5 + l.2-6 + m.2-7

=   (a.2 + b).24 + (c.23 + d.22 + e.2 + f )

+ (g.23 + h.22 + i.2 + j).2-4 + (k.23 + l.22 + m.21 + 0).2-8

=   (ab2).16 + (cdef2) + (ghij2).16-1 + (klm02).16-2.
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Hex-binary conversion - Examples

(1) Convert 789ABCDEFhex to binary:

0111 1000 1001 1010 1011 1100 1101 1110 1111 2 .

(The leading 0 can be omitted.  Conversion of individual 

hex digits can be done by inspection; recall that the letters 

A to F represent the “digits” 10 to 15.)

(2) Convert 1011100.101101 2 to hex:

0101 1100 . 1011 0100 2 =  5C.B4 hex .

(The digits are counted off away from the radix point.  

The trailing zeros on the fractional part are needed to 

complete the group of four.  The leading 0 is optional.)
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Conversion to binary via octal

The direct conversion of 

200110 to binary looks like 

this ...
2001

1000 1

500 0

250 0

125 0

62 1

31 0

15 1

7 1

3 1

1 1

0 1

... and gives 11111010001.

It may be quicker to 

convert to octal first ...
2001

250 1

31 2

3 7

0 3

... yielding 3721 8 , which 

can be instantly converted 

to 11 111 010 001 2 . 
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Negative numbers & subtraction

Mathematicians define 

subtraction as addition of 

the additive inverse:

a - b = a + (-b).

In theory, this trick reduces 

subtraction to addition.  In 

practice, we still need 

subtraction because we use 

a magnitude-sign notation 

for negative numbers.

That is, if b is positive, we 

write its additive inverse as

-b = -|b|

and we evaluate a + (-b) as 

a - b.

To eliminate subtraction in 

base-10 integer arithmetic, 

we can represent -b by the 

nines complement or tens 

complement of b.



2/04/2019 19

Nines-complements

If we confine the discussion to 4-digit decimal arithmetic, 

the nines complement of b is defined as

b’ = 104 - 1 - b = 9999 - b.

Evaluation of the nines complement does not require the 

full subtraction algorithm, because there is no borrowing. 

Each digit is simply subtracted from 9.

In nines-complement arithmetic, we represent -b by b’.  

The numbers 0 to 4999 are represented literally, while -0 

to -4999 are represented by 9999 down to 5000.  Zero can 

be represented as 0000 or 9999.
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Subtraction by nines-complements

Suppose a and b are in the range 0 to 4999.  Then

a+b’ = a + 9999 - b = 9999 + a - b = 9999 - (b-a).

If a=b, then a+b’ = 9999, which means 0, which is a-b.  

If a>b, then a+b’ is at least 104, and we must subtract 

9999 to obtain a-b ; this can be done by adding the carry 

from the leftmost column (“end-around carry”). If a<b, 

we see from the green expression that a+b’ = (b-a)’, 

which represents a-b (and has no end-carry).  Also,

a’+b’ = 9999 - a + 9999 - b = 9999 + (a+b)’.

The end-around carry leaves (a+b)’, which means -a-b.
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Nines-complement examples

(1)  2708 - 1984:
2708

+   8015  (= 1984’ )

= 10723

1  (end-around carry)

=   0724.

(2)  1984 - 2708:
1984

+   7291  (= 2708’ )

=   9275  (= 0724’ ).

End-around carry is zero.

Result means -724.

(3)  -2708 - 1984:
7291  (= 2708’ )

+   8015  (= 1984’ )

= 15306

1  (end-around carry)

=   5307  (= 4692’ ).

Result means -4692.

(4)  2708 + 1984:
This is trivial, as no conversions are 

required.  The result is 4692.
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Tens-complements

We can eliminate the double representation of zero and the 

end-around-carry by using the tens complement, which is 

found by adding 1 to the nines complement.  Hence, in 4-

digit decimal arithmetic, the tens complement of b is 

defined as

b* = 104 - b.

In tens-complement arithmetic, 0 to 4999 are represented 

literally, while -1 to -5000 are represented by 9999 down 

to 5000, which are the tens complements of 1 to 5000.  

Zero is always 0000.  Note that +5000 is not represented.



2/04/2019 23

Subtraction by tens-complements

Again, suppose a,b are in the range 0 to 4999.  Then

a+b* = a + 104 - b = 104 + a - b = 104 - (b-a).

If a=b or a>b, then a+b* is at least 104 and reduces to   

a-b if we throw away the carry.  If a<b, we see from the 

green expression that a+b* = (b-a)*, which is less than 

104 (leaving no carry) and represents a-b.  Also,

a*+b* = 104 - a + 104 - b = 104 + (a+b)*.

Discarding the carry leaves (a+b)*, which means -a-b.

In all cases, discarding the carry (if any) gives the tens-

complement representation of the expected result.



2/04/2019 24

Tens-complement examples

(1)  2708 - 1984:
2708

+   8016  (= 1984*)

= 10724

or  0724  (discarding carry).

(2)  1984 - 2708:
1984

+   7292  (= 2708*)

=   9276  (= 0724*).

No carry to discard.

Result means -724.

(3)  -2708 - 1984:
7292  (= 2708*)

+   8016  (= 1984*)

= 15308

or  5308  (discarding carry).

Result is 4692*

and means  - 4692.

(4)  2708 + 1984:
This is trivial.  The result is 4692.

[Slide 21 does the same 

examples in nines-comp.] 
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Overflow in tens-complement

Suppose a,b are in the range 0 to 4999.  Then

a+b* = 104 + a - b = 104 - (b - a).

The result is in the range 5001 to 14999.  After the carry 

(if any) is dropped, this represents -4999 to +4999, which 

is the correct range for a-b.

But if a+b > 4999, then a+b represents a negative 

number; this is positive overflow.

Recall that a*+b* becomes (a+b)* when the carry is 

dropped.  If a+b > 5000, then (a+b)* < 5000 and stands 

for a positive number, not -a-b; this is negative overflow.
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Negative numbers in binary

The nines complement in decimal corresponds to 

the ones complement in binary.  In both notations, 

the carry from the most significant digit is added to 

the least significant digit (“end-around carry”).

The tens complement in decimal corresponds to 

the twos complement in binary.  In both notations, 

the carry from the most significant digit is 

dropped.

[The next 10 slides concern ones- and twos complements.]
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Ones-complements

In n-digit binary arithmetic, the ones complement of b is

b’ = 2n - 1 - b.

In binary, 2n - 1 is a row of n ones.  So to find b’, we 

subtract each digit from 1, or invert each digit; this is 

called a bitwise inversion.

In ones-complement arithmetic, we represent -b by b’.  

The numbers 0 to 2n-1 - 1 are represented literally [for n=4, 

these numbers are 0000 to 0111], while -0 to -(2n-1 - 1) are 

represented by 2n - 1 down to 2n-1 [1111 down to 1000].  

Zero can be represented as 0 or 2n - 1 [0000 or 1111].
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Subtraction by ones-complements

Suppose a,b are in the range 0 to 2n-1 - 1.  Then

a+b’ = a + 2n - 1 - b = 2n - 1 + a - b = 2n - 1 - (b-a).

If a=b, then a+b’ = 2n - 1, which means 0, which is a-b.  

If a>b, then a+b’ is at least 2n , and we must subtract     

2n - 1 to obtain a-b ; this subtraction can be accomplished 

by the end-around carry.  If a<b, then a+b’ = (b-a)’, 

which represents a-b (and has no end-carry).  Also,

a’+b’ = 2n - 1 - a + 2n - 1 - b = 2n - 1 + (a+b)’.

The end-around carry leaves (a+b)’, which means -a-b.  

So a-b and -a-b evaluate correctly in ones-complement.
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4-bit ones-complement examples

(1)  0101 - 0010 (5 - 2):
0101

+   1101  (= 0010’ )

= 10010

1  (end-around carry)

=   0011  (= 3).

(2)  0010 - 0101 (2 - 5):
0010

+   1010  (= 0101’ )

=   1100  (= 0011’ ).

End-around carry is zero.

Result means -3.

(3)  -0101 - 0010 (-5 - 2):
1010  (= 0101’ )

+   1101  (= 0010’ )

= 10111

1  (end-around carry)

=   1000  (= 0111’ ).

Result means -7.

(4)  0101 + 0010 (5 + 2):
This is trivial, as no conversions are 

required.  The result is 0111 (= 7).
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Twos-complements

In n-digit binary arithmetic, the twos complement of b is

b* = b’ + 1 = 2n - b .

In twos-complement arithmetic, the values 0 to 2n-1 - 1 

[0000 to 0111 for n = 4] are represented literally, while the 

values -1 to -2n-1 [-0001 to -1000] are represented by 2n - 1 

down to 2n-1 [1111 down to 1000], which are the twos 

complements of 1 to 2n-1.  Note that 2n-1 [1000] represents 

the value -2n-1 [-1000] while the value +2n-1 [+1000] is not 

represented.  N.B.: Negative numbers are marked by a 1 

in the leftmost bit or Most Significant Bit (MSB).  So the 

MSB is also the sign bit.
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Subtraction by twos-complements

Again, suppose a,b are in the range 0 to 2n-1 - 1.  Then

a+b* = a + 2n - b = 2n + a - b = 2n - (b-a).

If a=b or a>b, then a+b* is at least 2n and reduces to     

a-b if we throw away the end-carry (subtracting 2n ).  If 

a<b, then a+b* = (b-a)*, which represents a-b (and there 

is no end-carry to throw away).  Also,

a*+b* = 2n - a + 2n - b = 2n + (a+b)*.

Dropping the carry leaves (a+b)*, which means -a-b.

In all cases, discarding the carry (if any) gives the twos-

complement representation of the expected result.
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4-bit twos-complement examples

(1)  0101 - 0010 (5 - 2):
0101

+   1110  (= 0010*)

= 10011

or  0011  (discarding carry).

(2)  0010 - 0101 (2 - 5):
0010

+   1011  (= 0101*)

=   1101  (= 0011*).

No carry to discard.

Result means -3.

(3)  -0101 - 0010 (-5 - 2):
1011  (= 0101*)

+   1110  (= 0010*)

= 11001

or  1001  (discarding carry ).

Result is 0111*

and means  -7.

(4)  0101 + 0010 (5 + 2):
This is trivial, as no conversions are 

required.  The result is 0111 (= 7).

[Slide 29 does the same 

examples in ones-comp.]
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Overflow in twos-complement

Suppose a,b are in the range 0 to 2n-1 - 1.  Then

a+b* = 2n + a - b = 2n - (b - a).

The result is in the range 2n-1 + 1 to 2n + 2n-1 - 1.  After any 

carry is dropped, this represents -(2n-1 - 1) to 2n-1 - 1, 

which is the correct range for a-b.

But if a+b > 2n-1 - 1, then a+b represents a negative 

number; this is positive overflow.

Recall that a*+b* becomes (a+b)* when the carry is 

dropped.  If a+b > 2n-1, then (a+b)* < 2n-1 and represents 

a positive number, not -a-b; this is negative overflow.
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Positive overflow detection

Addition of 4-bit positive 

numbers without overflow 

looks like this:

0xxx

+  0xxx

=  0xxx .

The carry in to the MSB 

must have been 0, and the 

carry out is 0.  (We can 

repeat the illustration for 

any number of bits.)

Positive overflow looks 

like this:

0xxx

+  0xxx

=  1xxx .

The carry in to the MSB 

must have been 0, but the 

carry out is 1.

Overflow occurs when

carry in  carry out.
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Negative overflow detection

Addition of negative twos-

complement numbers 

without overflow:

1xxx

+    1xxx

=  11xxx .

The carry in to the MSB 

must have been 1 

(otherwise the sum bit 

would be 0), and the carry 

out is 1.

Negative overflow:

1xxx

+    1xxx

=  10xxx .

The carry in to the MSB 

must have been 0, but the 

carry out is 1.

So negative overflow, like 

positive, occurs when

carry in  carry out.
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Hardware overflow signal

We have seen that the condition for twos-complement* 

overflow is

in the MSB.  An “XOR” gate has an output of 1 when the 

inputs are unequal.  So if we define the overflow flag as

overflow = (carry in) xor (carry out),

it will be 1 (or “set” or “true”) when an overflow occurs.
* The same condition works for ones-complement.  To prove this, we have to 

consider which of the cases on the preceding two slides can involve 1111, which 

is not negative and breaks the rule that a 1 in the MSB signals a negative number.  

The proof is left as an exercise.

carry in  carry out
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Half adder

When two binary numbers 

are added [cf. slides 29 and 

32], the right-hand bits are 

added using this addition 

table [cf. slide 3]:

0+0 = 00   0+1 = 01

1+0 = 01   1+1 = 10

In the two-bit sum, the 

right bit is the sum bit and 

the left bit the carry bit.

Let the bits to be added be 

A and B, the sum bit S and 

the carry bit C.  Then the 

addition table may be 

expressed as a truth table:

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1
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Half adder (continued)

The truth table is fully 

described by the Boolean 

relations

S = A xor B

C = AB

which lead directly to the 

gate implementation:

In hand calculations, the 

sum bit is written under the 

column, while the carry bit 

is added to the next column 

to the left; that column has 

three bits to be added.  An 

adder accepting three 1-bit 

inputs is called a full adder 

[next slide]; one accepting 

only two inputs is called a 

half adder [left]. 

S

C

A

B
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Full adder - used in 4-bit adder

A full adder adds three 

numbers each of which can 

take the values 0 and 1.  

The result lies in the range 

002 to 112 and can be 

represented by a sum bit 

and carry bit, as in a half 

adder.

Suppose we want to add 

two 4-bit numbers 

A3A2A1A0 and B3B2B1B0 .

Let the sum be S3S2S1S0 , 

and let C1 be the carry into 

the column of A1 and B1, 

etc.  Let FA denote a full 

adder and HA a half adder.

The circuit is:

FA

A3  B3

S3

C3

FA

A2  B2

S2

C2

FA

A1  B1

S1

C1

HA

A0  B0

S0
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Full adder - implementation (1)

Let Ci be the carry-in, S the 

sum, and Co the carry-out.

TRUTH TABLE

A  B  Ci S    Co

0   0   0      0     0

0   0   1      1     0

0   1   0      1     0

0   1   1      0     1

1   0   0      1     0

1   0   1      0     1

1   1   0      0     1

1   1   1      1     1

S is 1 if the inputs A,B,Ci

include an odd number of 

1’s.  Co is 1 if any two (or 

more) inputs are 1’s.

S Co

Ci

B
A
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Full adder - implementation (2)

In the previous slide, the 

XOR and AND gates at the 

top left comprise a half 

adder, and the lower XOR 

gate is part of a half adder.  

So the circuit may be 

redrawn as shown here.  

The labels ‘C’ and ‘S’ 

distinguish between the 

outputs of each HA.  The 

carry-out variables from

the two HAs are called 

CAand CB ;  CB is unused.

S Co

Ci

B
A

HA
C   S

HA
C   S

CA

CB
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Full adder - implementation (3)

Now let’s see if we can use 

CB in the calculation of Co .

TRUTH TABLE

A  B  Ci CA CB Co

0   0   0       0     0       0

0   0   1       0     0       0

0   1   0       0     0       0

0   1   1       0     1       1

1   0   0       0     0       0

1   0   1       0     1       1

1   1   0       1     0       1

1   1   1       1     0       1

From the truth table we see 

that Co = CA or CB .  So the 

FA circuit simplifies to:

SCo

CiBA

HA
C   S

HA
C   S

CA

CB
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Full adder - used in 4-bit subtractor

To subtract B3B2B1B0 from 

A3A2A1A0 using twos-

complement arithmetic, we 

add A3A2A1A0 to the twos 

complement of B3B2B1B0 .  

To find the complement, 

we invert the bits and add 

one.  The “add one” step 

can be done by replacing 

the right-hand half adder 

with a full adder.

Subtractor (with overflow):

FA

A3

S3

C3

B3

FA

A2

S2

C2

B2

FA

A1

S1

C1

B1

FA

A0

S0

1

B0

OF (overflow)

C4
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4-bit adder/subtractor

An XOR gate is a 

controlled inverter.  If one 

input is 0, the output is the 

other input; if one input is 

1, the output is the inverse 

of the other input.  We can 

use XOR gates to select 

between B3B2B1B0 and its 

ones complement.  The 

Sel(ect) input also controls 

the "add one’’ step.

Adder/subtractor:

FA

A3

S3

C3

FA

A2

S2

C2

FA

A1

S1

C1

FA

A0

S0

Sel

B3 B2 B1 B0

OF (overflow)

C4
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The “ripple-carry” effect.

In the 4-bit adders shown on the last few slides, the carry-

out from each FA is connected to the carry-in of the next.  

This system is called ripple-carry.

Logic gates do not react instantaneously to changes in 

their inputs.  There is a delay in the calculation of C1.  

When C1 reaches its correct value, there is a further delay 

in the calculation of C2 (which depends on C1), and so on.  

So the carry “ripples” through the full adders. The sum 

bits also depend on the incoming carry bits, causing a 

cumulative delay in the calculation of the sum.
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Carry acceleration (1)

Methods for reducing carry delay include the carry-select 

adder (CSA) and carry look-ahead (CLA).  These are 

useful when we connect several 4-bit adders in cascade to 

make a larger adder.

In a 4-bit CSA, we have two complete 4-bit adders, one 

with a carry-in of 0 and the other with a carry-in of 1.  The 

“real” carry-in is used to select between the outputs of the 

two adders.  The two sums and two carry-outs can be 

computed while waiting for the carry-in from the previous 

adder in the chain.
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Carry acceleration (2)

In an adder with carry look-ahead (CLA), each FA has two

carry outputs, called generate carry (G) and propagate 

carry (P).  G means “Co = 1” (regardless of Ci), while P 

means “Co = Ci”.  Using G and P as intermediate values, 

all the carry-ins to a 4-bit adder can be computed from the 

inputs and C0 (C0 is the least significant or rightmost Ci).

We can also produce G and P outputs for the whole 4-bit 

adder; P means “C4 = C0”.  When several 4-bit adders are 

cascaded, the G and P outputs of each adder can be 

combined like those of a single FA; the combining circuit 

is called a carry look-ahead generator (CLAG).
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Arithmetic Logic Units (ALUs)

The 4-bit adder/subtractor 

[slide 44] is the simplest 

example of a multifunction 

arithmetic unit; the “Sel” 

input selects the desired 

function from the available 

options.

A more realistic multi-

function unit would have 

more functions, controlled 

by several “select” bits.

One select bit might 

determine whether the 

function is arithmetical

(add, divide-by-2) or 

logical (bitwise XOR, 

shift-right).

A multifunction circuit 

with arithmetical and 

logical functions is called 

an arithmetic logic unit 

(ALU).


