
2/04/2019 1

Part 2:

Introduction to Binary

Numbers & Arithmetic

2/04/2019 2

Decimal vs. binary representation

The decimal number 805

means

8x102 + 0x101 + 5x100.

The place values, from

right to left, are

1,10,100,1000,..., or

100,101,102,103,... .

The base or radix is 10.

All digits must be less than

the base, i.e. from 0 to 9.

The binary number 10112

means

1x23 + 0x22 + 1x21 + 1x20.

The place values, from

right to left, are 1,2,4,8,...,

or 20,21,22,23,... .

The base or radix is 2 (in

decimal) or 102 (in binary).

All digits must be less than

the base, i.e. either 0 or 1.

2/04/2019 3

Advantages of binary representation

Binary notation is

convenient for electronic

processing because:

(1) Only two voltage levels

are needed to represent all

digits;

(2) Arithmetic tables are

simple, and can be

implemented using logic

gates.

Addition table:

0+0 = 00 0+1 = 01

1+0 = 01 1+1 = 10

Multiplication table:

0x0 = 0 0x1 = 0

1x0 = 0 1x1 = 1

Each table has 4 entries.

In decimal, each table

would have 10010 entries!

(Notice that 4 = 1002 .)

2/04/2019 4

Converting from base x

While computers work in base 2, people prefer base 10.

So conversions to and from binary are needed. We can

illustrate the methods using a 4-digit integer in an

arbitrary base. The number abcdx (base x) means

ax3 + bx2 + cx + d.

This polynomial can be used directly to convert the

number to decimal. We can reduce the number of

arithmetical operations in the conversion by writing the

polynomial in nested form:

((ax + b) x + c) x + d.

2/04/2019 5

Converting from base x - Examples

Taking the example from slide 2,

10112 = 1. 23 + 0. 22 + 1. 21 + 1. 20 = 8 + 0 + 2 + 1 = 11

or, in nested form,

10112 = ((1. 2 + 0) . 2 + 1) . 2 + 1 = 11.

Here’s an example in base 7:

410357 = (((4 . 7 + 1) . 7 + 0) . 7 + 3) . 7 + 5 = 9973.

In base 16 (known as hexadecimal or “hex”), we use the

letters A to F to represent the “digits” 10 to 15 :

FFFFhex = ((15 . 16 + 15) . 16 + 15) . 16 + 15 = 65535.

2/04/2019 6

Converting to base x

The nested form

((ax + b) x + c) x + d

can be written

abcdx = Cx + d

where C = Bx + c

where B = ax + b

where a = 0x + a.

Now all the above are

whole numbers, and

a,b,c,d are all less than x,

being the digits of a base-x

number. So the equations

at left imply that d,c,b,a are

the remainders when abcdx

is divided repeatedly by x.

To convert a whole number

to base x, divide it

repeatedly by x until the

quotient is zero, and write

the remainders in reverse.

2/04/2019 7

Converting to base x - Examples

To convert 1110 to binary,

we repeatedly divide by 2.

Let us write the quotients

on the left and remainders

on the right:

11

5 1

2 1

1 0

0 1

Reading the remainders up

the column gives 10112.

To convert 9973 to base 7:

9973

1424 5

203 3

29 0

4 1

0 4

The result is 410357.

2/04/2019 8

Converting fractions from base x

The number abcd. pqrsx (base x) means

ax3 + bx2 + cx + d + px-1 + qx-2 + rx-3 + sx-4 .

The part to the left of the radix point (.) is the integer part

and the part to the right is the fractional part. Again, the

above expression may be used to convert the number to

decimal. (Exercise: Can you devise a nested form to

speed up the calculation?)

To convert from decimal to base x, the integer part is

processed by the repeated-division method, while the

fractional part requires separate treatment [next slide].

2/04/2019 9

Converting fractions to base x

The fractional part (red) of

abcd.pqrsx is

px-1 + qx-2 + rx-3 + sx-4 .

Multiply by x :

p + qx-1 + rx-2 + sx-3 .

Take the fractional part and

multiply by x again:

q + rx-1 + sx-2 .

Repeat the separate-and-

multiply step until there is

no fractional part left*:

r + sx-1

s + 0.

Now read off the resulting

integer parts (red) in

forward order, and you get

the base-x digits pqrs.

* If the process doesn’t

terminate itself, stop when

you’ve got enough digits.

2/04/2019 10

Example: Convert 11.8125 to base 8

For the integer part, we

repeatedly divide by 8

(remainders are in blue):

11

1 3

0 1

Integer part is 13 8 .

For the fractional part, we

repeatedly multiply by 8

[next column].

Each line in the table is 8

times the fractional part of

the previous line:

.8125

6.5

4.0

Fractional part is .64 8 .

Answer:

11.8125 10 = 13.64 8 .

2/04/2019 11

Example: Convert 6.410 to base 7

The integer part is trivial:

6

0 6

Integer part is 6 7 .

The fractional part is 4/10.

Since 10 is not divisible by

7, repeated multiplication

by 7 will never cancel the

denominator and never

convert the fractional part

to an integer. So the

process will not terminate:

.4

2.8

5.6

4.2

1.4

...and this pattern repeats.

Answer: 6.25412541...

2/04/2019 12

Notes on base conversions

In explaining how to convert to base x [slides 6 & 9], we

have written the given numbers in powers of x to show

why the methods work. In the worked examples, of

course, we have written the given numbers in decimal.

Because we humans prefer base 10, we use repeated

division to convert to other bases, and power-series

expressions to convert to base 10.

But a computer prefers base 2. So it works the other way

around, using repeated division to express its results in

base 10, and power-series expressions to convert human

input to base 2.

2/04/2019 13

Octal (base 8)

It is especially easy to convert between octal and binary:

abcdefgh2

= a.27 + b.26 + c.25 + d.24 + e.23 + f.22 + g.2 + h

= (a.2 + b).26 + (c.22 + d.2 + e).23 + (f.22 + g.2 + h)

= (ab2).8
2 + (cde2).8 + (fgh2)

The expressions in parentheses, being less than 8, are the

octal digits. The process can also be reversed. Note that

one octal digit corresponds to three binary digits because

8 = 23. The binary digits (“bits”) are grouped from right

to left, i.e. away from the radix point.

2/04/2019 14

Binary-octal conversion - Examples

(1) Convert 10111110101100011010001000 2 to octal :

010 111 110 101 100 011 010 001 000 *

= 2 7 6 5 4 3 2 1 0 8

= 276543210 8 .

(* The leading 0 is optional. Each conversion of three

binary digits to one octal digit is done by inspection.)

(2) Fractional parts are grouped from left to right and

padded with zeros (the proof is left as an exercise).

Example: Convert 11111111.10001 2 to octal:

011 111 111 . 100 010 2 = 377.42 8 .

2/04/2019 15

Hexadecimal or “hex” (base 16)

We have seen that one octal digit corresponds to 3 bits

because 8 = 23. Similarly, one hex digit corresponds to 4

bits because 16 = 24. The following generalized example

includes a fractional part, which must be padded with a 0:

abcdef.ghijklm 2

= a.25 + b.24 + c.23 + d.22 + e.2 + f

+ g.2-1 + h.2-2 + i.2-3 + j.2-4 + k.2-5 + l.2-6 + m.2-7

= (a.2 + b).24 + (c.23 + d.22 + e.2 + f)

+ (g.23 + h.22 + i.2 + j).2-4 + (k.23 + l.22 + m.21 + 0).2-8

= (ab2).16 + (cdef2) + (ghij2).16-1 + (klm02).16-2.

2/04/2019 16

Hex-binary conversion - Examples

(1) Convert 789ABCDEFhex to binary:

0111 1000 1001 1010 1011 1100 1101 1110 1111 2 .

(The leading 0 can be omitted. Conversion of individual

hex digits can be done by inspection; recall that the letters

A to F represent the “digits” 10 to 15.)

(2) Convert 1011100.101101 2 to hex:

0101 1100 . 1011 0100 2 = 5C.B4 hex .

(The digits are counted off away from the radix point.

The trailing zeros on the fractional part are needed to

complete the group of four. The leading 0 is optional.)

2/04/2019 17

Conversion to binary via octal

The direct conversion of

200110 to binary looks like

this ...
2001

1000 1

500 0

250 0

125 0

62 1

31 0

15 1

7 1

3 1

1 1

0 1

... and gives 11111010001.

It may be quicker to

convert to octal first ...
2001

250 1

31 2

3 7

0 3

... yielding 3721 8 , which

can be instantly converted

to 11 111 010 001 2 .

2/04/2019 18

Negative numbers & subtraction

Mathematicians define

subtraction as addition of

the additive inverse:

a - b = a + (-b).

In theory, this trick reduces

subtraction to addition. In

practice, we still need

subtraction because we use

a magnitude-sign notation

for negative numbers.

That is, if b is positive, we

write its additive inverse as

-b = -|b|

and we evaluate a + (-b) as

a - b.

To eliminate subtraction in

base-10 integer arithmetic,

we can represent -b by the

nines complement or tens

complement of b.

2/04/2019 19

Nines-complements

If we confine the discussion to 4-digit decimal arithmetic,

the nines complement of b is defined as

b’ = 104 - 1 - b = 9999 - b.

Evaluation of the nines complement does not require the

full subtraction algorithm, because there is no borrowing.

Each digit is simply subtracted from 9.

In nines-complement arithmetic, we represent -b by b’.

The numbers 0 to 4999 are represented literally, while -0

to -4999 are represented by 9999 down to 5000. Zero can

be represented as 0000 or 9999.

2/04/2019 20

Subtraction by nines-complements

Suppose a and b are in the range 0 to 4999. Then

a+b’ = a + 9999 - b = 9999 + a - b = 9999 - (b-a).

If a=b, then a+b’ = 9999, which means 0, which is a-b.

If a>b, then a+b’ is at least 104, and we must subtract

9999 to obtain a-b ; this can be done by adding the carry

from the leftmost column (“end-around carry”). If a<b,

we see from the green expression that a+b’ = (b-a)’,

which represents a-b (and has no end-carry). Also,

a’+b’ = 9999 - a + 9999 - b = 9999 + (a+b)’.

The end-around carry leaves (a+b)’, which means -a-b.

2/04/2019 21

Nines-complement examples

(1) 2708 - 1984:
2708

+ 8015 (= 1984’)

= 10723

1 (end-around carry)

= 0724.

(2) 1984 - 2708:
1984

+ 7291 (= 2708’)

= 9275 (= 0724’).

End-around carry is zero.

Result means -724.

(3) -2708 - 1984:
7291 (= 2708’)

+ 8015 (= 1984’)

= 15306

1 (end-around carry)

= 5307 (= 4692’).

Result means -4692.

(4) 2708 + 1984:
This is trivial, as no conversions are

required. The result is 4692.

2/04/2019 22

Tens-complements

We can eliminate the double representation of zero and the

end-around-carry by using the tens complement, which is

found by adding 1 to the nines complement. Hence, in 4-

digit decimal arithmetic, the tens complement of b is

defined as

b* = 104 - b.

In tens-complement arithmetic, 0 to 4999 are represented

literally, while -1 to -5000 are represented by 9999 down

to 5000, which are the tens complements of 1 to 5000.

Zero is always 0000. Note that +5000 is not represented.

2/04/2019 23

Subtraction by tens-complements

Again, suppose a,b are in the range 0 to 4999. Then

a+b* = a + 104 - b = 104 + a - b = 104 - (b-a).

If a=b or a>b, then a+b* is at least 104 and reduces to

a-b if we throw away the carry. If a<b, we see from the

green expression that a+b* = (b-a)*, which is less than

104 (leaving no carry) and represents a-b. Also,

a*+b* = 104 - a + 104 - b = 104 + (a+b)*.

Discarding the carry leaves (a+b)*, which means -a-b.

In all cases, discarding the carry (if any) gives the tens-

complement representation of the expected result.

2/04/2019 24

Tens-complement examples

(1) 2708 - 1984:
2708

+ 8016 (= 1984*)

= 10724

or 0724 (discarding carry).

(2) 1984 - 2708:
1984

+ 7292 (= 2708*)

= 9276 (= 0724*).

No carry to discard.

Result means -724.

(3) -2708 - 1984:
7292 (= 2708*)

+ 8016 (= 1984*)

= 15308

or 5308 (discarding carry).

Result is 4692*

and means - 4692.

(4) 2708 + 1984:
This is trivial. The result is 4692.

[Slide 21 does the same

examples in nines-comp.]

2/04/2019 25

Overflow in tens-complement

Suppose a,b are in the range 0 to 4999. Then

a+b* = 104 + a - b = 104 - (b - a).

The result is in the range 5001 to 14999. After the carry

(if any) is dropped, this represents -4999 to +4999, which

is the correct range for a-b.

But if a+b > 4999, then a+b represents a negative

number; this is positive overflow.

Recall that a*+b* becomes (a+b)* when the carry is

dropped. If a+b > 5000, then (a+b)* < 5000 and stands

for a positive number, not -a-b; this is negative overflow.

2/04/2019 26

Negative numbers in binary

The nines complement in decimal corresponds to

the ones complement in binary. In both notations,

the carry from the most significant digit is added to

the least significant digit (“end-around carry”).

The tens complement in decimal corresponds to

the twos complement in binary. In both notations,

the carry from the most significant digit is

dropped.

[The next 10 slides concern ones- and twos complements.]

2/04/2019 27

Ones-complements

In n-digit binary arithmetic, the ones complement of b is

b’ = 2n - 1 - b.

In binary, 2n - 1 is a row of n ones. So to find b’, we

subtract each digit from 1, or invert each digit; this is

called a bitwise inversion.

In ones-complement arithmetic, we represent -b by b’.

The numbers 0 to 2n-1 - 1 are represented literally [for n=4,

these numbers are 0000 to 0111], while -0 to -(2n-1 - 1) are

represented by 2n - 1 down to 2n-1 [1111 down to 1000].

Zero can be represented as 0 or 2n - 1 [0000 or 1111].

2/04/2019 28

Subtraction by ones-complements

Suppose a,b are in the range 0 to 2n-1 - 1. Then

a+b’ = a + 2n - 1 - b = 2n - 1 + a - b = 2n - 1 - (b-a).

If a=b, then a+b’ = 2n - 1, which means 0, which is a-b.

If a>b, then a+b’ is at least 2n , and we must subtract

2n - 1 to obtain a-b ; this subtraction can be accomplished

by the end-around carry. If a<b, then a+b’ = (b-a)’,

which represents a-b (and has no end-carry). Also,

a’+b’ = 2n - 1 - a + 2n - 1 - b = 2n - 1 + (a+b)’.

The end-around carry leaves (a+b)’, which means -a-b.

So a-b and -a-b evaluate correctly in ones-complement.

2/04/2019 29

4-bit ones-complement examples

(1) 0101 - 0010 (5 - 2):
0101

+ 1101 (= 0010’)

= 10010

1 (end-around carry)

= 0011 (= 3).

(2) 0010 - 0101 (2 - 5):
0010

+ 1010 (= 0101’)

= 1100 (= 0011’).

End-around carry is zero.

Result means -3.

(3) -0101 - 0010 (-5 - 2):
1010 (= 0101’)

+ 1101 (= 0010’)

= 10111

1 (end-around carry)

= 1000 (= 0111’).

Result means -7.

(4) 0101 + 0010 (5 + 2):
This is trivial, as no conversions are

required. The result is 0111 (= 7).

2/04/2019 30

Twos-complements

In n-digit binary arithmetic, the twos complement of b is

b* = b’ + 1 = 2n - b .

In twos-complement arithmetic, the values 0 to 2n-1 - 1

[0000 to 0111 for n = 4] are represented literally, while the

values -1 to -2n-1 [-0001 to -1000] are represented by 2n - 1

down to 2n-1 [1111 down to 1000], which are the twos

complements of 1 to 2n-1. Note that 2n-1 [1000] represents

the value -2n-1 [-1000] while the value +2n-1 [+1000] is not

represented. N.B.: Negative numbers are marked by a 1

in the leftmost bit or Most Significant Bit (MSB). So the

MSB is also the sign bit.

2/04/2019 31

Subtraction by twos-complements

Again, suppose a,b are in the range 0 to 2n-1 - 1. Then

a+b* = a + 2n - b = 2n + a - b = 2n - (b-a).

If a=b or a>b, then a+b* is at least 2n and reduces to

a-b if we throw away the end-carry (subtracting 2n). If

a<b, then a+b* = (b-a)*, which represents a-b (and there

is no end-carry to throw away). Also,

a*+b* = 2n - a + 2n - b = 2n + (a+b)*.

Dropping the carry leaves (a+b)*, which means -a-b.

In all cases, discarding the carry (if any) gives the twos-

complement representation of the expected result.

2/04/2019 32

4-bit twos-complement examples

(1) 0101 - 0010 (5 - 2):
0101

+ 1110 (= 0010*)

= 10011

or 0011 (discarding carry).

(2) 0010 - 0101 (2 - 5):
0010

+ 1011 (= 0101*)

= 1101 (= 0011*).

No carry to discard.

Result means -3.

(3) -0101 - 0010 (-5 - 2):
1011 (= 0101*)

+ 1110 (= 0010*)

= 11001

or 1001 (discarding carry).

Result is 0111*

and means -7.

(4) 0101 + 0010 (5 + 2):
This is trivial, as no conversions are

required. The result is 0111 (= 7).

[Slide 29 does the same

examples in ones-comp.]

2/04/2019 33

Overflow in twos-complement

Suppose a,b are in the range 0 to 2n-1 - 1. Then

a+b* = 2n + a - b = 2n - (b - a).

The result is in the range 2n-1 + 1 to 2n + 2n-1 - 1. After any

carry is dropped, this represents -(2n-1 - 1) to 2n-1 - 1,

which is the correct range for a-b.

But if a+b > 2n-1 - 1, then a+b represents a negative

number; this is positive overflow.

Recall that a*+b* becomes (a+b)* when the carry is

dropped. If a+b > 2n-1, then (a+b)* < 2n-1 and represents

a positive number, not -a-b; this is negative overflow.

2/04/2019 34

Positive overflow detection

Addition of 4-bit positive

numbers without overflow

looks like this:

0xxx

+ 0xxx

= 0xxx .

The carry in to the MSB

must have been 0, and the

carry out is 0. (We can

repeat the illustration for

any number of bits.)

Positive overflow looks

like this:

0xxx

+ 0xxx

= 1xxx .

The carry in to the MSB

must have been 0, but the

carry out is 1.

Overflow occurs when

carry in carry out.

2/04/2019 35

Negative overflow detection

Addition of negative twos-

complement numbers

without overflow:

1xxx

+ 1xxx

= 11xxx .

The carry in to the MSB

must have been 1

(otherwise the sum bit

would be 0), and the carry

out is 1.

Negative overflow:

1xxx

+ 1xxx

= 10xxx .

The carry in to the MSB

must have been 0, but the

carry out is 1.

So negative overflow, like

positive, occurs when

carry in carry out.

2/04/2019 36

Hardware overflow signal

We have seen that the condition for twos-complement*

overflow is

in the MSB. An “XOR” gate has an output of 1 when the

inputs are unequal. So if we define the overflow flag as

overflow = (carry in) xor (carry out),

it will be 1 (or “set” or “true”) when an overflow occurs.
* The same condition works for ones-complement. To prove this, we have to

consider which of the cases on the preceding two slides can involve 1111, which

is not negative and breaks the rule that a 1 in the MSB signals a negative number.

The proof is left as an exercise.

carry in carry out

2/04/2019 37

Half adder

When two binary numbers

are added [cf. slides 29 and

32], the right-hand bits are

added using this addition

table [cf. slide 3]:

0+0 = 00 0+1 = 01

1+0 = 01 1+1 = 10

In the two-bit sum, the

right bit is the sum bit and

the left bit the carry bit.

Let the bits to be added be

A and B, the sum bit S and

the carry bit C. Then the

addition table may be

expressed as a truth table:

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

2/04/2019 38

Half adder (continued)

The truth table is fully

described by the Boolean

relations

S = A xor B

C = AB

which lead directly to the

gate implementation:

In hand calculations, the

sum bit is written under the

column, while the carry bit

is added to the next column

to the left; that column has

three bits to be added. An

adder accepting three 1-bit

inputs is called a full adder

[next slide]; one accepting

only two inputs is called a

half adder [left].

S

C

A

B

2/04/2019 39

Full adder - used in 4-bit adder

A full adder adds three

numbers each of which can

take the values 0 and 1.

The result lies in the range

002 to 112 and can be

represented by a sum bit

and carry bit, as in a half

adder.

Suppose we want to add

two 4-bit numbers

A3A2A1A0 and B3B2B1B0 .

Let the sum be S3S2S1S0 ,

and let C1 be the carry into

the column of A1 and B1,

etc. Let FA denote a full

adder and HA a half adder.

The circuit is:

FA

A3 B3

S3

C3

FA

A2 B2

S2

C2

FA

A1 B1

S1

C1

HA

A0 B0

S0

2/04/2019 40

Full adder - implementation (1)

Let Ci be the carry-in, S the

sum, and Co the carry-out.

TRUTH TABLE

A B Ci S Co

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S is 1 if the inputs A,B,Ci

include an odd number of

1’s. Co is 1 if any two (or

more) inputs are 1’s.

S Co

Ci

B
A

2/04/2019 41

Full adder - implementation (2)

In the previous slide, the

XOR and AND gates at the

top left comprise a half

adder, and the lower XOR

gate is part of a half adder.

So the circuit may be

redrawn as shown here.

The labels ‘C’ and ‘S’

distinguish between the

outputs of each HA. The

carry-out variables from

the two HAs are called

CAand CB ; CB is unused.

S Co

Ci

B
A

HA
C S

HA
C S

CA

CB

2/04/2019 42

Full adder - implementation (3)

Now let’s see if we can use

CB in the calculation of Co .

TRUTH TABLE

A B Ci CA CB Co

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 1 1 0 1 1

1 0 0 0 0 0

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 1 0 1

From the truth table we see

that Co = CA or CB . So the

FA circuit simplifies to:

SCo

CiBA

HA
C S

HA
C S

CA

CB

2/04/2019 43

Full adder - used in 4-bit subtractor

To subtract B3B2B1B0 from

A3A2A1A0 using twos-

complement arithmetic, we

add A3A2A1A0 to the twos

complement of B3B2B1B0 .

To find the complement,

we invert the bits and add

one. The “add one” step

can be done by replacing

the right-hand half adder

with a full adder.

Subtractor (with overflow):

FA

A3

S3

C3

B3

FA

A2

S2

C2

B2

FA

A1

S1

C1

B1

FA

A0

S0

1

B0

OF (overflow)

C4

2/04/2019 44

4-bit adder/subtractor

An XOR gate is a

controlled inverter. If one

input is 0, the output is the

other input; if one input is

1, the output is the inverse

of the other input. We can

use XOR gates to select

between B3B2B1B0 and its

ones complement. The

Sel(ect) input also controls

the "add one’’ step.

Adder/subtractor:

FA

A3

S3

C3

FA

A2

S2

C2

FA

A1

S1

C1

FA

A0

S0

Sel

B3 B2 B1 B0

OF (overflow)

C4

2/04/2019 45

The “ripple-carry” effect.

In the 4-bit adders shown on the last few slides, the carry-

out from each FA is connected to the carry-in of the next.

This system is called ripple-carry.

Logic gates do not react instantaneously to changes in

their inputs. There is a delay in the calculation of C1.

When C1 reaches its correct value, there is a further delay

in the calculation of C2 (which depends on C1), and so on.

So the carry “ripples” through the full adders. The sum

bits also depend on the incoming carry bits, causing a

cumulative delay in the calculation of the sum.

2/04/2019 46

Carry acceleration (1)

Methods for reducing carry delay include the carry-select

adder (CSA) and carry look-ahead (CLA). These are

useful when we connect several 4-bit adders in cascade to

make a larger adder.

In a 4-bit CSA, we have two complete 4-bit adders, one

with a carry-in of 0 and the other with a carry-in of 1. The

“real” carry-in is used to select between the outputs of the

two adders. The two sums and two carry-outs can be

computed while waiting for the carry-in from the previous

adder in the chain.

2/04/2019 47

Carry acceleration (2)

In an adder with carry look-ahead (CLA), each FA has two

carry outputs, called generate carry (G) and propagate

carry (P). G means “Co = 1” (regardless of Ci), while P

means “Co = Ci”. Using G and P as intermediate values,

all the carry-ins to a 4-bit adder can be computed from the

inputs and C0 (C0 is the least significant or rightmost Ci).

We can also produce G and P outputs for the whole 4-bit

adder; P means “C4 = C0”. When several 4-bit adders are

cascaded, the G and P outputs of each adder can be

combined like those of a single FA; the combining circuit

is called a carry look-ahead generator (CLAG).

2/04/2019 48

Arithmetic Logic Units (ALUs)

The 4-bit adder/subtractor

[slide 44] is the simplest

example of a multifunction

arithmetic unit; the “Sel”

input selects the desired

function from the available

options.

A more realistic multi-

function unit would have

more functions, controlled

by several “select” bits.

One select bit might

determine whether the

function is arithmetical

(add, divide-by-2) or

logical (bitwise XOR,

shift-right).

A multifunction circuit

with arithmetical and

logical functions is called

an arithmetic logic unit

(ALU).

