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Nonmonotonic Reasoning

m Suppose you are told “Tweety is a bird”
m What conclusions would you draw?

m Now, consider being further informed that “Tweety is an
emu”

m What conclusions would you draw now? Do they differ
from the conclusions that you would draw without this
information? In what way(s)?

m Nonmonotonic reasoning is an attempt to capture a form of
commonsense reasoning
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Nonmonotonic Reasoning

m In classical logic the more facts (premises) we have, the
more conclusions we can draw

m This property is known as Monotonicity
If A CT, then Cn(A) C Cn(I')

(where Cn denotes classical consequence)

m However, the previous example shows that we often do not
reason in this manner

m Might a nonmonotonic logic—one that does not satisfy the
Monotonicity property—provide a more effective way of
reasoning?
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Why Nonmonotonicity?

m Problems with the classical approach to consequence

m [t is usually not possible to write down all we would like to
say about a domain

m Inferences in classical logic simply make implicit knowledge
explicit; we would also like to reason with tentative
statements

m Sometimes we would like to represent knowledge about
something that is not entirely true or false; uncertain
knowledge

m Nonmonotonic reasoning is concerned with getting around
these shortcomings
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Makinson’s Classification

Makinson has suggested the following classification of
nonmonotonic logics:

m Additional background assumptions
m Restricting the set of valuations
m Additional rules

David Makinson, Bridges from Classical to Nonmonotonic
Logic, Texts in Computing, Volume 5, King’s College
Publications, 2005.
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Nonmonotonicity

m Classical logic satisfies the following property

m Monotonicity: If A C T, then Cn(A) C Cn(TN)
(equivalently, ' - ¢ implies T U A F ¢)

m However, we often draw conclusions based on ‘what is
normally the case’ or ‘true by default’

m More information can lead us to retract previous
conclusions

m We shall adopt the following notation

m | classical consequence relation
B [~ nonmonotonic consequence relation
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Consequence Operation Cn

Other properties of consequence operation Cn:
Inclusion A C Cn(A)

Cumulative Transitivity A C T C Cn(A) implies Cn(I') C Cn(A)

Compactness If ¢ € Cn(A) then there is a finite A’ C A such
that ¢ € Cn(A")

Disjunction in the Premises
Cn(Au{a})nCn(Au{b})C Cn(Au{aVv b})

Note: A+ ¢ iff ¢ € Cn(A)

alternatively: Cn(A) = {¢: A+ ¢}
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Example

Suppose | tell you “Tweety is a bird’
You might conclude ‘“Tweety flies’

| then tell you “Tweety is an emu’
You conclude ‘Tweety does not fly’

bird( Tweety) t flies( Tweety)
bird( Tweety) A emu(Tweety) ~ —flies( Tweety)
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The Closed World Assumption

m A complete theory is one in which for every ground atom in
the language, either the atom or its negation appears in the
theory

m The closed world assumption (CWA) completes a base
(non-closed) set of formulae by including the negation of a
ground atom whenever the atom does not follow from the
base

m In other words, if we have no evidence as to the truth of
(ground atom) P, we assume that it is false

m Given a base set of formulae A we first calculate the
assumption set

=P € Aggpm iff for ground atom P, At/ P

B CWA(A) = Cn{A U Agsm}
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Example

A = {P(a),P(b),P(a) — Q(a)}

Agsm = {~Q(b)}

Theorem: The CWA applied to a consistent set of formulae A
is inconsistent iff there are positive ground literals Ly, ..., L,
suchthat AELyv...vL,but A Lifori=1, ..., n.

m Note that in the example above we limited our attention to
the object constants that appeared in A however the
language could contain other constants. This is known as
the Domain Closure Assumption (DCA)

m Another common assumption is the Unique-Names
Assumption (UNA).
If two ground terms can’t be proved equal, assume that
they are not.
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Predicate Completion

Idea: The only objects that satisfy a predicate are those that
must
m For example, suppose we have P(a). Can view this as
Vx. x = a— P(x)
the if-half of a definition
m Can add the only if part:
Vx. P(x) - x=a
m Giving:
Vx. P(x) < x=a
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Predicate Completion

m Definition: A clause is solitary in a predicate P if
whenever the clause contains a postive instance of P, it
contains only one instance of P.

m For example, Q(a) v P(a)Vv —P(b) is not solitary in P
Q(a) v R(a)Vv P(b)is solitary in P

m Completion of a predicate is only defined for sets of

clauses solitary in that predicate
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Predicate Completion

m Each clause can be written:
Vy. Qi A... A Qm— P(t) (P not contained in Q)
Vy. ¥x. (x =) ANQy A... A Qm — P(x)
VX.(Vy. (x =) ANQy A ... A Qm — P(x)) (normal form of
clause)

m Doing this to every clause gives us a set of clauses of the
form:
Vx. Ey — P(x)

Vx. En — P(x)

m Grouping these together we get:
Vx. Ey V...V Ey— P(x)

m Completion becomes: Vx. P(x) <» E; V...V Ej
and we can add this to the original set of formulae
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m Suppose A = {Vx. Emu(x) — Bird(x),
Bird(Tweety),
—Emu(Tweety)}

m We can write this as
Vx. (Emu(x) vV x = Tweety) — Bird(x)
m Predicate completion of P in A becomes
A U{Vx. Bird(x) — Emu(x) vV x = Tweety}
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Circumscription

m ldea: Make extension of predicate as small as possible

m Example:
Vx.Bird(x) A ~Ab(x) — Flies(x)
Bird(Tweety), Bird(Sam), Tweety #  Sam,
—Flies(Sam)

m Want to be able to conclude Flies(Tweety) but
—~Flies(Sam)

m Accept interpretations where Ab predicate is as “small” as
possible

m That is, we minimise abnormality

Maurice Pagnucco

COMP4418: Knowledge Representation and Reasoning



Circumscription
oe

Circumscription

m Given interpretations |y = (D, I1), I = (D, k), l; < I, iff for
every predicate P € P, I1[P] C L[P)].

m [ =g ¢ iff for every interpretation | such that | =T, either
I E=¢gorthereisal <landl =T.

m ¢ is true in all minimal models

m Now consider
Vx.Bird(x) A =Ab(x) — Flies(x)
Vx.Emu(x) — Bird(x) A —Flies(x)
Bird(Tweety)
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Reiter’s Default Logic (1980)

m Add default rules of the form %ﬁ’

m “If « can be proven and consistent to assume (3, then
conclude v”
m Often consider normal default rules %

. bird(x):fli
m Example: %(f)sm

m Default theory (D, W)
D — set of defaults; W — set of facts
m Extension of default theory contains as many default
conclusions as possible and must be consistent (and is

closed under classical consequence Cn)
m Concluding whether formula ¢ follows from (D, W)

m Sceptical inference: ¢ occurs in every extension of (D, W)
Credulous inference: ¢ occurs in some extension of (D, W)
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Examples

mW={};D= {ﬁ} - no extensions
mW={pvr};D= } one extension {p V r}

m W={pvqg};D= {ﬁp, ﬁg} two extensions
{-p, pva}, {~q. pvaq}
m W = {emu(Tweety), ¥Yx.emu(x) — bird(x)};

bird(x):flies(x)
D= {W} one extension

m What if we add %;Z’Ss()?

m Poole (1988) achieves a similar effect (but not quite as
general) by changing the way the underlying logic is used
rather than introducing a new element into the syntax
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Default Theories—Properties

Observation: Every normal default theory (default rules are all
normal) has an extension

Observation: If a normal default theory has several
extensions, they are mutually inconsistent

Observation: A default theory has an inconsistent extension iff
D is inconsistent

Theorem: (Semi-monotonicity)

Given two normal default theories (D, W) and (D', W) such
that D C D’ then, for any extension £(D, W) there is an
extension (D', W) where £(D, W) C (D', W)

(The addition of normal default rules does not lead to the
retraction of consequences.)
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Nonmonotonic Consequence

m Abstract study and analysis of nonmonotonic consequence
relation r in terms of general properties Kraus, Lehmann
and Magidor (1991)

m Some common properties include:

Supraclassicality If ¢ - 1, then ¢ 1
Left Logical Equivalence If - ¢ «<» ¢ and ¢ |~ x, then ¢ o x
Right Weakening If -4 — x and ¢ ), then ¢  x

And If ¢ oo and ¢  x, then ¢ oy A x

m Plus many more!
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KLM Systems

m Kraus, Lehman and Magidor (1991) study various classes
of nonmonotonic consequence relations

m This has been extended since. A good reference for this
line of work is Schlechta (1997)
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Summary

m Nonmonotonic reasoning attempts to capture a form of
commonsense reasoning

m Nonmonotonic reasoning often deals with inferences
based on defaults or ‘what is usually the case’

m Belief change and nonmonotonic reasoning: two sides of
the same coin?

m Can introduce abstract study of nonmonotonic
consequence relations in same way as we study classical
consequence relations

m Similar links exist with conditionals
m One area where nonmonotonic reasoning is important is
reasoning about action (dynamic systems)

Maurice Pagnucco

COMP4418: Knowledge Representation and Reasoning



	Outline
	Nonmonotonicity
	Closed World Assumption
	Predicate Completion
	Circumscription
	Default Logic
	Nonmonotonic Consequence
	KLM Systems


