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Nonmonotonic Reasoning

Suppose you are told “Tweety is a bird”
What conclusions would you draw?
Now, consider being further informed that “Tweety is an
emu”
What conclusions would you draw now? Do they differ
from the conclusions that you would draw without this
information? In what way(s)?
Nonmonotonic reasoning is an attempt to capture a form of
commonsense reasoning
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Nonmonotonic Reasoning

In classical logic the more facts (premises) we have, the
more conclusions we can draw
This property is known as Monotonicity

If ∆ ⊆ Γ, then Cn(∆) ⊆ Cn(Γ)

(where Cn denotes classical consequence)
However, the previous example shows that we often do not
reason in this manner
Might a nonmonotonic logic—one that does not satisfy the
Monotonicity property—provide a more effective way of
reasoning?
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Why Nonmonotonicity?

Problems with the classical approach to consequence
It is usually not possible to write down all we would like to
say about a domain
Inferences in classical logic simply make implicit knowledge
explicit; we would also like to reason with tentative
statements
Sometimes we would like to represent knowledge about
something that is not entirely true or false; uncertain
knowledge

Nonmonotonic reasoning is concerned with getting around
these shortcomings
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Makinson’s Classification

Makinson has suggested the following classification of
nonmonotonic logics:

Additional background assumptions
Restricting the set of valuations
Additional rules

David Makinson, Bridges from Classical to Nonmonotonic
Logic, Texts in Computing, Volume 5, King’s College
Publications, 2005.
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Nonmonotonicity

Classical logic satisfies the following property
Monotonicity: If ∆ ⊆ Γ, then Cn(∆) ⊆ Cn(Γ)
(equivalently, Γ ` φ implies Γ ∪∆ ` φ)
However, we often draw conclusions based on ‘what is
normally the case’ or ‘true by default’
More information can lead us to retract previous
conclusions
We shall adopt the following notation

` classical consequence relation
|∼ nonmonotonic consequence relation
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Consequence Operation Cn

Other properties of consequence operation Cn:
Inclusion ∆ ⊆ Cn(∆)

Cumulative Transitivity ∆ ⊆ Γ ⊆ Cn(∆) implies Cn(Γ) ⊆ Cn(∆)

Compactness If φ ∈ Cn(∆) then there is a finite ∆′ ⊆ ∆ such
that φ ∈ Cn(∆′)

Disjunction in the Premises
Cn(∆ ∪ {a}) ∩ Cn(∆ ∪ {b}) ⊆ Cn(∆ ∪ {a ∨ b})

Note: ∆ ` φ iff φ ∈ Cn(∆)
alternatively: Cn(∆) = {φ : ∆ ` φ}

Maurice Pagnucco UNSW
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Example

Suppose I tell you ‘Tweety is a bird’
You might conclude ‘Tweety flies’
I then tell you ‘Tweety is an emu’
You conclude ‘Tweety does not fly’

bird(Tweety) |∼ flies(Tweety)
bird(Tweety) ∧ emu(Tweety) |∼¬flies(Tweety)

Maurice Pagnucco UNSW
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The Closed World Assumption

A complete theory is one in which for every ground atom in
the language, either the atom or its negation appears in the
theory
The closed world assumption (CWA) completes a base
(non-closed) set of formulae by including the negation of a
ground atom whenever the atom does not follow from the
base
In other words, if we have no evidence as to the truth of
(ground atom) P, we assume that it is false
Given a base set of formulae ∆ we first calculate the
assumption set
¬P ∈ ∆asm iff for ground atom P, ∆ 6` P

CWA(∆) = Cn{∆ ∪∆asm}
Maurice Pagnucco UNSW
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Example

∆ = {P(a),P(b),P(a)→ Q(a)}
∆asm = {¬Q(b)}
Theorem: The CWA applied to a consistent set of formulae ∆
is inconsistent iff there are positive ground literals L1, . . . , Ln
such that ∆ |= L1 ∨ . . . ∨ Ln but ∆ 6|= Li for i = 1, . . . , n.

Note that in the example above we limited our attention to
the object constants that appeared in ∆ however the
language could contain other constants. This is known as
the Domain Closure Assumption (DCA)
Another common assumption is the Unique-Names
Assumption (UNA).

If two ground terms can’t be proved equal, assume that
they are not.
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Predicate Completion

Idea: The only objects that satisfy a predicate are those that
must

For example, suppose we have P(a). Can view this as
∀x . x = a→ P(x)

the if-half of a definition
Can add the only if part:

∀x . P(x)→ x = a
Giving:
∀x . P(x)↔ x = a

Maurice Pagnucco UNSW
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Predicate Completion

Definition: A clause is solitary in a predicate P if
whenever the clause contains a postive instance of P, it
contains only one instance of P.

For example, Q(a) ∨ P(a) ∨ ¬P(b) is not solitary in P
Q(a) ∨ R(a) ∨ P(b) is solitary in P

Completion of a predicate is only defined for sets of
clauses solitary in that predicate

Maurice Pagnucco UNSW
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Predicate Completion

Each clause can be written:
∀y . Q1 ∧ . . . ∧Qm → P(t) (P not contained in Qi )
∀y . ∀x . (x = t) ∧Q1 ∧ . . . ∧Qm → P(x)
∀x .(∀y . (x = t) ∧Q1 ∧ . . . ∧Qm → P(x)) (normal form of
clause)
Doing this to every clause gives us a set of clauses of the
form:
∀x . E1 → P(x)
. . .
∀x . En → P(x)
Grouping these together we get:
∀x . E1 ∨ . . . ∨ En → P(x)
Completion becomes: ∀x . P(x)↔ E1 ∨ . . . ∨ En
and we can add this to the original set of formulae
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Example

Suppose ∆ = {∀x . Emu(x)→ Bird(x),
Bird(Tweety),
¬Emu(Tweety)}

We can write this as
∀x . (Emu(x) ∨ x = Tweety)→ Bird(x)

Predicate completion of P in ∆ becomes
∆ ∪ {∀x . Bird(x)→ Emu(x) ∨ x = Tweety}
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Circumscription

Idea: Make extension of predicate as small as possible
Example:
∀x .Bird(x) ∧ ¬Ab(x)→ Flies(x)
Bird(Tweety), Bird(Sam), Tweety 6= Sam,
¬Flies(Sam)

Want to be able to conclude Flies(Tweety) but
¬Flies(Sam)

Accept interpretations where Ab predicate is as “small” as
possible
That is, we minimise abnormality

Maurice Pagnucco UNSW

COMP4418: Knowledge Representation and Reasoning



Outline Nonmonotonicity Closed World Assumption Predicate Completion Circumscription Default Logic Nonmonotonic Consequence

Circumscription

Given interpretations I1 = 〈D, I1〉, I2 = 〈D, I2〉, I1 ≤ I2 iff for
every predicate P ∈ P, I1[P] ⊆ I2[P].
Γ |=circ φ iff for every interpretation I such that I |= Γ, either
I |= φ or there is a I′ < I and I′ |= Γ.
φ is true in all minimal models
Now consider

∀x .Bird(x) ∧ ¬Ab(x)→ Flies(x)
∀x .Emu(x)→ Bird(x) ∧ ¬Flies(x)
Bird(Tweety)
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Reiter’s Default Logic (1980)
Add default rules of the form α:β

γ

“If α can be proven and consistent to assume β, then
conclude γ”

Often consider normal default rules α:β
β

Example: bird(x):flies(x)
flies(x)

Default theory 〈D, W 〉
D – set of defaults; W – set of facts

Extension of default theory contains as many default
conclusions as possible and must be consistent (and is
closed under classical consequence Cn)
Concluding whether formula φ follows from 〈D, W 〉

Sceptical inference: φ occurs in every extension of 〈D, W 〉
Credulous inference: φ occurs in some extension of 〈D, W 〉

Maurice Pagnucco UNSW
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Examples

W = {}; D = { :p
¬p} – no extensions

W = {p ∨ r}; D = {p:q
q , r :q

q } – one extension {p ∨ r}

W = {p ∨ q}; D = { :¬p
¬p ,

:¬q
¬q } – two extensions

{¬p, p ∨ q}, {¬q, p ∨ q}
W = {emu(Tweety), ∀x .emu(x)→ bird(x)};
D = {bird(x):flies(x)

flies(x) } – one extension

What if we add emu(x):¬flies(x)
¬flies(x) ?

Poole (1988) achieves a similar effect (but not quite as
general) by changing the way the underlying logic is used
rather than introducing a new element into the syntax

Maurice Pagnucco UNSW
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Default Theories—Properties

Observation: Every normal default theory (default rules are all
normal) has an extension
Observation: If a normal default theory has several
extensions, they are mutually inconsistent
Observation: A default theory has an inconsistent extension iff
D is inconsistent
Theorem: (Semi-monotonicity)
Given two normal default theories 〈D, W 〉 and 〈D′, W 〉 such
that D ⊆ D′ then, for any extension E(D, W ) there is an
extension E(D′, W ) where E(D, W ) ⊆ E(D′, W )
(The addition of normal default rules does not lead to the
retraction of consequences.)
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Nonmonotonic Consequence

Abstract study and analysis of nonmonotonic consequence
relation |∼ in terms of general properties Kraus, Lehmann
and Magidor (1991)
Some common properties include:
Supraclassicality If φ ` ψ, then φ |∼ψ
Left Logical Equivalence If ` φ↔ ψ and φ |∼χ, then ψ |∼χ
Right Weakening If ` ψ → χ and φ |∼ψ, then φ |∼χ

And If φ |∼ψ and φ |∼χ, then φ |∼ψ ∧ χ
Plus many more!
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KLM Systems

KLM Systems

Kraus, Lehman and Magidor (1991) study various classes
of nonmonotonic consequence relations

This has been extended since. A good reference for this
line of work is Schlechta (1997)
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KLM Systems

Summary

Nonmonotonic reasoning attempts to capture a form of
commonsense reasoning
Nonmonotonic reasoning often deals with inferences
based on defaults or ‘what is usually the case’
Belief change and nonmonotonic reasoning: two sides of
the same coin?
Can introduce abstract study of nonmonotonic
consequence relations in same way as we study classical
consequence relations
Similar links exist with conditionals
One area where nonmonotonic reasoning is important is
reasoning about action (dynamic systems)
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