
1. Introduction

COMP6741: Parameterized and Exact Computation

Serge Gaspers12

1School of Computer Science and Engineering, UNSW Sydney, Asutralia
2Decision Sciences Group, Data61, CSIRO, Australia

Semester 2, 2017

S. Gaspers (UNSW) Introduction Semester 2, 2017 1 / 36

Outline

1 Algorithms for NP-hard problems

2 Exponential Time Algorithms

3 Parameterized Complexity
FPT Algorithm for Vertex Cover
Algorithms for Vertex Cover

4 Further Reading

S. Gaspers (UNSW) Introduction Semester 2, 2017 2 / 36

Outline

1 Algorithms for NP-hard problems

2 Exponential Time Algorithms

3 Parameterized Complexity
FPT Algorithm for Vertex Cover
Algorithms for Vertex Cover

4 Further Reading

S. Gaspers (UNSW) Introduction Semester 2, 2017 3 / 36

Central question

P vs. NP

S. Gaspers (UNSW) Introduction Semester 2, 2017 4 / 36

NP-hard problems

no known polynomial time algorithm for any NP-hard problem

belief: P 6= NP

What to do when facing an NP-hard problem?

S. Gaspers (UNSW) Introduction Semester 2, 2017 5 / 36

Example problem: Vertex Cover

A vertex cover in a graph G = (V,E) is a subset of vertices S ⊆ V such that
every edge of G has an endpoint in S.

Vertex Cover
Input: Graph G, integer k
Question: Does G have a vertex cover of size k?

Note: Vertex Cover is NP-complete.

S. Gaspers (UNSW) Introduction Semester 2, 2017 6 / 36

Coping with NP-hardness

Approximation algorithms

There is an algorithm, which, given an instance (G, k) for Vertex Cover,
finds a vertex cover of size at most 2k or correctly determines that G has no
vertex cover of size k.

Exact exponential time algorithms

There is an algorithm solving Vertex Cover in time O(1.1970n), where
n = |V |.

Fixed parameter algorithms

There is an algorithm solving Vertex Cover in time O(1.2738k + kn).

Heuristics

The COVER heuristic (COVer Edges Randomly) finds a smaller vertex cover
than state-of-the-art heuristics on a suite of hard benchmark instances.

Restricting the inputs

Vertex Cover can be solved in polynomial time on bipartite graphs, trees,
interval graphs, etc.

Quantum algorithms?

Not believed to solve NP-hard problems in polynomial time.

S. Gaspers (UNSW) Introduction Semester 2, 2017 7 / 36

Aims of this course

Design and analyze algorithms for NP-hard problems.

We focus on algorithms that solve NP-hard problems exactly and analyze their
worst case running time.

S. Gaspers (UNSW) Introduction Semester 2, 2017 8 / 36

Outline

1 Algorithms for NP-hard problems

2 Exponential Time Algorithms

3 Parameterized Complexity
FPT Algorithm for Vertex Cover
Algorithms for Vertex Cover

4 Further Reading

S. Gaspers (UNSW) Introduction Semester 2, 2017 9 / 36

Running times

Worst case running time of an algorithm.

An algorithm is polynomial if ∃c ∈ N such that the algorithm solves every
instance in time O(nc), where n is the size of the instance.
Also: nO(1) or poly(n).

quasi-polynomial: 2O(logc n), c ∈ O(1)

sub-exponential: 2o(n)

exponential: 2poly(n)

double-exponential: 22
poly(n)

O∗-notation ignores polynomial factors in the input size:

O∗(f(n)) ≡ O(f(n) · poly(n))

O∗(f(k)) ≡ O(f(k) · poly(n))

S. Gaspers (UNSW) Introduction Semester 2, 2017 10 / 36

Brute-force algorithms for NP-hard problems

Theorem 1
Every problem in NP can be solved in exponential time.

Proof.

Let Π be an arbitrary problem in NP. [Use certificate-based definition of NP]
We know that ∃ a polynomial p and a polynomial-time verification algorithm V
such that:

for every x ∈ Π (i.e., every Yes-instance for Π) ∃ string y ∈ {0, 1}∗,
|y| ≤ p(|x|), such that V (x, y) = 1, and

for every x /∈ Π (i.e., every No-instance for Π) and every string y ∈ {0, 1}∗,
V (x, y) = 0.

Now, we can prove there exists an exponential-time algorithm for Π with input x:

For each string y ∈ {0, 1}∗ with |y| ≤ p(|x|), evaluate V (x, y) and return
Yes if V (x, y) = 1.

Return No.

Running time: 2p(|x|) · nO(1) ⊆ 2O(2·p(|x|)) = 2O(p(|x|)), but non-constructive.

S. Gaspers (UNSW) Introduction Semester 2, 2017 11 / 36

Brute-force algorithms for NP-hard problems

Theorem 1
Every problem in NP can be solved in exponential time.

Proof.

Let Π be an arbitrary problem in NP. [Use certificate-based definition of NP]
We know that ∃ a polynomial p and a polynomial-time verification algorithm V
such that:

for every x ∈ Π (i.e., every Yes-instance for Π) ∃ string y ∈ {0, 1}∗,
|y| ≤ p(|x|), such that V (x, y) = 1, and

for every x /∈ Π (i.e., every No-instance for Π) and every string y ∈ {0, 1}∗,
V (x, y) = 0.

Now, we can prove there exists an exponential-time algorithm for Π with input x:

For each string y ∈ {0, 1}∗ with |y| ≤ p(|x|), evaluate V (x, y) and return
Yes if V (x, y) = 1.

Return No.

Running time: 2p(|x|) · nO(1) ⊆ 2O(2·p(|x|)) = 2O(p(|x|)), but non-constructive.

S. Gaspers (UNSW) Introduction Semester 2, 2017 11 / 36

Brute-force algorithms for NP-hard problems

Theorem 1
Every problem in NP can be solved in exponential time.

Proof.

Let Π be an arbitrary problem in NP. [Use certificate-based definition of NP]
We know that ∃ a polynomial p and a polynomial-time verification algorithm V
such that:

for every x ∈ Π (i.e., every Yes-instance for Π) ∃ string y ∈ {0, 1}∗,
|y| ≤ p(|x|), such that V (x, y) = 1, and

for every x /∈ Π (i.e., every No-instance for Π) and every string y ∈ {0, 1}∗,
V (x, y) = 0.

Now, we can prove there exists an exponential-time algorithm for Π with input x:

For each string y ∈ {0, 1}∗ with |y| ≤ p(|x|), evaluate V (x, y) and return
Yes if V (x, y) = 1.

Return No.

Running time: 2p(|x|) · nO(1) ⊆ 2O(2·p(|x|)) = 2O(p(|x|)), but non-constructive.

S. Gaspers (UNSW) Introduction Semester 2, 2017 11 / 36

Three main categories for NP-complete problems

Subset problems

Permutation problems

Partition problems

S. Gaspers (UNSW) Introduction Semester 2, 2017 12 / 36

Subset Problem: Independent Set

An independent set in a graph G = (V,E) is a subset of vertices S ⊆ V such that
the vertices in S are pairwise non-adjacent in G.

Independent Set
Input: Graph G, integer k
Question: Does G have an independent set of size k?

Brute-force:

O∗(2n), where n = |V (G)|

S. Gaspers (UNSW) Introduction Semester 2, 2017 13 / 36

Subset Problem: Independent Set

An independent set in a graph G = (V,E) is a subset of vertices S ⊆ V such that
the vertices in S are pairwise non-adjacent in G.

Independent Set
Input: Graph G, integer k
Question: Does G have an independent set of size k?

Brute-force: O∗(2n), where n = |V (G)|

S. Gaspers (UNSW) Introduction Semester 2, 2017 13 / 36

Permutation Problem: Traveling Salesman

Traveling Salesman Problem (TSP)

Input: a set of n cities, the distance d(i, j) ∈ N between every two cities
i and j, integer k

Question: Is there a permutation of the cities (a tour) such that the total
distance when traveling from city to city in the specified order, and
returning back to the origin, is at most k?

1
7

13

12

7

14

3

45

4

3

Brute-force:

O∗(n!) ⊆ 2O(n logn)

S. Gaspers (UNSW) Introduction Semester 2, 2017 14 / 36

Permutation Problem: Traveling Salesman

Traveling Salesman Problem (TSP)

Input: a set of n cities, the distance d(i, j) ∈ N between every two cities
i and j, integer k

Question: Is there a permutation of the cities (a tour) such that the total
distance when traveling from city to city in the specified order, and
returning back to the origin, is at most k?

1
7

13

12

7

14

3

45

4

3

Brute-force: O∗(n!) ⊆ 2O(n logn)

S. Gaspers (UNSW) Introduction Semester 2, 2017 14 / 36

Partition Problem: Coloring

A k-coloring of a graph G = (V,E) is a function f : V → {1, 2, ..., k} assigning
colors to V such that no two adjacent vertices receive the same color.

Coloring
Input: Graph G, integer k
Question: Does G have a k-coloring?

a b

c d e

f g h

Brute-force:

O∗(kn), where n = |V (G)|

S. Gaspers (UNSW) Introduction Semester 2, 2017 15 / 36

Partition Problem: Coloring

A k-coloring of a graph G = (V,E) is a function f : V → {1, 2, ..., k} assigning
colors to V such that no two adjacent vertices receive the same color.

Coloring
Input: Graph G, integer k
Question: Does G have a k-coloring?

a b

c d e

f g h

Brute-force: O∗(kn), where n = |V (G)|
S. Gaspers (UNSW) Introduction Semester 2, 2017 15 / 36

Exponential Time Algorithms

natural question in Algorithms:
design faster (worst-case analysis) algorithms for problems

might lead to practical algorithms
for small instances

you don’t want to design software where your client/boss can find with better
solutions by hand than your software

subroutines for

(sub)exponential time approximation algorithms
randomized algorithms with expected polynomial run time

S. Gaspers (UNSW) Introduction Semester 2, 2017 16 / 36

Solve an NP-hard problem

exhaustive search

trivial method
try all candidate solutions (certificates) for a ground set on n elements
running times for problems in NP

Subset Problems: O∗(2n)
Permutation Problems: O∗(n!)
Partition Problems: O∗(cn logn)

faster exact algorithms

for some problems, it is possible to obtain provably faster algorithms
running times O(1.0836n), O(1.4689n), O(1.9977n)

S. Gaspers (UNSW) Introduction Semester 2, 2017 17 / 36

Exponential Time Algorithms in Practice

How large are the instances one can solve in practice?

Available time 1 s 1 min 1 hour 3 days 6 months
nb. of operations 236 242 248 254 260

n5 147 337 776 1782 4096
n10 12 18 27 42 64

1.05n 511 596 681 767 852
1.1n 261 305 349 392 436
1.5n 61 71 82 92 102
2n 36 42 48 54 60
5n 15 18 20 23 25
n! 13 15 16 18 19

Note: Intel Core i7 920 (Quad core) executes between 236 and 237 instructions
per second at 2.66 GHz.

S. Gaspers (UNSW) Introduction Semester 2, 2017 18 / 36

“For every polynomial-time algorithm you have, there is an exponential
algorithm that I would rather run.”

– Alan Perlis (1922-1990, programming languages, 1st recipient of
Turing Award)

S. Gaspers (UNSW) Introduction Semester 2, 2017 19 / 36

Hardware vs. Algorithms

Suppose a 2n algorithm enables us to solve instances up to size x

Faster processors

processor speed doubles after 18–24 months (Moore’s law)
can solve instances up to size x+ 1

Faster algorithm

design an O∗(2n/2) ⊆ O(1.4143n) time algorithm
can solve instances up to size 2 · x

S. Gaspers (UNSW) Introduction Semester 2, 2017 20 / 36

Outline

1 Algorithms for NP-hard problems

2 Exponential Time Algorithms

3 Parameterized Complexity
FPT Algorithm for Vertex Cover
Algorithms for Vertex Cover

4 Further Reading

S. Gaspers (UNSW) Introduction Semester 2, 2017 21 / 36

A story

A computer scientist meets a biologist ...

S. Gaspers (UNSW) Introduction Semester 2, 2017 22 / 36

Eliminating conflicts from experiments

n = 1000 experiments,
k = 20 experiments failed

Running Time
Theoretical Number of Instructions Real

2n 1.07 · 10301 4.941 · 10282 years
nk 1060 4.611 · 1041 years

2k · n 1.05 · 109 0.01526 seconds

Notes:
– We assume that 236 instructions are carried out per second.
– The Big Bang happened roughly 13.5 · 109 years ago.

S. Gaspers (UNSW) Introduction Semester 2, 2017 23 / 36

Goal of Parameterized Complexity

Confine the combinatorial explosion to a parameter k.

For which problem–parameter combinations can we find algorithms with running
times of the form

f(k) · nO(1),

where the f is a computable function independent of the input size n?

S. Gaspers (UNSW) Introduction Semester 2, 2017 24 / 36

Examples of Parameters

A Parameterized Problem
Input: an instance of the problem
Parameter: a parameter k
Question: a Yes/No question about the instance and the parameter

A parameter can be

input size (trivial parameterization)
solution size
related to the structure of the input (maximum degree, treewidth,
branchwidth, genus, ...)
etc.

S. Gaspers (UNSW) Introduction Semester 2, 2017 25 / 36

Main Complexity Classes

P: class of problems that can be solved in time nO(1)

FPT: class of problems that can be solved in time f(k) · nO(1)

W[·]: parameterized intractability classes
XP: class of problems that can be solved in time f(k) · ng(k)

P ⊆ FPT ⊆W[1] ⊆W[2] · · · ⊆W[P] ⊆ XP

Known: If FPT = W[1], then the Exponential Time Hypothesis fails, i.e. 3-Sat
can be solved in time 2o(n).

S. Gaspers (UNSW) Introduction Semester 2, 2017 26 / 36

Outline

1 Algorithms for NP-hard problems

2 Exponential Time Algorithms

3 Parameterized Complexity
FPT Algorithm for Vertex Cover
Algorithms for Vertex Cover

4 Further Reading

S. Gaspers (UNSW) Introduction Semester 2, 2017 27 / 36

Vertex Cover

Vertex Cover (VC)

Input: A graph G = (V,E) on n vertices, an integer k
Parameter: k
Question: Is there a set of vertices C ⊆ V of size at most k such that every

edge has at least one endpoint in C?

S. Gaspers (UNSW) Introduction Semester 2, 2017 28 / 36

Outline

1 Algorithms for NP-hard problems

2 Exponential Time Algorithms

3 Parameterized Complexity
FPT Algorithm for Vertex Cover
Algorithms for Vertex Cover

4 Further Reading

S. Gaspers (UNSW) Introduction Semester 2, 2017 29 / 36

Brute Force Algorithms

2n · nO(1) not FPT

nk · nO(1) not FPT

S. Gaspers (UNSW) Introduction Semester 2, 2017 30 / 36

An FPT Algorithm

Algorithm vc1(G, k);

1 if E = ∅ then // all edges are covered

2 return Yes

3 else if k ≤ 0 then // we cannot select any vertex

4 return No

5 else
6 Select an edge uv ∈ E;
7 return vc1(G− u, k − 1) ∨ vc1(G− v, k − 1)

S. Gaspers (UNSW) Introduction Semester 2, 2017 31 / 36

Running Time Analysis

Let us look at an arbitrary execution of the algorithm.

Recursive calls form a search tree T

with depth ≤ k
where each node has ≤ 2 children

⇒ T has ≤ 2k leaves and ≤ 2k − 1 internal nodes

at each node the algorithm spends time nO(1)

The running time is O∗(2k)

S. Gaspers (UNSW) Introduction Semester 2, 2017 32 / 36

A faster FPT Algorithm

Algorithm vc2(G, k);

1 if E = ∅ then // all edges are covered

2 return Yes

3 else if k ≤ 0 then // we used too many vertices

4 return No

5 else if ∆(G) ≤ 2 then // G has maximum degree ≤ 2
6 Solve the problem in polynomial time;

7 else
8 Select a vertex v of maximum degree;
9 return vc2(G− v, k − 1) ∨ vc2(G−N [v], k − d(v))

S. Gaspers (UNSW) Introduction Semester 2, 2017 33 / 36

A faster FPT Algorithm

Algorithm vc2(G, k);

1 if E = ∅ then // all edges are covered

2 return Yes

3 else if k ≤ 0 then // we used too many vertices

4 return No

5 else if ∆(G) ≤ 2 then // G has maximum degree ≤ 2
6 Solve the problem in polynomial time;

7 else
8 Select a vertex v of maximum degree;
9 return vc2(G− v, k − 1) ∨ vc2(G−N [v], k − d(v))

S. Gaspers (UNSW) Introduction Semester 2, 2017 33 / 36

Running time analysis of vc2

Number of leaves of the search tree:

T (k) ≤ T (k − 1) + T (k − 3)

xk ≤ xk−1 + xk−3

x3 − x2 − 1 ≤ 0

The equation x3 − x2 − 1 = 0 has a unique positive real solution:
x ≈ 1.4655...

Running time: 1.4656k · nO(1)

S. Gaspers (UNSW) Introduction Semester 2, 2017 34 / 36

Outline

1 Algorithms for NP-hard problems

2 Exponential Time Algorithms

3 Parameterized Complexity
FPT Algorithm for Vertex Cover
Algorithms for Vertex Cover

4 Further Reading

S. Gaspers (UNSW) Introduction Semester 2, 2017 35 / 36

Further Reading

Exponential-time algorithms

Chapter 1, Introduction in Fedor V. Fomin and Dieter Kratsch. Exact
Exponential Algorithms. Springer, 2010.
Gerhard J. Woeginger: Exact Algorithms for NP-Hard Problems: A Survey.
Combinatorial Optimization 2001: 185-208.
Chapter 1, Introduction in Serge Gaspers. Exponential Time Algorithms:
Structures, Measures, and Bounds. VDM Verlag Dr. Mueller, 2010.

Parameterized Complexity

Chapter 1, Introduction in Marek Cygan, Fedor V. Fomin, Lukasz Kowalik,
Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Micha lPilipczuk, and Saket
Saurabh. Parameterized Algorithms. Springer, 2015.
Chapter 2, The Basic Definitions in Rodney G. Downey and Michael R.
Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
Chapter I, Foundations in Rolf Niedermeier. Invitation to Fixed Parameter
Algorithms. Oxford University Press, 2006.
Preface in Jörg Flum and Martin Grohe. Parameterized Complexity Theory.
Springer, 2006.

S. Gaspers (UNSW) Introduction Semester 2, 2017 36 / 36

	Algorithms for NP-hard problems
	Exponential Time Algorithms
	Parameterized Complexity
	FPT Algorithm for Vertex Cover
	Algorithms for Vertex Cover

	Further Reading

