Outline

1. Introduction
2. Feedback Vertex Set
3. Min r-Hitting Set
4. Further Reading

S. Gaspers (UNSW)
Outline

1. Introduction
2. Feedback Vertex Set
3. Min r-Hitting Set
4. Further Reading
For a minimization problem:

- **Compression step:** Given a solution of size $k + 1$, compress it to a solution of size k or prove that there is no solution of size k

- **Iteration step:** Incrementally build a solution to the given instance by deriving solutions for larger and larger subinstances
A vertex cover in a graph $G = (V, E)$ is a subset of its vertices $S \subseteq V$ such that every edge of G has at least one endpoint in S.

Vertex Cover

Input: A graph $G = (V, E)$ and an integer k

Parameter: k

Question: Does G have a vertex cover of size k?

We will design a (slow) iterative compression algorithm for Vertex Cover to illustrate the technique.
Vertex Cover: Compression Step

Comp-VC
- **Input:** graph $G = (V, E)$, integer k, vertex cover C of size $k + 1$ of G
- **Output:** a vertex cover C^* of size $\leq k$ of G if one exists
Vertex Cover: Compression Step

Comp-VC

Input: graph $G = (V, E)$, integer k, vertex cover C of size $k + 1$ of G

Output: a vertex cover C^* of size $\leq k$ of G if one exists

- Go over all partitions $(C', \overline{C'})$ of C
- $C^* = C' \cup N(\overline{C'})$
- If $\overline{C'}$ is an independent set and $|C^*| \leq k$ then return C^*
Use algorithm for **Comp-VC** to solve **Vertex Cover**.
Use algorithm for \textsc{Comp-VC} to solve \textsc{Vertex Cover}.

- Order vertices: $V = \{v_1, v_2, \ldots, v_n\}$
- Define $G_i = G[\{v_1, v_2, \ldots, v_i\}]$
- $C_0 = \emptyset$
- For $i = 1..n$, find a vertex cover C_i of size $\leq k$ of G_i using the algorithm for \textsc{Comp-VC} with input G_i and $C_{i-1} \cup \{v_i\}$. If G_i has no vertex cover of size $\leq k$, then G has no vertex cover of size $\leq k$.

Final running time: $O^*(2^k)$
Outline

1. Introduction
2. Feedback Vertex Set
3. Min r-Hitting Set
4. Further Reading
Feedback Vertex Set

A feedback vertex set of a multigraph $G = (V, E)$ is a set of vertices $S \subseteq V$ such that $G - S$ is acyclic.

Feedback Vertex Set (FVS)

<table>
<thead>
<tr>
<th>Input:</th>
<th>Multigraph $G = (V, E)$, integer k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter:</td>
<td>k</td>
</tr>
<tr>
<td>Question:</td>
<td>Does G have a feedback vertex set of size at most k?</td>
</tr>
</tbody>
</table>

Note: We already saw an $O^*((3k)^k)$ time algorithm (and a $O^*(4^k)$ time randomized algorithm) for FVS. We will now aim for a $O^*(c^k)$ time deterministic algorithm, with $c \in O(1)$.
Compression Problem

COMP-FVS

Input: graph $G = (V, E)$, integer k, feedback vertex set S of size $k + 1$ of G

Output: a feedback vertex set S^* of size $\leq k$ of G if one exists
Iteration step

- Order vertices: \(V = \{v_1, v_2, \ldots, v_n\} \)
- Define \(G_i = G[\{v_1, v_2, \ldots, v_i\}] \)
- \(S_0 = \emptyset \)
- For \(i = 1..n \), find a feedback vertex set \(S_i \) of size \(\leq k \) of \(G_i \) using the algorithm for COMP-FVS with input \(G_i \) and \(S_{i-1} \cup \{v_i\} \). If \(G_i \) has no feedback vertex set of size \(\leq k \), then \(G \) has no feedback vertex set of size \(\leq k \).

Suppose COMP-FVS can be solved in \(O^*(c^k) \) time. Then, using this iteration, FVS can be solved in \(O^*(c^k) \) time.
Compression step

To solve COMP-FVS: for each partitions $(S', \overline{S'})$ of S, find a feedback vertex set S^* of G with $|S^*| < |S|$ and $S' \subseteq S^* \subseteq V \setminus S'$ if one exists.
Compression step

To solve COMP-FVS: for each partitions $(S', \overline{S'})$ of S, find a feedback vertex set S^* of G with $|S^*| < |S|$ and $S' \subseteq S^* \subseteq V \setminus \overline{S'}$ if one exists.

Equivalently, find a feedback vertex set S'' of $G - S'$ with $|S''| < |\overline{S'}|$ and $S'' \cap \overline{S'} = \emptyset$.

If Disjoint-FVS can be solved in $O^*((d^k))$ time, then Comp-FVS can be solved in $O^*((k+1 \sum_{i=0}^{k+1} (k+1)^i d^i)) \subseteq O^*((d+1)^k)$ time by the Binomial Theorem: $(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k$.

S. Gaspers (UNSW)
Compression step

To solve COMP-FVS: for each partitions $(S', \overline{S'})$ of S, find a feedback vertex set S^* of G with $|S^*| < |S|$ and $S' \subseteq S^* \subseteq V \setminus \overline{S'}$ if one exists.
Equivalently, find a feedback vertex set S'' of $G - S'$ with $|S''| < |\overline{S'}|$ and $S'' \cap \overline{S'} = \emptyset$.

We arrive at the following problem:

Disjoint-FVS

Input: graph $G = (V, E)$, integer k, feedback vertex set S of size $k + 1$ of G

Output: a feedback vertex set S^* of G with $|S^*| \leq k$ and $S^* \cap S = \emptyset$, if one exists
Compression step

To solve \(\text{COMP-FVS} \): for each partitions \((S', S')\) of \(S\), find a feedback vertex set \(S^*\) of \(G\) with \(|S^*| < |S|\) and \(S' \subseteq S^* \subseteq V \setminus S'\) if one exists.

Equivalently, find a feedback vertex set \(S''\) of \(G - S'\) with \(|S''| < |S'|\) and \(S'' \cap S' = \emptyset\).

We arrive at the following problem:

\[
\text{DISJOINT-FVS}
\]

| Input: | graph \(G = (V, E)\), integer \(k\), feedback vertex set \(S\) of size \(k + 1\) of \(G\) |
| Output: | a feedback vertex set \(S^*\) of \(G\) with \(|S^*| \leq k\) and \(S^* \cap S = \emptyset\), if one exists |

If \(\text{DISJOINT-FVS} \) can be solved in \(O^*(d^k)\) time, then \(\text{COMP-FVS} \) can be solved in

\[
O^* \left(\sum_{i=0}^{k+1} \binom{k+1}{i} d^i \right) \subseteq O^*((d + 1)^k) \text{ time}
\]

by the Binomial Theorem: \((x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k\).
Algorithm for **Disjoint-FVS**

Disjoint-FVS

Input: graph $G = (V, E)$, integer k, feedback vertex set S of size $k + 1$ of G

Output: a feedback vertex set S^* of G with $|S^*| \leq k$ and $S^* \cap S = \emptyset$, if one exists

Denote $A := V \setminus S$.

Diagram:

- **S**
- **A**

Edges connecting S and A.
Simplification rules for **Disjoint-FVS**

Start with $S^* = \emptyset$.

cycle-in-S

If $G[S]$ is not acyclic, then return **No**.

budget-exceeded

If $k < 0$, then return **No**.
Simplification rules for **DISJOINT-FVS**

If $G - S^*$ is acyclic, then return S^*.
If $\exists v \in A$ such that $G[S \cup \{v\}]$ is not acyclic, then add v to S^* and remove v from G.

\text{(creates-cycle)}
Simplification rules for \textsc{Disjoint-FVS}

If $\exists v \in A$ such that $G[S \cup \{v\}]$ is not acyclic, then add v to S^* and remove v from G.

(creates-cycle)
Simplification rules for **DISJOINT-FVS**

If \(\exists v \in V \) with \(d_G(v) \leq 1 \), then remove \(v \) from \(G \).

Degree-\((\leq 1)\)
Simplification rules for \textsc{Disjoint-FVS}

\begin{itemize}
 \item \textbf{(Degree-\((\leq 1))\)}
 \begin{itemize}
 \item If \(\exists v \in V\) with \(d_G(v) \leq 1\), then remove \(v\) from \(G\).
 \end{itemize}
\end{itemize}
Simplification rules for **Disjoint-FVS**

If \(\exists v \in V \) with \(d_G(v) = 2 \) and at least one neighbor of \(v \) is in \(A \), then add an edge between the neighbors of \(v \) (even if there was already an edge) and remove \(v \) from \(G \).
If \(\exists v \in V \) with \(d_G(v) = 2 \) and at least one neighbor of \(v \) is in \(A \), then add an edge between the neighbors of \(v \) (even if there was already an edge) and remove \(v \) from \(G \).
Branching rule for Disjoint-FVS

Select a vertex $v \in A$ with at least 2 neighbors in S. Such a vertex exists if no simplification rule applies (for example, we can take a leaf in $G[A]$).

Branch into two subproblems:

- $v \in S^*$: add v to S^*, remove v from G, and decrease k by 1
- $v \notin S^*$: add v to S
Exercise: Running time

- Prove that this algorithm has running time $O^*(4^k)$.
Result for **Feedback Vertex Set**

Theorem 1

Feedback Vertex Set can be solved in $O^*(5^k)$ time.
r-Hitting Set

A set system S is a pair (V, H), where V is a finite set of elements and H is a collection of subsets of V. The rank of S is the maximum size of a set in H, i.e., $\max_{Y \in H} |Y|$. A hitting set of a set system $S = (V, H)$ is a subset X of V such that X contains at least one element of each set in H, i.e., $X \cap Y \neq \emptyset$ for each $Y \in H$.

r-Hitting Set (r-HS)

Input: A rank r set system $S = (V, H)$, an integer k
Parameter: k
Question: Does S have a hitting set of size at most k?

Note: There is an easy $O^*(r^k)$ branching algorithm.
Compression Step

COMP-r-HS

- **Input:** set system $S = (V, H)$, integer k, hitting set X of size $k + 1$ of S
- **Output:** a hitting set X^* of size $\leq k$ of S if one exists

Diagram:

- X
- $V \setminus X$
Compression Step

COMP-\(r\)-HS

Input: set system \(S = (V, H) \), integer \(k \), hitting set \(X \) of size \(k + 1 \) of \(S \)

Output: a hitting set \(X^* \) of size \(\leq k \) of \(S \) if one exists

Go over all partitions \((X', \overline{X}')\) of \(X \)
Compression Step

Comp-\(r\)-HS

Input: set system \(S = (V, H)\), integer \(k\), hitting set \(X\) of size \(k + 1\) of \(S\)

Output: a hitting set \(X^*\) of size \(\leq k\) of \(S\) if one exists

Reject a partition if there is a \(Y \in H\) such that \(Y \subseteq \overline{X'}\).
Compression Step

COMP-\(r\)-HS

- **Input:** set system \(S = (V, H)\), integer \(k\), hitting set \(X\) of size \(k + 1\) of \(S\)
- **Output:** a hitting set \(X^*\) of size \(\leq k\) of \(S\) if one exists

compute a hitting set \(X''\) of size \(\leq k - |X'|\) for \((V', H')\), where \(V' = V \setminus X\) and \(H' = \{Y \cap V' : Y \in H \land Y \cap X' = \emptyset\}\), if one exists.
Compression Step

COMP-\(r\)-HS

Input: set system \(S = (V, H) \), integer \(k \), hitting set \(X \) of size \(k + 1 \) of \(S \)

Output: a hitting set \(X^* \) of size \(\leq k \) of \(S \) if one exists

If one exists, then return \(X^* = X' \cup X'' \).
Compression Step II

- The subinstances \((V', H')\) where \(V' = V \setminus X\) and
 \(H' = \{Y \cap V : Y \in H \land Y \cap X' = \emptyset\}\) are instances of \((r - 1)\)-HS.
The subinstances \((V', H')\) where \(V' = V \setminus X\) and \(H' = \{Y \cap V : Y \in H \land Y \cap X' = \emptyset\}\) are instances of \((r - 1)\)-HS.

Suppose \((r - 1)\)-HS can be solved in \(O^*((\alpha_{r-1})^k)\) time. Then, \(\text{COMP-} r\)-HS can be solved in

\[
O^* \left(\sum_{s=0}^{k} \binom{k}{s} (\alpha_{r-1})^{k-s} \right) \subseteq O^* \left((\alpha_{r-1} + 1)^k \right)
\]

time.
The subinstances \((V', H')\) where \(V' = V \setminus X\) and
\[H' = \{ Y \cap V : Y \in H \land Y \cap X' = \emptyset \} \] are instances of \((r - 1)\)-HS.

Suppose \((r - 1)\)-HS can be solved in \(O^*\left((\alpha_{r-1})^k\right)\) time. Then, \(\text{COMP-}r\)-HS can be solved in
\[
O^* \left(\sum_{s=0}^{k} \binom{k}{s} (\alpha_{r-1})^{k-s} \right) \subseteq O^* \left((\alpha_{r-1} + 1)^k \right)
\]
time.

Note: 2-HS is equivalent to \textsc{Vertex Cover} and can be solved in \(O^*\left(1.2738^k\right)\) time [CKX10].

Note 2: 3-HS can be solved in \(O^*\left(2.0755^k\right)\) time [Wah07].
Iteration Step

- \((V, H)\) instance of \(r\)-HS with \(V = \{v_1, v_2, \ldots, v_n\}\)
- \(V_i = \{v_1, v_2, \ldots, v_i\}\) for \(i = 1\) to \(n\)
- \(H_i = \{Y \in H : Y \subseteq V_i\}\)
(V, H) instance of r-HS with \(V = \{v_1, v_2, \ldots, v_n\} \)

- \(V_i = \{v_1, v_2, \ldots, v_i\} \) for \(i = 1 \) to \(n \)
- \(H_i = \{Y \in H : Y \subseteq V_i\} \)

Note that \(|X_{i-1}| \leq |X_i| \leq |X_{i-1}| + 1\) where \(X_j \) is a minimum hitting set of the instance \((V_i, H_i)\)
Theorem 2

For \(r \geq 3 \), \(r \)-HS can be solved in \(O((r - 0.9245)^k) \) time.

By Monotone Local Search:

Theorem 3

For \(r \geq 3 \), \(r \)-HS can be solved in \(O \left(\left(2 - \frac{1}{r-0.9245} \right)^n \right) \) time.
Further Reading

- Chapter 4, *Iterative Compression* in [Cyg+15]
- Section 11.3, *Iterative Compression* in [Nie06]
- Section 6.1, *Iterative Compression: The Basic Technique* in [DF13]
- Section 6.2, *Edge Bipartization* in [DF13]
References I

