8b. Iterative Compression COMP6741: Parameterized and Exact Computation

Serge Gaspers

School of Computer Science and Engineering, UNSW Sydney, Australia

19T3

- 2 Feedback Vertex Set
- 3 Min r-Hitting Set

4 Further Reading

- 2 Feedback Vertex Set
- 3 Min r-Hitting Set
- 4 Further Reading

For a minimization problem:

- **Compression step:** Given a solution of size k + 1, compress it to a solution of size k or prove that there is no solution of size k
- **Iteration step:** Incrementally build a solution to the given instance by deriving solutions for larger and larger subinstances

A vertex cover in a graph G = (V, E) is a subset of its vertices $S \subseteq V$ such that every edge of G has at least one endpoint in S.

We will design a (slow) iterative compression algorithm for VERTEX COVER to illustrate the technique.

VERTEX COVER: Compression Step

COMP-VC Input: graph G = (V, E), integer k, vertex cover C of size k + 1 of GOutput: a vertex cover C^* of size $\leq k$ of G if one exists

VERTEX COVER: Compression Step

Comp-VC

Input: graph G = (V, E), integer k, vertex cover C of size k + 1 of G Output: a vertex cover C^* of size $\leq k$ of G if one exists

- Go over all partitions $(C', \overline{C'})$ of C
- $C^* = C' \cup N(\overline{C'})$
- If $\overline{C'}$ is an independent set and $|C^*| \leq k$ then return C^*

S. Gaspers (UNSW)

Use algorithm for $\operatorname{COMP-VC}$ to solve VERTEX $\operatorname{COVER}.$

Use algorithm for $\operatorname{COMP-VC}$ to solve VERTEX COVER .

- Order vertices: $V = \{v_1, v_2, \dots, v_n\}$
- Define $G_i = G[\{v_1, v_2, ..., v_i\}]$
- $C_0 = \emptyset$
- For i = 1..n, find a vertex cover C_i of size $\leq k$ of G_i using the algorithm for COMP-VC with input G_i and $C_{i-1} \cup \{v_i\}$. If G_i has no vertex cover of size $\leq k$, then G has no vertex cover of size $\leq k$.

Final running time: $O^*(2^k)$

- 2 Feedback Vertex Set
- 3 Min r-Hitting Set

4 Further Reading

Feedback Vertex Set

A feedback vertex set of a multigraph G = (V, E) is a set of vertices $S \subseteq V$ such that G - S is acyclic.

FEEDBACK V	/ertex Set (FVS)
Input:	Multigraph $G = (V, E)$, integer k
Parameter:	k
Question:	Does G have a feedback vertex set of size at most k ?

Note: We already saw an $O^*((3k)^k)$ time algorithm (and a $O^*(4^k)$ time randomized algorithm) for FVS. We will now aim for a $O^*(c^k)$ time deterministic algorithm, with $c \in O(1)$.

Comp-FV	VS
Input:	graph $G = (V, E)$, integer k, feedback vertex set S of size $k + 1$ of
	G
Output:	a feedback vertex set S^* of size $\leq k$ of G if one exists

- Order vertices: $V = \{v_1, v_2, \dots, v_n\}$
- Define $G_i = G[\{v_1, v_2, ..., v_i\}]$
- $S_0 = \emptyset$
- For i = 1..n, find a feedback vertex set S_i of size $\leq k$ of G_i using the algorithm for COMP-FVS with input G_i and $S_{i-1} \cup \{v_i\}$. If G_i has no feedback vertex set of size $\leq k$, then G has no feedback vertex set of size $\leq k$.

Suppose COMP-FVS can be solved in $O^*(c^k)$ time. Then, using this iteration, FVS can be solved in $O^*(c^k)$ time.

To solve COMP-FVS: for each partitions $(S', \overline{S'})$ of S, find a feedback vertex set S^* of G with $|S^*| < |S|$ and $S' \subseteq S^* \subseteq V \setminus \overline{S'}$ if one exists.

To solve COMP-FVS: for each partitions $(S', \overline{S'})$ of S, find a feedback vertex set S^* of G with $|S^*| < |S|$ and $S' \subseteq S^* \subseteq V \setminus \overline{S'}$ if one exists. Equivalently, find a feedback vertex set S'' of G - S' with $|S''| < |\overline{S'}|$ and $S'' \cap \overline{S'} = \emptyset$.

To solve COMP-FVS: for each partitions $(S', \overline{S'})$ of S, find a feedback vertex set S^* of G with $|S^*| < |S|$ and $S' \subseteq S^* \subseteq V \setminus \overline{S'}$ if one exists. Equivalently, find a feedback vertex set S'' of G - S' with $|S''| < |\overline{S'}|$ and $S'' \cap \overline{S'} = \emptyset$.

We arrive at the following problem:

DISJOINT-FVS		
Input:	graph $G = (V, E)$, integer k, feedback vertex set S of size $k + 1$ of	
	G	
Output:	a feedback vertex set S^* of G with $ S^* \leq k$ and $S^* \cap S = \emptyset$, if one	
	exists	

To solve COMP-FVS: for each partitions $(S', \overline{S'})$ of S, find a feedback vertex set S^* of G with $|S^*| < |S|$ and $S' \subseteq S^* \subseteq V \setminus \overline{S'}$ if one exists. Equivalently, find a feedback vertex set S'' of G - S' with $|S''| < |\overline{S'}|$ and $S'' \cap \overline{S'} = \emptyset$.

We arrive at the following problem:

DISJOINT-	FVS
Input:	graph $G = (V, E)$, integer k, feedback vertex set S of size $k + 1$ of
	G
Output:	a feedback vertex set S^* of G with $ S^* \leq k$ and $S^* \cap S = \emptyset$, if one
	exists

If DISJOINT-FVS can be solved in $O^*(d^k)$ time, then COMP-FVS can be solved in

$$O^*\left(\sum_{i=0}^{k+1}\binom{k+1}{i}d^i\right)\subseteq O^*((d+1)^k) \text{ time }$$

by the Binomial Theorem: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$.

Algorithm for DISJOINT-FVS

DISJOINT	'-FVS	
Input:	graph $G = (V, E)$, integer k, feedback vertex set S of size $k + 1$ of	
	G	
Output:	a feedback vertex set S^* of G with $ S^* \leq k$ and $S^* \cap S = \emptyset$, if one	
	exists	

Denote $A := V \setminus S$.

Simplification rules for DISJOINT-FVS

Start with $S^* = \emptyset$.

(cycle-in-S)

If G[S] is not acyclic, then return No.

(budget-exceeded)

If k < 0, then return No.

S. Gaspers (UNSW)

Simplification rules for **DISJOINT-FVS**

(finished) If $G - S^*$ is acyclic, then return S^* .

Simplification rules for $\operatorname{DISJOINT}-\operatorname{FVS}$

(creates-cycle)

If $\exists v \in A$ such that $G[S \cup \{v\}]$ is not acyclic, then add v to S^* and remove v from G.

Simplification rules for $\operatorname{DISJOINT}-\operatorname{FVS}$

(creates-cycle)

If $\exists v \in A$ such that $G[S \cup \{v\}]$ is not acyclic, then add v to S^* and remove v from G.

Simplification rules for **DISJOINT-FVS**

Simplification rules for **DISJOINT-FVS**

Simplification rules for $\operatorname{DISJOINT}-\operatorname{FVS}$

(Degree-2)

If $\exists v \in V$ with $d_G(v) = 2$ and at least one neighbor of v is in A, then add an edge between the neighbors of v (even if there was already an edge) and remove v from G.

Simplification rules for DISJOINT-FVS

(Degree-2)

If $\exists v \in V$ with $d_G(v) = 2$ and at least one neighbor of v is in A, then add an edge between the neighbors of v (even if there was already an edge) and remove v from G.

```
Select a vertex v \in A with at least 2 neighbors in S.
```

Such a vertex exists if no simplification rule applies (for example, we can take a leaf in G[A]).

Branch into two subproblems:

```
v \in S^*: add v to S^*, remove v from G, and decrease k by 1 v \notin S^*: add v to S
```

• Prove that this algorithm has running time $O^*(4^k)$.

Theorem 1

FEEDBACK VERTEX SET can be solved in $O^*(5^k)$ time.

- 2 Feedback Vertex Set
- 3 Min r-Hitting Set

Further Reading

r-Hitting Set

A set system S is a pair (V, H), where V is a finite set of elements and H is a collection of subsets of V. The rank of S is the maximum size of a set in H, i.e., $\max_{Y \in H} |Y|$.

A hitting set of a set system S = (V, H) is a subset X of V such that X contains at least one element of each set in H, i.e., $X \cap Y \neq \emptyset$ for each $Y \in H$.

Note: There is an easy $O^*(r^k)$ branching algorithm.

 COMP -r-HS

 COMP -r-HS

Input: set system S = (V, H), integer k, hitting set X of size k + 1 of SOutput: a hitting set X^* of size $\leq k$ of S if one exists

Go over all partitions $(X', \overline{X'})$ of X

 COMP -r-HS

Input: set system S = (V, H), integer k, hitting set X of size k + 1 of SOutput: a hitting set X^* of size $\leq k$ of S if one exists

Reject a partition if there is a $Y \in H$ such that $Y \subseteq \overline{X'}$.

 $\begin{array}{ll} \text{COMP-}r\text{-HS} \\ \text{Input:} & \text{set system } \mathcal{S} = (V,H) \text{, integer } k \text{, hitting set } X \text{ of size } k+1 \text{ of } \mathcal{S} \\ \text{Output:} & \text{a hitting set } X^* \text{ of size } \leq k \text{ of } \mathcal{S} \text{ if one exists} \end{array}$

Compute a hitting set X'' of size $\leq k - |X'|$ for (V', H'), where $V' = V \setminus X$ and $H' = \{Y \cap V' : Y \in H \land Y \cap X' = \emptyset\}$, if one exists.

 COMP -r-HS

Input: set system S = (V, H), integer k, hitting set X of size k + 1 of SOutput: a hitting set X^* of size $\leq k$ of S if one exists

If one exists, then return $X^* = X' \cup X''$.

• The subinstances (V', H') where $V' = V \setminus X$ and $H' = \{Y \cap V : Y \in H \land Y \cap X' = \emptyset\}$ are instances of (r-1)-HS.

- The subinstances (V', H') where $V' = V \setminus X$ and $H' = \{Y \cap V : Y \in H \land Y \cap X' = \emptyset\}$ are instances of (r-1)-HS.
- Suppose (r-1)-HS can be solved in $O^*((\alpha_{r-1})^k)$ time. Then, COMP-r-HS can be solved in

$$O^*\left(\sum_{s=0}^k \binom{k+1}{s} (\alpha_{r-1})^{k-s}\right) \subseteq O^*\left((\alpha_{r-1}+1)^k\right)$$

time.

- The subinstances (V', H') where $V' = V \setminus X$ and $H' = \{Y \cap V : Y \in H \land Y \cap X' = \emptyset\}$ are instances of (r-1)-HS.
- Suppose (r-1)-HS can be solved in $O^*((\alpha_{r-1})^k)$ time. Then, COMP-r-HS can be solved in

$$O^*\left(\sum_{s=0}^k \binom{k+1}{s} (\alpha_{r-1})^{k-s}\right) \subseteq O^*\left((\alpha_{r-1}+1)^k\right)$$

time.

- Note: 2-HS is equivalent to VERTEX COVER and can be solved in $O^*(1.2738^k)$ time [CKX10].
- Note 2: 3-HS can be solved in $O^*(2.0755^k)$ time [Wah07].

- (V, H) instance of r-HS with $V = \{v_1, v_2, \dots, v_n\}$
- $V_i = \{v_1, v_2, \dots, v_i\}$ for i = 1 to n
- $H_i = \{Y \in H : Y \subseteq V_i\}$

- (V, H) instance of r-HS with $V = \{v_1, v_2, \dots, v_n\}$
- $V_i = \{v_1, v_2, \dots, v_i\}$ for i = 1 to n
- $H_i = \{Y \in H : Y \subseteq V_i\}$
- Note that $|X_{i-1}| \le |X_i| \le |X_{i-1}| + 1$ where X_j is a minimum hitting set of the instance (V_i, H_i)

Theorem 2

For $r \geq 3$, r-HS can be solved in $O((r - 0.9245)^k)$ time.

By Monotone Local Search:

Theorem 3

For $r \geq 3$, r-HS can be solved in $O\left(\left(2 - \frac{1}{r - 0.9245}\right)^n\right)$ time.

- 2 Feedback Vertex Set
- 3 Min r-Hitting Set

- Chapter 4, Iterative Compression in [Cyg+15]
- Section 11.3, Iterative Compression in [Nie06]
- Section 6.1, Iterative Compression: The Basic Technique in [DF13]
- Section 6.2, Edge Bipartization in [DF13]

References I

- [CKX10] Jianer Chen, Iyad A. Kanj, and Ge Xia. "Improved upper bounds for vertex cover". In: *Theoretical Computer Science* 411.40-42 (2010), pp. 3736–3756.
- ▶ [Cyg+15] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- [DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- ▶ [Nie06] Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.
- [Wah07] Magnus Wahlström. "Algorithms, measures and upper bounds for satisfiability and related problems". PhD thesis. Linköping University, Sweden, 2007.