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Iterative Compression

For a minimization problem:

o Compression step: Given a solution of size k£ + 1, compress it to a solution
of size k or prove that there is no solution of size k

o lteration step: Incrementally build a solution to the given instance by
deriving solutions for larger and larger subinstances
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Example: VERTEX COVER

A vertex cover in a graph G = (V, E) is a subset of its vertices S C V such that
every edge of GG has at least one endpoint in S.

VERTEX COVER
Input: A graph G = (V, E) and an integer k
Parameter: k
Question: Does G have a vertex cover of size k?

We will design a (slow) iterative compression algorithm for VERTEX COVER to
illustrate the technique.
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VERTEX COVER: Compression Step

Cowmpr-VC
Input: graph G = (V, E), integer k, vertex cover C of size k + 1 of G
Output:  a vertex cover C* of size < k of (G if one exists
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VERTEX COVER: Compression Step

Cowmpr-VC
Input: graph G = (V, E), integer k, vertex cover C of size k + 1 of G
Output:  a vertex cover C* of size < k of (G if one exists
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@ Go over all partitions (C’,C") of C'
e C*=C'UN(C")
e If " is an independent set and |C*| < k then return C*
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VERTEX COVER: lteration Step

Use algorithm for CoMP-VC to solve VERTEX COVER.
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VERTEX COVER: lteration Step

Use algorithm for CoMP-VC to solve VERTEX COVER.

o Order vertices: V = {v1,va,...,0,}
@ Define G7 = G[{Ul,vg, ‘e U,H
(] Co - (b

e For i = 1..n, find a vertex cover C; of size < k of (G; using the algorithm for
CoMP-VC with input G; and C;_; U {v;}. If G; has no vertex cover of size
< k, then GG has no vertex cover of size < k.

Final running time: O*(2F)
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Feedback Vertex Set

A feedback vertex set of a multigraph G = (V| E) is a set of vertices S C V such
that G — S is acyclic.

FEEDBACK VERTEX SET (FVS)

Input: Multigraph G = (V, E), integer k
Parameter: k&
Question: Does G have a feedback vertex set of size at most k7

Note: We already saw an O*((3k)") time algorithm (and a O*(4%) time
randomized algorithm) for FVS.
We will now aim for a O*(c*) time deterministic algorithm, with ¢ € O(1).
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Compression Problem

Comp-FVS
Input: graph G = (V, E), integer k, feedback vertex set S of size k + 1 of
G

Output:  a feedback vertex set S* of size < k of GG if one exists
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lteration step

o Order vertices: V = {v1,va,...,0,}

o Define G; = G[{v1,v2,...,v;}]

e Sy=10

@ For i = 1..n, find a feedback vertex set S; of size < k of (G; using the

algorithm for ComP-FV'S with input G; and S;_; U {v;}. If G; has no
feedback vertex set of size < k, then GG has no feedback vertex set of size
<k.

Suppose COMP-FVS can be solved in O*(c*) time.
Then, using this iteration, FVS can be solved in O*(c*) time.
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Compression step

To solve CoMP-FVS: for each partitions (5’, 57) of S, find a feedback vertex set
S* of G with |[S*| < |S| and S C S* C V'\ 5 if one exists.
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Compression step

To solve CoMP-FVS: for each partitions (S, 5) of S, find a feedback vertex set
S* of G with [S*| < |S| and S € S* C V' \ S if one exists.

Equivalently, find a feedback vertex set S” of G — S’ with [S”| < |S’| and
S"NS =0.
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Compression step

To solve CoMP-FVS: for each partitions (S, 5) of S, find a feedback vertex set
S* of G with [S*| < |S| and S € S* C V' \ S if one exists.

Equivalently, find a feedback vertex set S” of G — S’ with [S”| < |S’| and
S"NS =0.

We arrive at the following problem:

DisjoiNnT-FVS

Input: graph G = (V, E), integer k, feedback vertex set S of size k + 1 of
G

Output:  a feedback vertex set S* of G with |S*| < k and S* NS = 0, if one
exists
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Compression step

To solve CoMP-FVS: for each partitions (S, 5) of S, find a feedback vertex set
S* of G with [S*| < |S| and S € S* C V' \ S if one exists.

Equivalently, find a feedback vertex set S” of G — S’ with [S”| < |S’| and
S"NS =0.

We arrive at the following problem:

DisjoiNnT-FVS

Input: graph G = (V, E), integer k, feedback vertex set S of size k + 1 of
G

Output:  a feedback vertex set S* of G with |S*| < k and S* NS = 0, if one
exists

If DISJOINT-FVS can be solved in O*(d") time, then COMP-FVS can be solved

k+1
0" (Z (k T 1)d7‘> C O*((d+ 1)¥) time

=0

by the Binomial Theorem: (2 + y)" Zk 0( ) n—kyk
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Algorithm for D1sSJOINT-FV S

DisjoINT-FVS

Input: graph G = (V, E), integer k, feedback vertex set S of size k + 1 of
G

Output:  a feedback vertex set S* of G with [S*| <k and S* NS =1, if one
exists

Denote A :=V\ S.

«

S A
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Simplification rules for DISJOINT-FVS

Start with S* = ().

If G[S] is not acyclic, then return No.

(budget-exceeded)
If k <0, then return NoO.
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Simplification rules for DISJOINT-FVS

o
S A

If G — S* is acyclic, then return S*. I
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Simplification rules for DISJOINT-FVS

(creates-cycle)

If 3v € A such that G[S U {v}] is not acyclic, then add v to S* and remove v
from G.
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Simplification rules for DISJOINT-FVS

(Degree-(< 1))
If 3v € V with dg(v) < 1, then remove v from G.
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Simplification rules for DISJOINT-FVS

(Degree-(< 1))
If 3v € V with dg(v) < 1, then remove v from G.
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Simplification rules for DISJOINT-FVS

If 3v € V with dg(v) = 2 and at least one neighbor of v is in A, then add an
edge between the neighbors of v (even if there was already an edge) and remove v
from G.
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Branching rule for D1SJOINT-FV'S

Select a vertex v € A with at least 2 neighbors in S.
Such a vertex exists if no simplification rule applies (for example, we can take a
leaf in G[A]).
Branch into two subproblems:
v € S*: add v to S*, remove v from (&, and decrease k by 1
v ¢ S* add v to S
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Exercise: Running time

@ Prove that this algorithm has running time O*(4%).
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Result for FEEDBACK VERTEX SET

FEEDBACK VERTEX SET can be solved in O*(5%) time.
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A set system S is a pair (V, H), where V is a finite set of elements and H is a
collection of subsets of V. The rank of S is the maximum size of a set in H, i.e.,
maxy ey |Y].

A hitting set of a set system S = (V, H) is a subset X of I/ such that X contains
at least one element of each set in H, i.e., X NY # () foreach Y € H.

r-HITTING SET (7-HS)

Input: A rank r set system S = (V, H), an integer k
Parameter: k
Question: Does S have a hitting set of size at most k

Note: There is an easy O* (") branching algorithm.
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Compression Step

Cowmp-r-HS
Input: set system S = (V, H), integer k, hitting set X of size k + 1 of S
Output:  a hitting set X™* of size < k of S if one exists

R
JlR

X VX
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Compression Step

Cowmp-r-HS
Input: set system S = (V, H), integer k, hitting set X of size k + 1 of S
Output:  a hitting set X™* of size < k of S if one exists

T
X

X VX

Go over all partitions (X', X') of X
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Compression Step

Cowmp-r-HS
Input: set system S = (V, H), integer k, hitting set X of size k + 1 of S
Output:  a hitting set X™* of size < k of S if one exists

T
X

X VX

Reject a partition if there is a Y € H such that Y C X

S. Gaspers (UNSW) Iterative Compression 19T3 20/26



Compression Step

Cowmp-r-HS
Input: set system S = (V, H), integer k, hitting set X of size k + 1 of S
Output:  a hitting set X™* of size < k of S if one exists

T
2

X VX

Compute a hitting set X" of size < k — | X’| for (V', H'), where V' =V \ X and
H ={YnV':YeHANYNX' =0}, if one exists.
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Compression Step

Cowmp-r-HS
Input: set system S = (V, H), integer k, hitting set X of size k + 1 of S
Output:  a hitting set X™* of size < k of S if one exists

T
2

X VX

If one exists, then return X* = X' U X".
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Compression Step |l

@ The subinstances (V’, H') where V' =V \ X and
H ={YNnV :YeHANYNX =0} are instances of (r — 1)-HS.
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Compression Step |l

@ The subinstances (V’, H') where V' =V \ X and
H ={YNnV :YeHANYNX =0} are instances of (r — 1)-HS.

@ Suppose (r — 1)-HS can be solved in O*((a,_1)*) time. Then, ComP-r-HS
can be solved in

k
o* <Z (k . l)<a,.1>“> CO" ((ar1+1)")

s=0

time.
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Compression Step |l

@ The subinstances (V’, H') where V' =V \ X and
H ={YNnV :YeHANYNX =0} are instances of (r — 1)-HS.

@ Suppose (r — 1)-HS can be solved in O*((a,_1)*) time. Then, ComP-r-HS
can be solved in

k
0" <Z (k . l)<a,.1>“> € 0 ((ar1 + 1))

s=0

time.

@ Note: 2-HS is equivalent to VERTEX COVER and can be solved in
O*(1.2738%) time [CKX10].
@ Note 2: 3-HS can be solved in O*(2.0755") time [Wah07].
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Iteration Step

o (V, H) instance of r-HS with V' = {vy,va,...,v,}

oV, ={vi,vg,...,v0;} fori=1ton
o H;={YcH:YCV}
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Iteration Step

(V, H) instance of 7-HS with V' = {vy,v9,..., v, }

Vi =Avi,ve,...,v;} fori=1ton

Hi={YeH: :YCV}

Note that | X; 1| < |X;| < |X;_1]|+ 1 where X is a minimum hitting set of
the instance (V;, H;)
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r-HS running time

For r > 3, r-HS can be solved in O((r — 0.9245)%) time.

By Monotone Local Search:

For r > 3, 7-HS can be solved in O ((2 ;)’L) time.

T r—0.9245
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Further Reading

o Chapter 4, Iterative Compression in [Cyg+15]

@ Section 11.3, [terative Compression in [Nie06]

@ Section 6.1, lterative Compression: The Basic Technique in [DF13]
@ Section 6.2, Edge Bipartization in [DF13]
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