
COMP4418: Knowledge
Representation and Reasoning

Introduction to Prolog III

Problem Solving

Maurice Pagnucco

School of Computer Science and Engineering
University of New South Wales

NSW 2052, AUSTRALIA

morri@cse.unsw.edu.au

Reference: Ivan Bratko, Prolog Programming for Artificial Intelligence, Addison-

Wesley, 2001. Chapter 4.

COMP4418 c©UNSW, 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 1

Graph Search in Prolog

1

2

3 4 5

6

7

8

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 2

Binary Trees

� A graph may be represented by a set of edge predicates and a list of

vertices

edge(1, 5). edge(1, 7).

edge(2, 1). edge(2, 7).

edge(3, 1). edge(3, 6).

edge(4, 3). edge(4, 5).

edge(5, 8).

edge(6, 4). edge(6, 5).

edge(7, 5).

edge(8, 6). edge(8, 7).

vertices([1, 2, 3, 4, 5, 6, 7, 8]).

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 3

Finding a Path

� Write a program to find a path from one node to another

� Must avoid cycles (i.e., going around in a circle)

� A template for the clause is

path(Start, Finish, Visited, Path).

Start is the name of the starting node

Finish is the name of the finishing node

Visited is the list of nodes already visited

Start is the list of nodes on the path, including Start and Finish

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 4

The path Program

� The search for a path terminates when we have nowhere to go

path(Node, Node, _, [Node]).

� A path from Start to Finish starts with a node, X, connected to

Start followed by a path from X to Finish

path(Start, Finish, Visited, [Start|Path]) :-

edge(Start, X),

not(member(X, Visited)),

path(X, Finish, [X|Visited], Path).

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 5

Hamiltonian Paths

� A Hamiltonian path is a path which spans the entire graph without
any repetition of nodes in the path

hamiltonian(P) :-

vertices(V),

member(S, V),

path(S, _, [S], P),

subset(V, P).

subset([], _) :- !.

subset([A|B], C) :-

member(A, C),

subset(B, C).

: hamiltonian(P)?

P = [2, 1, 7, 5, 8, 6, 4, 3]

P = [2, 7, 5, 8, 6, 4, 3, 1]

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 6

Missionaries and Cannibals

� There are three missionaries and three cannibals on the left bank of a

river

� They wish to cross over to the right bank using a boat that can only

carry two at a time

� The number of cannibals on either bank must never exceed the

number of missionaries on the same bank, otherwise the missionaries

will become the cannibal’s dinner

� Plan a sequence of crossings that will take everyone safely across

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 7

Representing the State

� A state is one “snapshot” in time

� For this problem, the only information we need to fully characterise

the state is:

◮ the number of missionaries on the left bank

◮ the number of cannibals on the left bank

◮ the side the boat is on

� All other information can be deduced from these three items

� In Prolog, the state can be represented by a 3-ary term,

state(Missionaries, Cannibals, Side)

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 8

Representing the Solution

� The solution consists of a list of moves, e.g.,

[move(1, 1, right), move(2, 0, left)]

which we will take to mean that 1 missionary and 1 cannibal moved

to the right bank, then 2 missionaries moved to the left bank

� Like the graph search problem, we must avoid returning to a state we

have visited before

� The visited list will have the form:

[MostRecentState | ListOfPreviousStates]

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 9

Overview of Solution

� We follow a simple graph search procedure

◮ Start from an initial state

◮ Find a neighbouring state

◮ Check that the new state has not been visited before

◮ Find a path from the neighbour to the goal

� The search terminates when we have found the state:

state(0, 0, right).

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 10

Top-level Prolog Code

% mandc(CurrentState, Visited, Path)

mandc(state(0, 0, right), _, []).

mandc(CurrentState, Visited, [Move|RestOfMoves]) :-

newstate(CurrentState, NextState),

not(member(NextState, Visited)),

make_move(CurrentState, NextState, Move),

mandc(NextState, [NextState|Visited], RestOfMoves).

make_move(state(M1,C1,left), state(M2,C2,right), move(M,C,right)) :-

M is M1 - M2,

C is C1 - C2.

make_move(state(M1,C1,right), state(M2,C2,left), move(M,C,left)) :-

M is M2 - M1,

C is C2 - C1.

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 11

Possible Moves

� A move is characterised by the number of missionaries and the

number of cannibals taken in the boat at one time.

� Since the boat can carry no more than two people at once, the only

possible combinations are:

carry(2, 0).

carry(1, 0).

carry(1, 1).

carry(0, 1).

carry(0, 2).

� Where carry(M, C) means the boat will carry M missionaries and C

cannibals on one trip

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 12

Feasible Moves

� Once we have found a possible move, we have to confirm that it is

feasible

� I.e., it is not feasible to move more missionaries or more cannibals

than are present on one bank

� When the state is state(M1, C1, left) and we try carry(M, C)

then

M <= M1 and C <= C1

must be true

� When the state is state(M1, C1, right) and we try carry(M,

C) then

M + M1 <= 3 and C + C1 <= 3

must be true

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 13

Legal Moves

� Once we have found a feasible move, we must check that it is legal

� I.e., no missionaries must be eaten

legal(X, X) :- !.

legal(3, X) :- !.

legal(0, X).

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 14

Generating the Next State

newstate(state(M1, C1, left), state(M2, C2, right)) :-

carry(M, C),

M <= M1,

C <= C1,

M2 is M1 - M,

C2 is C1 - C,

legal(M2, C2).

newstate(state(M1, C1, right), state(M2, C2, left)) :-

carry(M, C),

M2 is M1 + M,

C2 is C1 + C,

M2 <= 3,

C2 <= 3,

legal(M2, C2).

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 15

Logic Puzzles

Flatmates, from Logic Problems, Issue 10, page 35.

Six people live in a three-storey block of studio flats laid out as in the plan. From

the clues given, work out the name and situation of the resident of each flat.

Flat 1 Flat 2

Flat 3 Flat 4

Flat 5 Flat 6

1. Ivor and the photographer live on the same floor.

2. Edwina lives immediately above the medical student.

3. Patrick, who is studying law, lives immediately above Ivor, and opposite the

air hostess.

4. Flat 4 is the home of the store detective.

5. Doris lives in Flat 2.

6. Rodney and Rosemary are 2 of the residents in the block of flats.

7. One of the residents is a clerk.

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 16

Logic Puzzles

Residents: Doris, Edwina, Ivor, Patrick, Rodney, Rosemary.

Professions: air hostess, clerk, law student, medical student, photographer, store

detective.

male(ivor). male(patrick). male(rodney).

female(doris). female(edwina). female(rosemary).

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 17

Logic Puzzle Solution

flatmates([L,R]) :-

L = [[5,_,_], [3,_,_], [1,_,_]],

R = [[6,_,_], [4,_,_], [2,_,_]],

opposite([_,ivor,_], [_,_,photographer], L, R),

member(C1, [L,R]),

nextto([_,edwina,_], [_,_,medical_student], C1),

member(C2, [L,R]),

nextto([N1,patrick,law_student], [_,ivor,_], C2),

opposite([N1,_,_], [_,H,air_hostess], L, R),

female(H),

member([4,_,store_detective], R),

member([2,doris,_], R),

append(L, R, A),

member([_,rodney,_], A),

member([_,rosemary,_], A),

member([_,_,clerk], A).

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

COMP4418, Monday 30 September, 2019 Introduction to Prolog III: Problem Solving 18

Logic Puzzle Solution

nextto(X, Y, [X, Y|_]).

nextto(X, Y, [_|R]) :-

nextto(X, Y, R).

opposite(X, Y, [X|_], [Y|_]).

opposite(X, Y, [Y|_], [X|_]).

opposite(X, Y, [_|R1], [_|R2]) :-

opposite(X, Y, R1, R2).

COMP4418 c©UNSW, 2019 Generated: 15 September 2019

