4. Basics of Parameterized Complexity

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Contents

	Introduction	1
	1.1 Vertex Cover	
	1.2 Coloring	
	1.3 Clique	
	1.4 Δ-Clique	3
2	Basic Definitions	4
3	Further Reading	4

1 Introduction

1.1 Vertex Cover

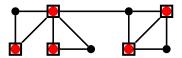
A vertex cover in a graph G = (V, E) is a subset of its vertices $S \subseteq V$ such that every edge of G has at least one endpoint in S.

Vertex Cover

Input: A graph G = (V, E) and an integer k

Parameter: k

Question: Does G have a vertex cover of size k?



Algorithms for Vertex Cover

- brute-force: $O^*(2^n)$
- brute-force: $O^*(n^k)$
- vc1: $O^*(2^k)$ (cf. Lecture 1)
- vc2: $O^*(1.4656^k)$ (cf. Lecture 1)
- fastest known: $O(1.2738^k + k \cdot n)$ [Chen, Kanj, Xia, 2010]

Running times in practice

n = 1000 vertices, k = 20 parameter

	Running Time	
Theoretical	Nb of Instructions	Real
2^n	$1.07 \cdot 10^{301}$	$4.941 \cdot 10^{282} \text{ years}$
n^k	10^{60}	$4.611 \cdot 10^{41} \text{ years}$
$2^k \cdot n$	$1.05 \cdot 10^{9}$	15.26 milliseconds
$1.4656^k \cdot n$	$2.10 \cdot 10^{6}$	0.31 milliseconds
$1.2738^k + k \cdot n$	$2.02 \cdot 10^4$	0.0003 milliseconds

Notes:

- We assume that 2^{36} instructions are carried out per second.
- The Big Bang happened roughly $13.5 \cdot 10^9$ years ago.

Goal of Parameterized Complexity

Confine the combinatorial explosion to a parameter k.

(1) Which problem–parameter combinations are fixed-parameter tractable (FPT)? In other words, for which problem–parameter combinations are there algorithms with running times of the form

$$f(k) \cdot n^{O(1)}$$
,

where the f is a computable function independent of the input size n?

(2) How small can we make the f(k)?

Examples of Parameters

A Parameterized Problem

Input: an instance of the problem

Parameter: a parameter

Question: a YES-No question about the instance and the parameter

- A parameter can be
 - solution size
 - input size (trivial parameterization)
 - related to the structure of the input (maximum degree, treewidth, branchwidth, genus, ...)
 - combinations of parameters
 - etc.

1.2 Coloring

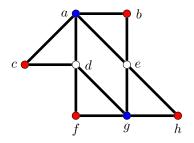
A k-coloring of a graph G = (V, E) is a function $f : V \to \{1, 2, ..., k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Coloring

Input: Graph G, integer k

Parameter: k

Question: Does G have a k-coloring?



Brute-force: $O^*(k^n)$, where n = |V(G)|. Inclusion-Exclusion: $O^*(2^n)$. FPT?

Coloring is probably not FPT

• Known: Coloring is NP-complete when k=3

• Suppose there was a $O^*(f(k))$ -time algorithm for Coloring

- Then, 3-Coloring can be solved in $O^*(f(3)) \subseteq O^*(1)$ time

- Therefore, P = NP

• Therefore, Coloring is not FPT unless P = NP

1.3 Clique

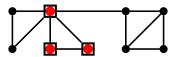
A *clique* in a graph G = (V, E) is a subset of its vertices $S \subseteq V$ such that every two vertices from S are adjacent in G.

CLIQUE

Input: Graph G = (V, E), integer k

Parameter: k

Question: Does G have a clique of size k?



Is CLIQUE NP-complete when k is a fixed constant? Is it FPT?

Algorithm for Clique

- For each subset $S \subseteq V$ of size k, check whether all vertices of S are adjacent
- Running time: $O^*\left(\binom{n}{k}\right) \subseteq O^*(n^k)$
- When $k \in O(1)$, this is polynomial
- \bullet But: we do not currently know an FPT algorithm for CLIQUE
- Since CLIQUE is W[1]-hard, we believe it is not FPT. (See lecture on W-hardness.)

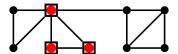
1.4 Δ -Clique

A different parameter for Clique

 Δ -Clique

Input: Graph G = (V, E), integer k

Parameter: $\Delta(G)$, i.e., the maximum degree of G Question: Does G have a clique of size k?



Is Δ -CLIQUE FPT?

Algorithm for Δ -Clique

- If k = 0, answer YES.
- If $k > \Delta + 1$, answer No.
- Otherwise,
 - // A clique of size k contains at least one vertex v. We try all possibilities for v.
 - // For each $v \in V$, we will check whether G has a clique of size k containing v.
 - // Note that for a clique S containing v, we have $S \subseteq N_G[v]$.
 - For each $v \in V$, check for each vertex subset $S \subseteq N_G[v]$ of size k whether S is a clique in G.
- Running time: $O^*((\Delta+1)^k) \subseteq O^*((\Delta+1)^{\Delta})$. (FPT for parameter Δ)

2 Basic Definitions

Main Parameterized Complexity Classes

n: instance sizek: parameter

P: class of problems that can be solved in $n^{O(1)}$ time

FPT: class of parameterized problems that can be solved in $f(k) \cdot n^{O(1)}$ time

XP: class of parameterized problems that can be solved in $f(k) \cdot n^{g(k)}$ time ("polynomial when k is a constant")

$$P \subseteq FPT \subseteq W[1] \subseteq W[2] \cdots \subseteq W[P] \subseteq XP$$

Known: If FPT = W[1], then the Exponential Time Hypothesis fails, i.e. 3-SAT can be solved in $2^{o(n)}$ time, where n is the number of variables.

Note: We assume that f is *computable* and *non-decreasing*.

3 Further Reading

- Chapter 1, *Introduction* in Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Chapter 2, *The Basic Definitions* in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- Chapter I, *Foundations* in Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.
- Preface in Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.