Knowledge Representation and Reasoning

Two Examples

Example 1

printColour(snow) := !, write("It's white.").
printColour(grass) := !, write("It's green.").
printColour(sky) := !, write("It's yellow.").
printColour(X) := write("Beats me.").

Example 2

colour(snow,white). colour(sky,yellow). colour(X,Y) :- madeof(X,Z), colour(Z,Y). madeof(grass,vegetation). colour(vegetation,green).

© Brachman & Levesque 2005

KR & R

Both systems can be described intentionally Only the 2nd has a separate collection of symbolic structures à la KR Hypothesis its knowledge base (or KB)

Introduction

.:. a small knowledge-based system

Using logic	
No universal language / semantics	
Why not En	glish?
Different tas	sks / worlds
Different wa	tys to carve up the world
No universal reasoning scheme	
Geared to language	
Sometimes	want "extralogical" reasoning
Start with first-order predicate calculus (FOL)	
invented by mathematic	philosopher Frege for the formalization of s
but will cons representat	sider subsets / supersets and very different looking ion languages
Allen Newell's analysis:	
Knowledge level:	(semantic)
deals with language, entailment	
Symbol level:	(computational)
deals with representation, inference	
Picking a logic has issues at each level	
• KL:	expressive adequacy, theoretical complexity,
• SL:	architectures, data structures, algorithmic complexity
Next: we begin with FOL at KL	
KR & R © Brachman & Levesqu	e 2005 Introduction