
COMP4418: Knowledge Representation
and Reasoning
Procedural Control

Maurice Pagnucco
School of Computer Science and Engineering

COMP4418, Week 3

1



Declarative / procedural

Theorem proving (like resolution) is a general domain-independent method of reasoning
Does not require the user to know how knowledge will be used

• will try all logically permissible uses

Sometimes have ideas about how to use knowledge, how to search for derivations

• do not want to use arbitrary or stupid order

Want to communicate to ATP procedure guidance based on properties of domain

• perhaps specific method to us

• perhaps merely method to avoid

Example: directional connectives
In general: control of reasoning

2
B&L (2005)



DB + rules

Can often separate (Horn) clauses into two components:
• database of facts

basic facts of the domain
usually ground atomic wffs

• collection of rules
extend vocabulary in terms of basic facts
usually universally quantified conditionals

Both retrieved by unification matching

Example:
MotherOf(jane,billy)
FatherOf(john,billy)
FatherOf(sam,john)
. . .
ParentOf(x ,y )← MotherOf(x ,y )
ParentOf(x ,y )← FatherOf(x ,y )
ChildOf(x ,y )← ParentOf(y ,x)
. . .

Control Issue: how to use rules

3
B&L (2005)



Rule formulation
Consider AncestorOf in terms of ParentOf

Three logically equivalent versions:

1. AncestorOf(x ,y )⇐ ParentOf(x ,y )
AncestorOf(x ,y )⇐ ParentOf(x ,z) ∧ AncestorOf(z,y )

2. AncestorOf(x ,y )⇐ ParentOf(x ,y )
AncestorOf(x ,y )⇐ ParentOf(z,y ) ∧ AncestorOf(x ,z)

3. AncestorOf(x ,y )⇐ ParentOf(x ,y )
AncestorOf(x ,y )⇐ AncestorOf(x ,z) ∧ AncestorOf(z,y )

Back-chaining goal of AncestorOf(sam,sue) will ultimately reduce to set of ParentOf(–,–) goals

1. get ParentOf(sam,z): find child of Sam
searches downward from Sam

2. get ParentOf(z,sue): find parent of Sue
searches upward from Sue

3. get ParentOf(-,-): find parent relations
searches in both directions

Search strategies are not equivalent
if more than 2 children per parent, (2) is best

4
B&L (2005)



Algorithm design

Example: Fibonacci numbers
1, 1, 2, 3, 5, 8, 13, 21, . . .

Version 1:
Fibo(0, 1)
Fibo(1, 1)
Fibo(s(s(n)),x) ⇐ Fibo(n,y ) ∧ Fibo(s(n),z) ∧ Plus(y ,z,x)

Requires exponential number of Plus subgoals
Version 2:

Fibo(n,x) ⇐ F(n,1,0,x)
F(0,c,p,c)
F(s(n),c,p,x) ⇐ Plus(p,c,s) ∧ F(n,s,c,x)

Requires only linear number of Plus subgoals

5
B&L (2005)



Ordering goals

Example:
AmericanCousinOf(x ,y ) ⇐ American(x) ∧ CousinOf(x ,y )
In back-chaining, can try to solve either subgoal first

Not much difference for
AmericanCousinOf(fred,sally)

Big difference for
AmericanCousinOf(x ,sally)
1. find an American and then check to see if she is a cousin of Sally
2. find a cousin of Sally and then check to see if she is an American

So want to be able to order goals
better to generate cousins and test for American

In Prolog: order clauses, and literals in them

• Notation: G :- G1,G2, . . . ,Gn stands for G ⇐ G1 ∧ G2 ∧ . . . ∧ Gn

• but goals are attempted in presented order

6
B&L (2005)



Commit

Need to allow for backtracking in goals
AmericanCousinOf(x ,y ) :- CousinOf(x ,y ), American(x)
for goal AmericanCounsinOf(x ,sally), may need to try American(x) for various values of x

But sometimes, given clause of the form
G :- T , S

goal T is needed only as a test for the applicability of subgoal S
In other words: if T succeeds, commit to S as the only way of achieving goal G.

so if S fails, then G is considered to have failed
do not look for other ways of solving T
do not look for other clauses with G as head

In Prolog: use of cut symbol
Notation: G :- T1,T2, . . . ,Tm, !, G1,G2, . . . ,Gn

attempt goals in order, but if all Ti succeed, then commit to Gi

7
B&L (2005)



If-then-else
Sometimes inconvenient to separate clauses in terms of unification, as in

G(zero, – ) :- method 1
G(succ(n), – ) :- method 2

For example, might not have distinct cases:
NumberOfParentsOf(adam, 0)
NumberOfParentsOf(eve, 0)
NumberOfParentsOf(x , 2)
want: 2 for everyone except Adam and Eve

Or cases may split based on computed property:
Expt(a, n, x) :- Even(n), (what to do when n is even)
Expt(a, n, x) :- Even(s(n)), (what to do when n is odd)
want: check for even numbers only once

Solution: use ! to do if-then-else
G :- P, !, Q.
G :- R.

To achieve G: if P then use Q else use R.
Expt(a, n, x) :- Even(n), !, (for even n)
Expt(a, n, x) :- (for odd n )

NumberOfParentsOf(adam, 0) :- !
NumberOfParentsOf(eve, 0) :- !
NumberOfParentsOf(x , 2)

8
B&L (2005)



Controlling backtracking

Consider a goal

So goal should be:
AncestorOf(jane,billy), !, Male(jane)

Similarly:
Member(x ,l) ⇐ FirstElement(x ,l)
Member(x ,l) ⇐ Rest(l ,l ′) ∧ Member(x ,l ′)

If only to be used for testing, want
Member(x ,l) :- FirstElement(x ,l), !

On failure, do not try to find another x later in rest of list

9
B&L (2005)



Negation as failure

Procedurally: can distinguish between

• can solve goal ¬G

• cannot solve G

Use not(G) to mean goal that succeeds if G fails, and fails if G succeeds
roughly:

not(G) :- G, !, fail /* fail if G succeeds */
not(G) /* otherwise succeed */

Only terminates when failure is finite
no more resolvents vs. infinite branch

Useful when DB + rules is complete
NoParents(x) :- not(ParentOf(z,x))

or when method already exists for complement
Composite(n) :- not(PrimeNum(n))

Declaratively: same reading as ¬, but complications with new variables in G
[not(ParentOf(z,x)) → NoParents(x)]
vs. ¬ParentOf(z,x) → NoParents(x)]

10
B&L (2005)


	Introduction

