COMP4418: Knowledge Representation and Reasoning
 Procedural Control

Maurice Pagnucco
School of Computer Science and Engineering
COMP4418, Week 3

Declarative / procedural

Theorem proving (like resolution) is a general domain-independent method of reasoning Does not require the user to know how knowledge will be used

- will try all logically permissible uses

Sometimes have ideas about how to use knowledge, how to search for derivations

- do not want to use arbitrary or stupid order

Want to communicate to ATP procedure guidance based on properties of domain

- perhaps specific method to us
- perhaps merely method to avoid

Example: directional connectives In general: control of reasoning

DB + rules

Can often separate (Horn) clauses into two components:

- database of facts
basic facts of the domain
usually ground atomic wffs
- collection of rules
extend vocabulary in terms of basic facts usually universally quantified conditionals
Both retrieved by unification matching
Example:
MotherOf(jane,billy)
FatherOf(john,billy)
FatherOf(sam,john)
ParentOf $(x, y) \leftarrow \operatorname{MotherOf}(x, y)$
ParentOf $(x, y) \leftarrow$ FatherOf (x, y)
ChildOf $(x, y) \leftarrow \operatorname{ParentOf}(y, x)$
Control Issue: how to use rules

Rule formulation

Consider AncestorOf in terms of ParentOf
Three logically equivalent versions:

1. AncestorOf $(x, y) \Leftarrow \operatorname{ParentOf}(x, y)$

AncestorOf $(x, y) \Leftarrow \operatorname{ParentOf}(x, z) \wedge$ AncestorOf (z, y)
2. AncestorOf $(x, y) \Leftarrow \operatorname{ParentOf}(x, y)$

AncestorOf $(x, y) \Leftarrow \operatorname{ParentOf}(z, y) \wedge$ AncestorOf (x, z)
3. AncestorOf $(x, y) \Leftarrow \operatorname{ParentOf}(x, y)$

AncestorOf $(x, y) \Leftarrow$ AncestorOf $(x, z) \wedge$ AncestorOf (z, y)
Back-chaining goal of AncestorOf(sam,sue) will ultimately reduce to set of ParentOf(-,-) goals

1. get	ParentOf(sam,z):	find child of Sam
	searches downward from Sam	
2. get	ParentOf(z,sue):	find parent of Sue
	searches upward from Sue	
3. get	ParentOf(-,-): searches in both directions	find parent relations

Search strategies are not equivalent
if more than 2 children per parent, (2) is best

Algorithm design

Example: Fibonacci numbers
$1,1,2,3,5,8,13,21, \ldots$
Version 1:
$\operatorname{Fibo}(0,1)$
Fibo(1, 1)
Fibo(s(s $(n)), x) \Leftarrow \operatorname{Fibo}(n, y) \wedge \operatorname{Fibo}(\mathrm{s}(n), z) \wedge \operatorname{Plus}(y, z, x)$
Requires exponential number of Plus subgoals
Version 2:
Fibo $(n, x) \Leftarrow \mathrm{F}(n, 1,0, x)$
$\mathrm{F}(0, c, p, c)$
$\mathrm{F}(\mathrm{s}(n), c, p, x) \Leftarrow \operatorname{Plus}(p, c, s) \wedge \mathrm{F}(n, s, c, x)$
Requires only linear number of Plus subgoals

Ordering goals

Example:
AmericanCousinOf $(x, y) \Leftarrow$ American $(x) \wedge \operatorname{CousinOf}(x, y)$
In back-chaining, can try to solve either subgoal first
Not much difference for
AmericanCousinOf(fred,sally)
Big difference for
AmericanCousinOf(x,sally)

1. find an American and then check to see if she is a cousin of Sally
2. find a cousin of Sally and then check to see if she is an American

So want to be able to order goals
better to generate cousins and test for American
In Prolog: order clauses, and literals in them

- Notation: $G:-G_{1}, G_{2}, \ldots, G_{n}$ stands for $G \Leftarrow G_{1} \wedge G_{2} \wedge \ldots \wedge G_{n}$
- but goals are attempted in presented order

Commit

Need to allow for backtracking in goals
AmericanCousinOf (x, y) :- $\operatorname{CousinOf}(x, y)$, American(x)
for goal AmericanCounsinOf(x, sally $)$, may need to try American (x) for various values of x
But sometimes, given clause of the form
$G:-T, S$
goal T is needed only as a test for the applicability of subgoal S
In other words: if T succeeds, commit to S as the only way of achieving goal G.
so if S fails, then G is considered to have failed
do not look for other ways of solving T
do not look for other clauses with G as head
In Prolog: use of cut symbol
Notation: G :- $T_{1}, T_{2}, \ldots, T_{m},!, G_{1}, G_{2}, \ldots, G_{n}$
attempt goals in order, but if all T_{i} succeed, then commit to G_{i}

If-then-else

Sometimes inconvenient to separate clauses in terms of unification, as in
$G($ zero, -$):-$ method 1
$G(\operatorname{succ}(n),-):-$ method 2

For example, might not have distinct cases:
NumberOfParentsOf(adam, 0)
NumberOfParentsOf(eve, 0)
NumberOfParentsOf ($x, 2$)
want: 2 for everyone except Adam and Eve
Or cases may split based on computed property:
$\operatorname{Expt}(a, n, x):-\operatorname{Even}(n)$, (what to do when n is even)
$\operatorname{Expt}(a, n, x):-\operatorname{Even}(\mathrm{s}(n))$, (what to do when n is odd)
want: check for even numbers only once
Solution: use ! to do if-then-else

$$
\begin{aligned}
& G:-P,!, Q . \\
& G:-R .
\end{aligned}
$$

To achieve G : if P then use Q else use R.
$\operatorname{Expt}(a, n, x):-\operatorname{Even}(n),!$, (for even n)
$\operatorname{Expt}(a, n, x)$:- (for odd n)
NumberOfParentsOf(adam, 0) :- !
NumberOfParentsOf(eve, 0) :- !
NumberOfParentsOf $(x, 2)$

Controlling backtracking

Consider a goal

So goal should be:
AncestorOf(jane,billy), !, Male(jane)
Similarly:
$\operatorname{Member}(x, l) \Leftarrow$ FirstElement (x, l)
$\operatorname{Member}(x, I) \Leftarrow \operatorname{Rest}\left(I, I^{\prime}\right) \wedge \operatorname{Member}\left(x, I^{\prime}\right)$
If only to be used for testing, want
$\operatorname{Member}(x, l)$:- FirstElement($x, l)$, !
On failure, do not try to find another x later in rest of list

Negation as failure

Procedurally: can distinguish between

- can solve goal $\neg G$
- cannot solve G

Use not(G) to mean goal that succeeds if G fails, and fails if G succeeds
roughly:
$\operatorname{not}(G):-G$! !, fail /* fail if G succeeds */
$\operatorname{not}(G) \quad / *$ otherwise succeed */
Only terminates when failure is finite
no more resolvents vs. infinite branch
Useful when DB + rules is complete
NoParents (x) :- not(ParentOf $(z, x))$
or when method already exists for complement
Composite(n) :- not(PrimeNum(n))
Declaratively: same reading as \neg, but complications with new variables in G
$[\operatorname{not}(\operatorname{ParentOf}(z, x)) \rightarrow \operatorname{NoParents}(x)]$
vs. \neg ParentOf $(z, x) \rightarrow \operatorname{NoParents}(x)]$

