
COMP4418, October 2019 1Planning

© Michael Thielscher 2015COMP4418 19T2

Planning

Representations for classical planning

Modern heuristics for state-space planning

Planning graphs: a modern planning technique

Background reading

Automated Planning by Malik Ghallab, Dana Nau, Paolo Traverso,
Morgan Kaufmann 2004. Chapters 1, 2, 4 & 6

Slides designed by Michael Thielscher

COMP4418, October 2019 2Planning

© Michael Thielscher 2015COMP4418 19T2

2. A proposed or tentative project or
course of action: had no plans for
the evening.

Some Dictionary Definitions of “Plan”

plan n.

1. A scheme, program, or method
worked out beforehand for the
accomplishment of an objective: a
plan of attack.

[a representation] of future behaviour …
usually a set of actions, with temporal
and other constraints on them, for
execution by some agent or agents.

 – Austin Tate, MIT Encyclopaedia of
the Cognitive Sciences, 1999

COMP4418, October 2019 3Planning

© Michael Thielscher 2015COMP4418 19T2

Planning for an Agent/Robot in a Dynamic World

S is an abstraction that deals only with the aspects that the planner
needs to reason about

State transition system
S = (S,A,γ)
● S = {states}
● A = {actions}
● g = state-transition function

COMP4418, October 2019 4Planning

© Michael Thielscher 2015COMP4418 19T2

Example S = (S,A,S):

S = {s0, …, s5}

A = {move1, move2, put,
 take, load, unload}

S: see the arrows

Example

Dock Worker Robots (DWR) example

take

put

move1

put

take

move1

move1move2

 loadunload

move2

move2

loc1 loc2

s0

loc1 loc2

s1

s4

loc1 loc2

s5

loc1 loc2

loc1 loc2

s3

loc1 loc2

s2

COMP4418, October 2019 5Planning

© Michael Thielscher 2015COMP4418 19T2

Example

Dock Worker Robots (DWR) example

take

put

move1

put

take

move1

move1move2

 loadunload

move2

move2

loc1 loc2

s0

loc1 loc2

s1

s4

loc1 loc2

s5

loc1 loc2

loc1 loc2

s3

loc1 loc2

s2

Classical plan: a sequence of
actions

〈take, move1, load, move2〉

COMP4418, October 2019 6Planning

© Michael Thielscher 2015COMP4418 19T2

Domain-Specific Planners

Many successful real-world planning systems work
this way

Mars exploration, sheet-metal bending, playing
bridge, etc.

Often use problem-specific techniques that are
difficult to generalise to other planning domains

COMP4418, October 2019 7Planning

© Michael Thielscher 2015COMP4418 19T2

No domain-specific knowledge except
the description of the system S

In practice,

Not feasible to make domain-
independent planners work well in
all possible planning domains

Make simplifying assumptions
to restrict the set of domains

Classical planning

 Historical focus of most research
 on automated planning

Domain-Independent Planners

COMP4418, October 2019 8Planning

© Michael Thielscher 2015COMP4418 19T2

Classical Planning

Generalise the earlier example:

Five locations, three robot carts,
100 containers, three piles

 10277 states

Automated-planning research has been heavily dominated by classical
planning. There are dozens of different algorithms.

loc1 loc2

s1

take

put

move1move2

Reduces to the following problem:

Given S, initial state s0, and goal states Sg,

find a sequence of actions (a1, a2, … an) that produces

a sequence of state transitions (s0, s1, s2, …, sn) such that sn ∈ Sg

 Is this trivial?

COMP4418, October 2019 9Planning

© Michael Thielscher 2015COMP4418 19T2

Representations for Classical Planning

COMP4418, October 2019 10Planning

© Michael Thielscher 2015COMP4418 19T2

Classical Representations: Motivation

In most problems, far too many states to try to represent all of them explicitly as
s0, s1, s2, …

 represent each state as a set of atomic features

Define a set of operators that can be used to compute state-transitions

Don’t give all of the states explicitly

Just give the initial state

Use the operators to generate the other states as needed

COMP4418, October 2019 11Planning

© Michael Thielscher 2015COMP4418 19T2

Classical Representation

Language of first-order logic but without function symbols

 finitely many predicate symbols and constant symbols

Example: the DWR domain

Locations: l1, l2, …

Containers: c1, c2, …

Piles: p1, p2, …

Robot carts: r1, r2, …

Cranes: k1, k2, …

COMP4418, October 2019 12Planning

© Michael Thielscher 2015COMP4418 19T2

Example (cont'd)

Fixed relations: same in all states

adjacent(l,l’) attached(p,l) belong(k,l)

Dynamic relations: differ from one state to another

occupied(l) at(r,l)

loaded(r,c) unloaded(r)

holding(k,c) empty(k)

in(c,p) on(c,c’)

top(c,p) top(pallet,p)

Actions:

take(c,k,p) put(c,k,p)

load(r,c,k) unload(r) move(r,l,l’)

COMP4418, October 2019 13Planning

© Michael Thielscher 2015COMP4418 19T2

States

A state is a set s of ground atoms

The atoms represent the things that can be true in some states

Only finitely many ground atoms, so only finitely many possible states

s1 = {attached(p1,loc1), in(c1,p1), in(c3,p1), top(c3,p1),
 on(c3,c1), on(c1,pallet), attached(p2,loc1), in(c2,p2),
 top(c2,p2), on(c2,pallet), belong(crane1,loc1),
 empty(crane1), adjacent(loc1,loc2), adjacent(loc2,loc1),
 at(r1,loc2), occupied(loc2), unloaded(r1)}

COMP4418, October 2019 14Planning

© Michael Thielscher 2015COMP4418 19T2

Operators

 An operator is a triple o = (name(o), precond(o), effects(o))

name(o): a syntactic expression of the form n(x1,…,xk)

(x1,…,xk) is a list of every variable symbol (parameter) that appears in o
precond(o): preconditions

literals that must be true in order to use the operator
effects(o): effects

literals the operator will make true

 Example

take(k,l,c,d,p)
 ;; crane k at location l takes c off of d in pile p
 precond: belong(k,l), attached(p,l),empty(k), top(c,p),

 on(c,d)
 effects: holding(k,c), ¬empty(k), ¬in(c,p), ¬top(c,p),

 ¬on(c,d), top(d,p)

COMP4418, October 2019 15Planning

© Michael Thielscher 2015COMP4418 19T2

 An action is a ground instance (via a substitution) of an operator

Let σ = {k / crane1, l / loc1, c / c3, d / c1, p / p1}

Then take(k,l,c,d,p)σ is the following action:

take(crane1,loc1,c3,c1,p1)

 precond: belong(crane1,loc1), attached(p1,loc1), empty(crane1),
 top(c3,p1), on(c3,c1)

 effects: holding(crane1,c3), ¬empty(crane1), ¬in(c3,p1),

 ¬top(c3,p1), ¬on(c3,c1), top(c1,p1)

take(k,l,c,d,p)
 ;; crane k at location l takes c off of d in pile p
 precond: belong(k,l), attached(p,l),empty(k), top(c,p),

 on(c,d)
 effects: holding(k,c), ¬empty(k), ¬in(c,p), ¬top(c,p),

 ¬on(c,d), top(d,p)

Actions

COMP4418, October 2019 16Planning

© Michael Thielscher 2015COMP4418 19T2

Applicability and Result of Actions

Let S be a set of literals. Then
S+ = {atoms that appear positively in S}
S– = {atoms that appear negatively in S}

Let a be an operator or action. Then
precond+(a) = {atoms that appear positively in a’s preconditions}
precond–(a) = {atoms that appear negatively in a’s preconditions}
effects+(a) = {atoms that appear positively in a’s effects}
effects–(a) = {atoms that appear negatively in a’s effects}

Action a is applicable to (or executable in) S if

precond+(a) ⊆ s

precond–(a) ∩ s = ∅

The result of applying action a to state S is
γ(s,a) = (s \ effects–(a)) ∪ effects+(a)

COMP4418, October 2019 17Planning

© Michael Thielscher 2015COMP4418 19T2

Example: Applicability

An action:
take(crane1,loc1,c3,c1,p1)

 precond: belong(crane,loc1),
attached(p1,loc1),
empty(crane1), top(c3,p1),
on(c3,c1)

 effects: holding(crane1,c3),
¬empty(crane1),
¬in(c3,p1), ¬top(c3,p1),
¬on(c3,c1), top(c1,p1)

A state it’s applicable to

s1 = {attached(p1,loc1), in(c1,p1), in(c3,p1),

top(c3,p1), on(c3,c1), on(c1,pallet),
attached(p2,loc1), in(c2,p2),
top(c2,p2), on(c2,pallet),
belong(crane1,loc1), empty(crane1),
adjacent(loc1,loc2),
adjacent(loc2,loc1), at(r1,loc2),
occupied(loc2, unloaded(r1)}

COMP4418, October 2019 18Planning

© Michael Thielscher 2015COMP4418 19T2

Example: Result

take(crane1,loc1,c3,c1,p1)

 precond: belong(crane,loc1),
attached(p1,loc1),
empty(crane1), top(c3,p1),
on(c3,c1)

 effects: holding(crane1,c3),
¬empty(crane1),
¬in(c3,p1), ¬top(c3,p1),
¬on(c3,c1), top(c1,p1)

s2 = {attached(p1,loc1), in(c1,p1), in(c3,p1),

top(c3,p1), on(c3,c1), on(c1,pallet),
attached(p2,loc1), in(c2,p2),
top(c2,p2), on(c2,pallet),
belong(crane1,loc1), empty(crane1),
adjacent(loc1,loc2),
adjacent(loc2,loc1), at(r1,loc2),
occupied(loc2, unloaded(r1),
holding(crane1,c3), top(c1,p1)}

COMP4418, October 2019 19Planning

© Michael Thielscher 2015COMP4418 19T2

Exercise

COMP4418, October 2019 20Planning

© Michael Thielscher 2015COMP4418 19T2

Exercise: The Blocks World
Infinitely wide table, finite number of children’s blocks

Ignore where a block is located on the table

A block can sit on the table or on another block

There’s a robot gripper that can hold at most one block

Want to move blocks from one configuration to another

e.g.,

initial state goal

c

a

bc

a b e

d

COMP4418, October 2019 21Planning

© Michael Thielscher 2015COMP4418 19T2

Exercise: Classical Representation – Symbols
Constant symbols:

The blocks: a, b, c, d, e

Dynamic relations?

c

a b e

d

COMP4418, October 2019 22Planning

© Michael Thielscher 2015COMP4418 19T2

Exercise: Classical Operators
c

a b

c
a b

c

a
b

c

a b

unstack(c,a)
stack(c,a)

putdown(b)
pickup(b)

d

e

d

e

d

e

d

e

Preconditions and effects?

COMP4418, October 2019 23Planning

© Michael Thielscher 2015COMP4418 19T2

Summary: Planning Problems

Given a planning domain (language L, operators O)

Representation of a planning problem: a triple P = (O,s0,g)

 O is the collection of operators

 s0 is a state (the initial state)

 g is a set of literals (the goal formula)

COMP4418, October 2019 24Planning

© Michael Thielscher 2015COMP4418 19T2

Plans and Solutions

Let P = (O,s0,g) be a planning problem

Plan: any sequence of actions π = 〈a1, a2, …, an〉 such that
each ai is an instance of an operator in O

Plan π is a solution for P = (O,s0,g) if it is executable and achieves g

i.e., if there are states s0, s1, …, sn such that
γ (s0,a1) = s1

γ (s1,a2) = s2

⁞
γ (sn–1,an) = sn

sn satisfies g

COMP4418, October 2019 25Planning

© Michael Thielscher 2015COMP4418 19T2

Example: The 5 DWR Operators

COMP4418, October 2019 26Planning

© Michael Thielscher 2015COMP4418 19T2

Example

Let P = (O, s0, g), where

O = {the 5 DWR operators}

s0 = {attached(p1,loc1), in(c1,p1),

in(c3,p1), top(c3,p1),

on(c3,c1), on(c1,pallet),

attached(p2,loc1),

in(c2,p2), top(c2,p2),

on(c2,pallet),

belong(crane1,loc1), empty(crane1),

adjacent(loc1,loc2), adjacent(loc2,loc1),

at(r1,loc2), occupied(loc2), unloaded(r1)}

 g = {loaded(r1,c3), at(r1,loc2)}

COMP4418, October 2019 27Planning

© Michael Thielscher 2015COMP4418 19T2

s1

COMP4418, October 2019 28Planning

© Michael Thielscher 2015COMP4418 19T2

Exercise

COMP4418, October 2019 29Planning

© Michael Thielscher 2015COMP4418 19T2

Exercise: Plans

initial state goal

Solution?

c

a

bc

a b e

d

COMP4418, October 2019 30Planning

© Michael Thielscher 2015COMP4418 19T2

Use ground atoms for properties that do not change, e.g., adjacent(loc1,loc2)

For properties that can change, assign values to state variables

Like fields in a record structure

State-Variable Representation

s1 = {top(p1)=c3,
 cpos(c3)=c1,
 cpos(c1)=pallet,
 holding(crane1)=nil,
 rloc(r1)=loc2,
 loaded(r1)=nil, …}

COMP4418, October 2019 31Planning

© Michael Thielscher 2015COMP4418 19T2

Expressive Power

Any problem that can be represented in one representation can also be
represented in the other

Can convert in linear time and space

Classical
representation

State-variable
representation

P(x1,…,xn)
becomes

fP(x1,…,xn)=1

f(x1,…,xn)=y
becomes

Pf(x1,…,xn,y)

COMP4418, October 2019 32Planning

© Michael Thielscher 2015COMP4418 19T2

Comparison

Classical representation
The most popular for classical planning, partly for historical reasons

State-variable representation
Equivalent to classical representation in expressive power
Less natural for logicians, more natural for engineers and most computer
scientists
Useful in non-classical planning problems as a way to handle numbers,
functions, time

COMP4418, October 2019 33Planning

© Michael Thielscher 2015COMP4418 19T2

State-Space Planning

COMP4418, October 2019 34Planning

© Michael Thielscher 2015COMP4418 19T2

Search Algorithms

 Search tree

nodes = states

edges = actions

s0

s1

s2

s3

a1

a2

a3

s4

s5

sg

a4

a5 …

COMP4418, October 2019 35Planning

© Michael Thielscher 2015COMP4418 19T2

Search Algorithms

 Search tree

nodes = states

edges = actions

Most common search method: depth-first search

In general, sound but not complete

But classical planning has only finitely many states

 can make depth-first search complete by doing loop-checking

s0

s1

s2

s3

a1

a2

a3

s4

s5

sg

a4

a5 …

COMP4418, October 2019 36Planning

© Michael Thielscher 2015COMP4418 19T2

Exercise

COMP4418, October 2019 37Planning

© Michael Thielscher 2015COMP4418 19T2

Exercise: Interchange Values of Variables

Operator assign(v,w,x,y)

 precond: value(v,x), value(w,y)

 effects: ¬value(v,x), value(v,y)

Initial state s0 = { value(a,3), value(b,5), value(c,0) }

Goal g = { value(a,5), value(b,3) }

In the search tree for this planning problem,

what is the length of the shortest path to a solution?

what is the length of the longest path in the tree?

COMP4418, October 2019 38Planning

© Michael Thielscher 2015COMP4418 19T2

Planning with Heuristic Search

Explicitly search with heuristic h(s) that estimates cost from s to goal

General idea:

heuristic function = length of optimal plan for a relaxed problem

Example:

Manhattan distance in 15-puzzle

How to get such heuristics automatically?

COMP4418, October 2019 39Planning

© Michael Thielscher 2015COMP4418 19T2

General-Purpose Heuristics for Classical Planning

Operator assign(v,w,x,y)

 precond: value(v,x), value(w,y)

 effects: ¬value(v,x), value(v,y)

s0 = { value(a,3), value(b,5), value(c,0) }, g = { value(a,5), value(b,3) }

Optimal relaxed plan: assign(a,b,3,5), assign(b,a,5,3), hence h(s0) = 2

Automatic extraction of informative heuristic function from the problem P itself

Most common relaxation in planning: ignore all negative effects of the operators.

 Let P+ be obtained from planning problem P by dropping the negative effects.

 If c*(P+,s) is optimal cost of P+ with initial state s, then the heuristic is set to

 h(s) = c*(P+,s)

This heuristic is intractable in general, but easy to approximate

 Example.

COMP4418, October 2019 40Planning

© Michael Thielscher 2015COMP4418 19T2

Example
Operator assign(v,w,x,y)

 precond: value(v,x), value(w,y)

 effects: ¬value(v,x), value(v,y)

g = { value(a,5), value(b,3) }

s0 = { value(a,3), value(b,5), value(c,0) }

Consider all possible successor states after one action:

s1 = { value(a,5), value(b,5), value(c,0) } h(s1) = ∞

s2 = { value(a,3), value(b,3), value(c,0) } h(s2) = ∞

s3 = { value(a,0), value(b,5), value(c,0) } h(s3) = ∞

s4 = { value(a,3), value(b,5), value(c,3) } h(s4) = 2

s5 = { value(a,3), value(b,0), value(c,0) } h(s5) = ∞

s6 = { value(a,3), value(b,5), value(c,5) } h(s6) = 2

No relaxed plan exists

COMP4418, October 2019 41Planning

© Michael Thielscher 2015COMP4418 19T2

Example
Operator assign(v,w,x,y)

 precond: value(v,x), value(w,y)

 effects: ¬value(v,x), value(v,y)

g = { value(a,5), value(b,3) }

s4 = { value(a,3), value(b,5), value(c,3) }

Consider all possible successor states after next action:

s7 = { value(a,5), value(b,5), value(c,3) } h(s1) = 1∞

s8 = { value(a,3), value(b,3), value(c,3) } h(s8) = ∞

s9 = { value(a,3), value(b,5), value(c,5) } h(s9) = 2∞a

One of the successor states of s7 is a goal state:

s10 = { value(a,5), value(b,3), value(c,3) }

COMP4418, October 2019 42Planning

© Michael Thielscher 2015COMP4418 19T2

Planning-Graph Techniques

COMP4418, October 2019 43Planning

© Michael Thielscher 2015COMP4418 19T2

History

Before Graphplan came out, most planning researchers were working
on Plan Space Search-like planners

Graphplan caused a sensation because it was so much faster

Many subsequent planning systems have used ideas from it
IPP, STAN, GraphHTN, SGP, Blackbox, Medic, TGP, LPG

Many of them even much faster than the original Graphplan

COMP4418, October 2019 44Planning

© Michael Thielscher 2015COMP4418 19T2

A standard tree search may try lots of actions that are unrelated to the goal

One way to reduce branching factor:

First create a relaxed problem

Remove some restrictions of the original problem

 Want the relaxed problem to be easy to solve (polynomial time)

The solutions to the relaxed problem will include all solutions to the original
problem

Then do a modified version of the original search

Restrict its search space to include only those actions that occur in solutions
to the relaxed problem

Motivation

s0

s1

s2

s3

a1

a2

a3

s4

s5

sg

a4

a5 …

COMP4418, October 2019 45Planning

© Michael Thielscher 2015COMP4418 19T2

Graphplan
procedure Graphplan:

for k = 0, 1, 2, …

Graph expansion:

 create a “planning graph” that contains k “levels”

Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

If it does, then

 do solution extraction:
- backward search,

modified to consider
only the actions in
the planning graph

- if we find a solution,
then return it

relaxed
problem

COMP4418, October 2019 46Planning

© Michael Thielscher 2015COMP4418 19T2

state-level 0

have(cake)

¬eaten(cake)

Example: Have the Cake and Eat it Too

 Operator Name Preconditions Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }

COMP4418, October 2019 47Planning

© Michael Thielscher 2015COMP4418 19T2

state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1

Example: Have the Cake and Eat it Too

 Operator Name Preconditions Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }

COMP4418, October 2019 48Planning

© Michael Thielscher 2015COMP4418 19T2

state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1

"mutex": actions cannot
 occur together

Example: Have the Cake and Eat it Too

 Operator Name Preconditions Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }

COMP4418, October 2019 49Planning

© Michael Thielscher 2015COMP4418 19T2

state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1
"mutex": fluents cannot be
 obtained together

Example: Have the Cake and Eat it Too

 Operator Name Preconditions Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }

COMP4418, October 2019 50Planning

© Michael Thielscher 2015COMP4418 19T2

state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1

Example: Have the Cake and Eat it Too

 Operator Name Preconditions Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }

Solution extraction not
called since goals are mutex

COMP4418, October 2019 51Planning

© Michael Thielscher 2015COMP4418 19T2

Example: Have the Cake and Eat it Too

state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1 action-level 2 state-level 2

eat(cake)

bake(cake)
have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

 Operator Name Preconditions Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }

COMP4418, October 2019 52Planning

© Michael Thielscher 2015COMP4418 19T2

Example: Have the Cake and Eat it Too

state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1 action-level 2 state-level 2

eat(cake)

bake(cake)
have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

 Operator Name Preconditions Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }

COMP4418, October 2019 53Planning

© Michael Thielscher 2015COMP4418 19T2

Example: Have the Cake and Eat it Too

state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1 action-level 2 state-level 2

eat(cake)

bake(cake)
have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

 Operator Name Preconditions Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }

COMP4418, October 2019 54Planning

© Michael Thielscher 2015COMP4418 19T2

state-level i

effects
Maintenance action: for the case
where a literal remains unchanged

state-level i -1

state-level 0 (the literals true in s0)

The Planning Graph

Search space for a relaxed version of the planning problem

Alternating layers of ground literals and actions

Nodes at action-level i : actions that might be possible to execute at time i

Nodes at state-level i : literals that might possibly be true at time i

Edges: preconditions and effects

action-level i

preconditions

COMP4418, October 2019 55Planning

© Michael Thielscher 2015COMP4418 19T2

Mutual Exclusion

Two actions at the same action-level are mutex if
1. Inconsistent effects: an effect of one negates an effect of the other
2. Interference: one deletes a precondition of the other
3. Competing needs: they have mutually exclusive preconditions

Otherwise they don’t interfere with each other
Both may appear in a solution plan

Two literals at the same state-level are mutex if
4. Inconsistent support: one is the negation of the other,

or all ways of achieving them are pairwise mutex

Recursive
propagation
of mutexes

COMP4418, October 2019 56Planning

© Michael Thielscher 2015COMP4418 19T2

Mutexes in the
Cake-Example

Level Mutexes Rule

 A1 eat(cake) mhave(cake) 1 (also 2)

 A1 eat(cake) m¬eaten(cake) 1, 2

 S1 have(cake) ¬have(cake) 4

 S1 eaten(cake) ¬eaten(cake) 4

 S1 have(cake) eaten(cake) 4

 S1 ¬have(cake) ¬eaten(cake) 4

 A2 bake(cake) eat(cake) 1, 3

 A2 bake(cake) m¬have(cake) 1, 2

 A2 bake(cake) mhave(cake) 2

 A2 eat(cake) mhave(cake) 1, 2

 A2 eat(cake) m¬have(cake) 2, 3

 A2 eat(cake) meaten(cake) 3

 A2 eat(cake) m¬eaten(cake) 1, 2

 A2 mhave(cake) m¬have(cake) 1, 2, 3

 A2 meaten(cake) m¬eaten(cake) 1, 2, 3

 S2 have(cake) ¬have(cake) 4

 S2 eaten(cake) ¬eaten(cake) 4

 S2 ¬have(cake) ¬eaten(cake) 4

COMP4418, October 2019 57Planning

© Michael Thielscher 2015COMP4418 19T2

Example: Have the Cake and Eat it Too

state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1 action-level 2 state-level 2

eat(cake)

bake(cake)
have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

Solution extraction succeeds

(= plan without mutexes)

COMP4418, October 2019 58Planning

© Michael Thielscher 2015COMP4418 19T2

Solution Extraction

procedure Solution-extraction(g,j)

if j = 0 then return the solution

for each literal l in g

nondeterministically choose an action
to use in state s j–1 to achieve l

if any pair of chosen actions are mutex

then backtrack

g' := {the preconditions of
 the chosen actions}

Solution-extraction(g', j–1)

end Solution-extraction

The level of the state sj

The set of goals we are
trying to achieve

state-
level
i-1

action-
level

i

state-
level

i

A real action or a maintenance action

COMP4418, October 2019 59Planning

© Michael Thielscher 2015COMP4418 19T2

Comparison with State-Space Planning

Advantage:

The backward-search part (solution extraction) of Graphplan—which is the
hard part—will only look at the actions in the planning graph

smaller search space than state-space planning; thus faster

Disadvantage:

To generate the planning graph, Graphplan creates a huge number of
ground atoms

Many of them may be irrelevant

For classical planning, the advantage outweighs the disadvantage

GraphPlan solves classical planning problems much faster than SSP without
heuristcs

COMP4418, October 2019 60Planning

© Michael Thielscher 2015COMP4418 19T2

Summary

Representations for classical planning

Classical representation

State-variable representation

State-space planning

with heuristics

Planning graphs

Creating the graph

Adding mutexes

Searching the graph

	Slide 1
	Some Dictionary Definitions of “Plan”
	Conceptual Model
	Example
	Slide 5
	1. Domain-Specific Planners (Chapters 19-23)
	Types of Planners 2. Domain-Independent
	Slide 8
	Slide 9
	Representations: Motivation
	Classical Representation
	Slide 12
	States
	Operators
	Actions
	Notation
	Applicability
	Executing an Applicable Action
	Slide 19
	Example: The Blocks World
	Classical Representation: Symbols
	Classical Operators
	Planning Problems
	Plans and Solutions
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	State-Variable Representation
	Expressive Power
	Comparison
	Slide 33
	Deterministic Implementations
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Chapter 6 Planning-Graph Techniques
	History
	Slide 44
	Graphplan
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	The Planning Graph
	Mutual Exclusion
	Slide 56
	Slide 57
	Solution Extraction
	Comparison with Plan-Space Planning
	Slide 60

