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Planning

Representations for classical planning

Modern heuristics for state-space planning

Planning graphs: a modern planning technique

Background reading

Automated Planning by Malik Ghallab, Dana Nau, Paolo Traverso, 
Morgan Kaufmann 2004. Chapters 1, 2, 4 & 6

Slides designed by Michael Thielscher
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2. A proposed or tentative project or 
course of action: had no plans for 
the evening. 

Some Dictionary Definitions of “Plan”

plan n.

1. A scheme, program, or method 
worked out beforehand for the 
accomplishment of an objective: a 
plan of attack. 

[a representation] of future behaviour … 
usually a set of actions, with temporal 
and other constraints on them, for 
execution by some agent or agents.

  – Austin Tate, MIT Encyclopaedia of 
the Cognitive Sciences, 1999
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Planning for an Agent/Robot in a Dynamic World

S is an abstraction that deals only with the aspects that the planner 
needs to reason about

State transition system
S = (S,A,γ)
●  S = {states}
●  A = {actions}
●  g = state-transition function
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Example S = (S,A,S):

S = {s0, …, s5}

A = {move1, move2, put, 
 take, load, unload}

S: see the arrows

Example

Dock Worker Robots (DWR) example

take

put

move1

put

take

move1

move1move2

      loadunload

move2

move2

loc1 loc2

s0

loc1 loc2

s1

s4

loc1 loc2

s5

loc1 loc2

loc1 loc2

s3

loc1 loc2

s2
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Example

Dock Worker Robots (DWR) example

take

put

move1

put

take

move1

move1move2

      loadunload

move2

move2

loc1 loc2

s0

loc1 loc2

s1

s4

loc1 loc2

s5

loc1 loc2

loc1 loc2

s3

loc1 loc2

s2

Classical plan: a sequence of 
actions

〈take, move1, load, move2〉
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Domain-Specific Planners

Many successful real-world planning systems work 
this way

Mars exploration, sheet-metal bending, playing 
bridge, etc.

Often use problem-specific techniques that are 
difficult to generalise to other planning domains
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No domain-specific knowledge except 
the description of the system S

In practice,

Not feasible to make domain-
independent planners work well in 
all possible planning domains

Make simplifying assumptions 
to restrict the set of domains

Classical planning

     Historical focus of most research 
     on automated planning

Domain-Independent Planners
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Classical Planning

Generalise the earlier example:

Five locations, three robot carts,
100 containers, three piles

 10277 states

Automated-planning research has been heavily dominated by classical 
planning. There are dozens of different algorithms.

loc1 loc2

s1

take

put

move1move2

Reduces to the following problem:

Given S, initial state s0, and goal states Sg,

find a sequence of actions (a1, a2, … an) that produces

a sequence of state transitions (s0, s1, s2, …, sn) such that sn  ∈ Sg 

 Is this trivial?
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Representations for Classical Planning
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Classical Representations: Motivation

In most problems, far too many states to try to represent all of them explicitly as 
s0, s1, s2, …

        represent each state as a set of atomic features

Define a set of operators that can be used to compute state-transitions

Don’t give all of the states explicitly

Just give the initial state

Use the operators to generate the other states as needed
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Classical Representation

Language of first-order logic but without function symbols

 finitely many predicate symbols and constant symbols

Example: the DWR domain

Locations:  l1, l2, …

Containers:  c1, c2, …

Piles:  p1, p2, …

Robot carts:  r1, r2, …

Cranes:  k1, k2, …
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Example (cont'd)

Fixed relations: same in all states

adjacent(l,l’)    attached(p,l)   belong(k,l) 

Dynamic relations: differ from one state to another

occupied(l)     at(r,l)

loaded(r,c)     unloaded(r)

holding(k,c)     empty(k)

in(c,p)     on(c,c’)

top(c,p)     top(pallet,p)

Actions:

take(c,k,p)     put(c,k,p)

load(r,c,k)     unload(r) move(r,l,l’)  
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States

A state is a set s of ground atoms

The atoms represent the things that can be true in some states

Only finitely many ground atoms, so only finitely many possible states

s1 = {attached(p1,loc1), in(c1,p1), in(c3,p1), top(c3,p1),       
 on(c3,c1), on(c1,pallet), attached(p2,loc1), in(c2,p2),    
 top(c2,p2), on(c2,pallet), belong(crane1,loc1),            
 empty(crane1), adjacent(loc1,loc2), adjacent(loc2,loc1),   
 at(r1,loc2), occupied(loc2), unloaded(r1)}
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Operators

 An operator is a triple o = (name(o), precond(o), effects(o))

name(o): a syntactic expression of the form n(x1,…,xk)

(x1,…,xk) is a list of every variable symbol (parameter) that appears in o
precond(o):  preconditions

literals that must be true in order to use the operator
effects(o): effects

literals the operator will make true

 
          Example

take(k,l,c,d,p)
  ;; crane k at location l takes c off of d in pile p
  precond: belong(k,l), attached(p,l),empty(k), top(c,p),       

       on(c,d)
  effects: holding(k,c), ¬empty(k), ¬in(c,p), ¬top(c,p),        

       ¬on(c,d), top(d,p)



COMP4418, October 2019 15Planning

© Michael Thielscher 2015COMP4418 19T2

     An action is a ground instance (via a substitution) of an operator

Let σ  = {k / crane1, l / loc1, c / c3, d / c1, p / p1}

Then  take(k,l,c,d,p)σ  is the following action:

take(crane1,loc1,c3,c1,p1)

    precond: belong(crane1,loc1), attached(p1,loc1), empty(crane1),        
   top(c3,p1), on(c3,c1)

      effects: holding(crane1,c3), ¬empty(crane1), ¬in(c3,p1),                   

 ¬top(c3,p1), ¬on(c3,c1), top(c1,p1)

take(k,l,c,d,p)
  ;; crane k at location l takes c off of d in pile p
  precond: belong(k,l), attached(p,l),empty(k), top(c,p),       

       on(c,d)
  effects: holding(k,c), ¬empty(k), ¬in(c,p), ¬top(c,p),        

       ¬on(c,d), top(d,p)

Actions



COMP4418, October 2019 16Planning

© Michael Thielscher 2015COMP4418 19T2

Applicability and Result of Actions

Let S be a set of literals.  Then
S+  =  {atoms that appear positively in S}
S–  =  {atoms that appear negatively in S}

Let a be an operator or action. Then
precond+(a)   =  {atoms that appear positively in a’s preconditions}
precond–(a)   =  {atoms that appear negatively in a’s preconditions}
effects+(a)   =  {atoms that appear positively in a’s effects}
effects–(a)   =  {atoms that appear negatively in a’s effects}

Action a is applicable to (or executable in) S if

precond+(a) ⊆ s  

precond–(a) ∩ s = ∅

The result of applying action a to state S is
γ(s,a) = (s  \ effects–(a)) ∪ effects+(a)
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Example: Applicability

An action:
take(crane1,loc1,c3,c1,p1)

  precond: belong(crane,loc1), 
attached(p1,loc1),
empty(crane1), top(c3,p1),
on(c3,c1)

   effects: holding(crane1,c3), 
¬empty(crane1),
¬in(c3,p1), ¬top(c3,p1), 
¬on(c3,c1), top(c1,p1)

A state it’s applicable to

s1 = {attached(p1,loc1), in(c1,p1), in(c3,p1), 

top(c3,p1), on(c3,c1), on(c1,pallet), 
attached(p2,loc1), in(c2,p2), 
top(c2,p2), on(c2,pallet), 
belong(crane1,loc1), empty(crane1), 
adjacent(loc1,loc2), 
adjacent(loc2,loc1), at(r1,loc2), 
occupied(loc2, unloaded(r1)}



COMP4418, October 2019 18Planning

© Michael Thielscher 2015COMP4418 19T2

Example: Result

take(crane1,loc1,c3,c1,p1)

  precond: belong(crane,loc1), 
attached(p1,loc1),
empty(crane1), top(c3,p1),
on(c3,c1)

   effects: holding(crane1,c3), 
¬empty(crane1),
¬in(c3,p1), ¬top(c3,p1), 
¬on(c3,c1), top(c1,p1)

s2 = {attached(p1,loc1), in(c1,p1), in(c3,p1), 

top(c3,p1), on(c3,c1), on(c1,pallet), 
attached(p2,loc1), in(c2,p2), 
top(c2,p2), on(c2,pallet), 
belong(crane1,loc1), empty(crane1), 
adjacent(loc1,loc2), 
adjacent(loc2,loc1), at(r1,loc2), 
occupied(loc2, unloaded(r1), 
holding(crane1,c3), top(c1,p1)}



COMP4418, October 2019 19Planning

© Michael Thielscher 2015COMP4418 19T2

Exercise
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Exercise: The Blocks World
Infinitely wide table, finite number of children’s blocks

Ignore where a block is located on the table

A block can sit on the table or on another block

There’s a robot gripper that can hold at most one block

Want to move blocks from one configuration to another

e.g.,

initial state     goal

c

a

bc

a b e

d
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Exercise: Classical Representation – Symbols
Constant symbols:

The blocks: a, b, c, d, e

Dynamic relations?

c

a b e

d
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Exercise: Classical Operators
c

a b

c
a b

c

a
b

c

a b

unstack(c,a)
stack(c,a)

putdown(b)
pickup(b)

d

e

d

e

d

e

d

e

Preconditions and effects?
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Summary: Planning Problems 

Given a planning domain (language L, operators O)

Representation of a planning problem: a triple P = (O,s0,g)

 O is the collection of operators

 s0 is a state (the initial state)

 g is a set of literals (the goal formula)
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Plans and Solutions

Let  P = (O,s0,g) be a planning problem

Plan: any sequence of actions π  =  〈a1, a2, …, an〉 such that
each ai is an instance of an operator in O

Plan π is a solution for P = (O,s0,g) if it is executable and achieves g

i.e., if there are states s0, s1, …, sn such that
γ (s0,a1) = s1

γ (s1,a2) = s2

⁞
γ (sn–1,an) = sn

sn satisfies g
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Example: The 5 DWR Operators
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Example

Let P = (O, s0, g), where

O = {the 5 DWR operators}

s0 = {attached(p1,loc1), in(c1,p1), 

in(c3,p1), top(c3,p1), 

on(c3,c1), on(c1,pallet), 

attached(p2,loc1), 

in(c2,p2), top(c2,p2), 

on(c2,pallet), 

belong(crane1,loc1), empty(crane1), 

adjacent(loc1,loc2), adjacent(loc2,loc1), 

at(r1,loc2), occupied(loc2), unloaded(r1)}

 g = {loaded(r1,c3), at(r1,loc2)}
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s1 
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Exercise
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Exercise: Plans

initial state     goal

Solution?

c

a

bc

a b e

d
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Use ground atoms for properties that do not change, e.g., adjacent(loc1,loc2)

For properties that can change, assign values to state variables

Like fields in a record structure

State-Variable Representation

s1 = {top(p1)=c3,
      cpos(c3)=c1,
      cpos(c1)=pallet,
      holding(crane1)=nil,
      rloc(r1)=loc2,
      loaded(r1)=nil, …}
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Expressive Power

Any problem that can be represented in one representation can also be 
represented in the other

Can convert in linear time and space

Classical
representation

State-variable
representation

P(x1,…,xn)
becomes

fP(x1,…,xn)=1

f(x1,…,xn)=y
becomes

Pf(x1,…,xn,y)
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Comparison

Classical representation
The most popular for classical planning, partly for historical reasons

State-variable representation
Equivalent to classical representation in expressive power
Less natural for logicians, more natural for engineers and most computer 
scientists
Useful in non-classical planning problems as a way to handle numbers, 
functions, time
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State-Space Planning
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Search Algorithms

 Search tree

nodes = states

edges = actions

s0

s1

s2

s3

a1

a2

a3

s4

s5

sg

a4

a5 …
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Search Algorithms

 Search tree

nodes = states

edges = actions

Most common search method: depth-first search

In general, sound but not complete

But classical planning has only finitely many states

       can make depth-first search complete by doing loop-checking

s0

s1

s2

s3

a1

a2

a3

s4

s5

sg

a4

a5 …
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Exercise
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Exercise: Interchange Values of Variables

Operator assign(v,w,x,y)

  precond:  value(v,x), value(w,y)

  effects:  ¬value(v,x), value(v,y)

Initial state s0 = { value(a,3), value(b,5), value(c,0) }

Goal g  = { value(a,5), value(b,3) }

In the search tree for this planning problem,

what is the length of the shortest path to a solution?

what is the length of the longest path in the tree?
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Planning with Heuristic Search

Explicitly search with heuristic h(s) that estimates cost from s to goal

General idea:

heuristic function = length of optimal plan for a relaxed problem

Example:

Manhattan distance in 15-puzzle

How to get such heuristics automatically?
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General-Purpose Heuristics for Classical Planning

Operator  assign(v,w,x,y)

         precond:  value(v,x), value(w,y)

         effects:  ¬value(v,x), value(v,y)

s0 = { value(a,3), value(b,5), value(c,0) }, g = { value(a,5), value(b,3) }

Optimal relaxed plan: assign(a,b,3,5), assign(b,a,5,3), hence h(s0) = 2

Automatic extraction of informative heuristic function from the problem P itself

Most common relaxation in planning: ignore all negative effects of the operators.

  Let P+ be obtained from planning problem P by dropping the negative effects.

  If c*(P+,s) is optimal cost of P+ with initial state s, then the heuristic is set to

 h(s) = c*(P+,s)

This heuristic is intractable in general, but easy to approximate

 Example.
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Example
Operator  assign(v,w,x,y)

         precond:  value(v,x), value(w,y)

         effects:  ¬value(v,x), value(v,y)

g = { value(a,5), value(b,3) }

s0 = { value(a,3), value(b,5), value(c,0) }

Consider all possible successor states after one action:

s1 = { value(a,5), value(b,5), value(c,0) } h(s1) = ∞

s2 = { value(a,3), value(b,3), value(c,0) } h(s2) = ∞

s3 = { value(a,0), value(b,5), value(c,0) } h(s3) = ∞

s4 = { value(a,3), value(b,5), value(c,3) } h(s4) = 2

s5 = { value(a,3), value(b,0), value(c,0) } h(s5) = ∞

s6 = { value(a,3), value(b,5), value(c,5) } h(s6) = 2

No relaxed plan exists
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Example
Operator  assign(v,w,x,y)

         precond:  value(v,x), value(w,y)

         effects:  ¬value(v,x), value(v,y)

g = { value(a,5), value(b,3) }

s4 = { value(a,3), value(b,5), value(c,3) }

Consider all possible successor states after next action:

s7 = { value(a,5), value(b,5), value(c,3) } h(s1) = 1∞

s8 = { value(a,3), value(b,3), value(c,3) } h(s8) = ∞

s9 = { value(a,3), value(b,5), value(c,5) } h(s9) = 2∞a

One of the successor states of s7 is a goal state:

s10 = { value(a,5), value(b,3), value(c,3) }
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Planning-Graph Techniques
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History

Before Graphplan came out, most planning researchers were working 
on Plan Space Search-like planners

Graphplan caused a sensation because it was so much faster

Many subsequent planning systems have used ideas from it
IPP, STAN, GraphHTN, SGP, Blackbox, Medic, TGP, LPG

Many of them even much faster than the original Graphplan
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A standard tree search may try lots of actions that are unrelated to the goal

One way to reduce branching factor:

First create a relaxed problem

Remove some restrictions of the original problem 

    Want the relaxed problem to be easy to solve (polynomial time)

The solutions to the relaxed problem will include all solutions to the original 
problem

Then do a modified version of the original search

Restrict its search space to include only those actions that occur in solutions 
to the relaxed problem

Motivation

s0

s1

s2

s3

a1

a2

a3

s4

s5

sg

a4

a5 …
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Graphplan
procedure Graphplan:

for k = 0, 1, 2, …

Graph expansion:

     create a “planning graph” that contains k “levels”

Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

If it does, then

     do solution extraction:
- backward search,

modified to consider
only the actions in
the planning graph

- if we find a solution,
then return it

relaxed
problem
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state-level 0

have(cake)

¬eaten(cake)

Example: Have the Cake and Eat it Too

     Operator Name Preconditions   Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }
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state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1

Example: Have the Cake and Eat it Too

     Operator Name Preconditions   Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }
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state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1

"mutex": actions cannot
              occur together

Example: Have the Cake and Eat it Too

     Operator Name Preconditions   Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }



COMP4418, October 2019 49Planning

© Michael Thielscher 2015COMP4418 19T2

state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1
"mutex": fluents cannot be
              obtained together

Example: Have the Cake and Eat it Too

     Operator Name Preconditions   Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }
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state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1

Example: Have the Cake and Eat it Too

     Operator Name Preconditions   Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }

Solution extraction not 
called since goals are mutex
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Example: Have the Cake and Eat it Too

state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1 action-level 2 state-level 2

eat(cake)

bake(cake)
have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

     Operator Name Preconditions   Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }
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Example: Have the Cake and Eat it Too

state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1 action-level 2 state-level 2

eat(cake)

bake(cake)
have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

     Operator Name Preconditions   Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }
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Example: Have the Cake and Eat it Too

state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1 action-level 2 state-level 2

eat(cake)

bake(cake)
have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

     Operator Name Preconditions   Effects

eat(c) have(c) ¬have(c), eaten(c)

bake(c) ¬have(c) have(c)

Also have the maintenance actions: one for each literal

s0 = { have(cake) }

g = { have(cake), eaten(cake) }
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state-level i

effects
Maintenance action: for the case 
where a literal remains unchanged

state-level i -1

state-level 0 (the literals true in s0)

The Planning Graph

Search space for a relaxed version of the planning problem

Alternating layers of ground literals and actions

Nodes at action-level i : actions that might be possible to execute at time i

Nodes at state-level i : literals that might possibly be true at time i

Edges: preconditions and effects

action-level i

preconditions
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Mutual Exclusion

Two actions at the same action-level are mutex if
1. Inconsistent effects: an effect of one negates an effect of the other
2. Interference: one deletes a precondition of the other
3. Competing needs: they have mutually exclusive preconditions

Otherwise they don’t interfere with each other
Both may appear in a solution plan

Two literals at the same state-level are mutex if
4. Inconsistent support: one is the negation of the other,

or all ways of achieving them are pairwise mutex

Recursive
propagation
of mutexes
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Mutexes in the 
Cake-Example

Level     Mutexes    Rule

  A1   eat(cake)         mhave(cake) 1 (also 2)

  A1   eat(cake)         m¬eaten(cake) 1, 2

  S1   have(cake)      ¬have(cake) 4

  S1   eaten(cake)     ¬eaten(cake) 4

  S1   have(cake)      eaten(cake) 4

  S1   ¬have(cake)    ¬eaten(cake) 4

  A2   bake(cake)      eat(cake) 1, 3

  A2   bake(cake)      m¬have(cake) 1, 2

  A2   bake(cake)      mhave(cake) 2

  A2   eat(cake)         mhave(cake) 1, 2

  A2   eat(cake)         m¬have(cake) 2, 3

  A2   eat(cake)         meaten(cake) 3

  A2   eat(cake)         m¬eaten(cake) 1, 2

  A2   mhave(cake)        m¬have(cake) 1, 2, 3

  A2   meaten(cake)       m¬eaten(cake) 1, 2, 3

  S2   have(cake)      ¬have(cake) 4

  S2   eaten(cake)     ¬eaten(cake) 4

  S2   ¬have(cake)     ¬eaten(cake) 4



COMP4418, October 2019 57Planning

© Michael Thielscher 2015COMP4418 19T2

Example: Have the Cake and Eat it Too

state-level 0

have(cake)

action-level 1

eat(cake)

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake) ¬eaten(cake)

state-level 1 action-level 2 state-level 2

eat(cake)

bake(cake)
have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

Solution extraction succeeds

( = plan without mutexes)
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Solution Extraction

procedure Solution-extraction(g,j)

if j = 0 then return the solution

for each literal l in g

nondeterministically choose an action
to use in state s j–1 to achieve l

if any pair of chosen actions are mutex

then backtrack

g' := {the preconditions of
      the chosen actions}

Solution-extraction(g', j–1)

end Solution-extraction

The level of the state sj

The set of goals we are 
trying to achieve

state-
level
i-1

action-
level

i

state-
level

i

A real action or a maintenance action
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Comparison with State-Space Planning

Advantage: 

The backward-search part (solution extraction) of Graphplan—which is the 
hard part—will only look at the actions in the planning graph

smaller search space than state-space planning; thus faster

Disadvantage: 

To generate the planning graph, Graphplan creates a huge number of 
ground atoms

Many of them may be irrelevant

For classical planning, the advantage outweighs the disadvantage

GraphPlan solves classical planning problems much faster than SSP without 
heuristcs
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Summary

Representations for classical planning

Classical representation

State-variable representation

State-space planning

with heuristics

Planning graphs

Creating the graph

Adding mutexes

Searching the graph
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