Planning

- Representations for classical planning
- Modern heuristics for state-space planning
- Planning graphs: a modern planning technique

Background reading

Automated Planning by Malik Ghallab, Dana Nau, Paolo Traverso, Morgan Kaufmann 2004. Chapters 1, 2, 4 & 6

Slides designed by Michael Thielscher

Some Dictionary Definitions of "Plan"

plan n.

- 1. A scheme, program, or method worked out beforehand for the accomplishment of an objective: *a plan of attack.*
- 2. A proposed or tentative project or course of action: *had no plans for the evening.*

[a representation] of future behaviour ... usually a set of actions, with temporal and other constraints on them, for execution by some agent or agents.
Austin Tate, *MIT Encyclopaedia of the Cognitive Sciences*, 1999

Planning for an Agent/Robot in a Dynamic World

 S is an abstraction that deals only with the aspects that the planner needs to reason about

- Example $\Box = (S,A,\Box)$:
 - $S = \{S_0, ..., S_5\}$
 - A = {move1, move2, put, take, load, unload}
 - I: see the arrows

Dock Worker Robots (DWR) example

 Classical plan: a sequence of actions

 $\langle take, move1, load, move2 \rangle$

Planning

Domain-Specific Planners

- Many successful real-world planning systems work this way
 - Mars exploration, sheet-metal bending, playing bridge, etc.
- Often use problem-specific techniques that are difficult to generalise to other planning domains

Planning

Domain-Independent Planners

- No domain-specific knowledge except the description of the system I
- In practice,
 - Not feasible to make domainindependent planners work well in all possible planning domains

- Make simplifying assumptions to restrict the set of domains
 - Classical planning
 - Historical focus of most research on automated planning

Classical Planning

 Reduces to the following problem: Given □, initial state s₀, and goal states S_g, find a sequence of actions (a₁, a₂, ... a_n) that produces a sequence of state transitions (s₀, s₁, s₂, ..., s_n) such that s_n ∈ S_g

Is this trivial?

- Generalise the earlier example:
 - Five locations, three robot carts, 100 containers, three piles
 10²⁷⁷ states

 Automated-planning research has been heavily dominated by classical planning. There are dozens of different algorithms. 8

Representations for Classical Planning

Classical Representations: Motivation

In most problems, far too many states to try to represent all of them explicitly as S₀, S₁, S₂, ...

represent each state as a set of **atomic features**

- Define a set of **operators** that can be used to compute state-transitions
- Don't give all of the states explicitly
 - Just give the initial state
 - Use the operators to generate the other states as needed

Classical Representation

- Language of first-order logic but without function symbols
 initely many predicate symbols and constant symbols
- Example: the DWR domain
 - Locations: I1, I2, ...
 - Containers: c1, c2, …
 - Piles: p1, p2, …
 - Robot carts: r1, r2, …
 - Cranes: k1, k2, …

Planning

Example (cont'd)

- Fixed relations: same in all states adjacent(*I*,*I*') attached(*p*,*I*) belong(*k*,*I*)
- Dynamic relations: differ from one state to another

States

A state is a set s of ground atoms

- The atoms represent the things that can be true in some states
- Only finitely many ground atoms, so only finitely many possible states

Operators

An **operator** is a triple *o* = (name(*o*), precond(*o*), effects(*o*))

- name(o): a syntactic expression of the form $n(x_1,...,x_k)$
 - (x_1, \ldots, x_k) is a list of every variable symbol (parameter) that appears in o
- precond(o): preconditions
 - Iiterals that must be true in order to use the operator
- effects(o): effects
 - Iiterals the operator will make true

Example

<pre>take(k,l,c,</pre>	d,p)
;; crane	k at location l takes c off of d in pile p
precond:	<pre>belong(k,l), attached(p,l),empty(k), top(c,p), on(c,d)</pre>
effects:	<pre>holding(k,c), ¬empty(k), ¬in(c,p), ¬top(c,p), ¬on(c,d), top(d,p)</pre>

Actions

An action is a ground instance (via a substitution) of an operator

```
take(k,l,c,d,p)
;; crane k at location l takes c off of d in pile p
precond: belong(k,l), attached(p,l),empty(k), top(c,p),
on(c,d)
effects: holding(k,c), ¬empty(k), ¬in(c,p), ¬top(c,p),
¬on(c,d), top(d,p)
```

- Let $\sigma = \{k | crane1, l | loc1, c | c3, d | c1, p | p1\}$
- Then take $(k, l, c, d, p)\sigma$ is the following action:

take(crane1,loc1,c3,c1,p1)

precond: belong(crane1,loc1), attached(p1,loc1), empty(crane1), top(c3,p1), on(c3,c1)

effects: holding(crane1,c3), \neg empty(crane1), \neg in(c3,p1), \neg top(c3,p1), \neg on(c3,c1), top(c1,p1)

Applicability and Result of Actions

- Let S be a set of literals. Then
 - $S^+ = \{\text{atoms that appear positively in } S\}$
 - $S^- = \{\text{atoms that appear negatively in } S\}$
- Let *a* be an operator or action. Then

precond⁺(a) = {atoms that appear positively in a's preconditions}

- precond⁻(a) = {atoms that appear negatively in a's preconditions}
- effects⁺(a) = {atoms that appear positively in a's effects}
- effects $(a) = \{atoms that appear negatively in a's effects\}$
 - Action a is applicable to (or executable in) S if
 - precond⁺(a) \subseteq s
 - precond-(a) \cap s = \emptyset
 - The result of applying action a to state S is
 - $\gamma(s,a) = (s \setminus effects^{-}(a)) \cup effects^{+}(a)$

Example: Applicability

An action:

take(crane1,loc1,c3,c1,p1)

- precond: belong(crane,loc1), attached(p1,loc1), empty(crane1), top(c3,p1), on(c3,c1)effects: holding(crane1,c3), \neg empty(crane1), ¬in(c3,p1), ¬top(c3,p1), $\neg on(c3,c1), top(c1,p1)$
- A state it's applicable to
 - $s_1 = \{$ **attached(p1,loc1)**, in(c1,p1), in(c3,p1), **top(c3,p1)**, **on(c3,c1)**, on(c1,pallet), attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet),belong(crane1,loc1), empty(crane1), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc2), occupied(loc2, unloaded(r1)}

Example: Result

loc2

take(crane1,loc1,c3,c1,p1)
precond: belong(crane,loc1),
 attached(p1,loc1),
 empty(crane1), top(c3,p1),
 on(c3,c1)
effects: holding(crane1,c3),
 ¬empty(crane1),
 ¬in(c3,p1), ¬top(c3,p1),
 ¬on(c3,c1), top(c1,p1)

 $s_2 = \{ attached(p1,loc1), in(c1,p1), in(c3,p1), top(c3,p1), on(c3,c1), on(c1,pallet), attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1), empty(crane1), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc2), occupied(loc2, unloaded(r1), holding(crane1,c3), top(c1,p1) \}$

loc1

Exercise

Exercise: The Blocks World

- Infinitely wide table, finite number of children's blocks
- Ignore where a block is located on the table
- A block can sit on the table or on another block
- There's a robot gripper that can hold at most one block
- Want to move blocks from one configuration to another

Exercise: Classical Representation – Symbols

- Constant symbols:
 - The blocks: a, b, c, d, e
- Dynamic relations?

Exercise: Classical Operators

Preconditions and effects?

Summary: Planning Problems

Given a planning domain (language *L*, operators *O*)

- **Representation** of a planning problem: a triple $P = (O, s_0, g)$
 - *O* is the collection of operators
 - s_0 is a state (the initial state)
 - g is a set of literals (the goal formula)

Plans and Solutions

Let $P = (O, s_0, g)$ be a planning problem

- **Plan**: any sequence of actions $\pi = \langle a_1, a_2, ..., a_n \rangle$ such that each a_i is an instance of an operator in *O*
- Plan π is a **solution** for $P = (O, s_0, g)$ if it is executable and achieves g
 - i.e., if there are states $s_0, s_1, ..., s_n$ such that $\gamma(s_0, a_1) = s_1$ $\gamma(s_1, a_2) = s_2$ \vdots $\gamma(s_{n-1}, a_n) = s_n$ s_n satisfies g

Example: The 5 DWR Operators

```
move(r, l, m)
   :: robot r moves from location l to location m
   precond: adjacent(l, m), at(r, l), \neg occupied(m)
   effects: at(r, m), occupied(m), \neg occupied(l), \neg at(r, l)
load(k, l, c, r)
   ;; crane k at location l loads container c onto robot r
   precond: belong(k, l), holding(k, c), at(r, l), unloaded(r)
   effects: empty(k), \neg holding(k, c), loaded(r, c), \neg unloaded(r)
unload(k, l, c, r)
   ;; crane k at location l takes container c from robot r
   precond: belong(k, l), at(r, l), loaded(r, c), empty(k)
   effects: \neg \operatorname{empty}(k), holding(k, c), unloaded(r), \neg \operatorname{loaded}(r, c)
put(k, l, c, d, p)
   ;; crane k at location l puts c onto d in pile p
   precond: belong(k, l), attached(p, l), holding(k, c), top(d, p)
   effects: \neg \operatorname{holding}(k, c), \operatorname{empty}(k), \operatorname{in}(c, p), \operatorname{top}(c, p), \operatorname{on}(c, d), \neg \operatorname{top}(d, p)
take(k, l, c, d, p)
   ;; crane k at location l takes c off of d in pile p
   precond: belong(k, l), attached(p, l), empty(k), top(c, p), on(c, d)
   effects: holding(k, c), \neg \text{ empty}(k), \neg \text{ in}(c, p), \neg \text{ top}(c, p), \neg \text{ on}(c, d), \text{top}(d, p)
```

Example

- Let $P = (O, s_0, g)$, where
 - *O* = {the 5 DWR operators}
 - $S_0 = \{ \text{attached}(p1, \text{loc1}), \text{ in}(c1, p1),$ in(c3, p1), top(c3, p1), on(c3, c1), on(c1, pallet), attached(p2, \text{loc1}), in(c2, p2), top(c2, p2), on(c2, pallet), belong(crane1, \text{loc1}), empty(crane1), adjacent(loc1, \text{loc2}), adjacent(loc2, \text{loc1}), at(r1, \text{loc2}), occupied(loc2), unloaded(r1) \}
 - $g = \{ loaded(r1,c3), at(r1,loc2) \}$

COMP4418, October 2019

Two *redundant* solutions (can remove actions and still have a solution):

(move(r1,loc2,loc1),take(crane1,loc1,c3,c1,p1), move(r1,loc1,loc2), move(r1,loc2,loc1), load(crane1,loc1,c3,r1), move(r1,loc1,loc2)

(take(crane1,loc1,c3,c1,p1), put(crane1,loc1,c3,c2,p2), move(r1,loc2,loc1), take(crane1,loc1,c3,c2,p2), load(crane1,loc1,c3,r1), move(r1,loc1,loc2)

 S_1 crane1 c2 c3 c1r1 p1 loc1 loc2 crane1 r1c3 p1 loc1 loc2

- A solution that is both *irredundant* and *shortest*: (move(r1,loc2,loc1), take(crane1,loc1,c3,c1,p1),load(crane1, loc1, c3, r1), move(r1, loc1, loc2)
- Are there any other shortest solutions? Are irredundant solutions always shortest?

Planning

Exercise

Planning

Exercise: Plans

Solution?

State-Variable Representation

- Use ground atoms for properties that do not change, e.g., adjacent(loc1,loc2)
- For properties that can change, assign values to state variables
 - Like fields in a record structure

```
move(r, l, m)
;; robot r at location l moves to an adjacent location m
precond: rloc(r) = l, adjacent(l, m)
effects: rloc(r) \leftarrow m
```


Expressive Power

- Any problem that can be represented in one representation can also be represented in the other
- Can convert in linear time and space

Comparison

- Classical representation
 - The most popular for classical planning, partly for historical reasons

- State-variable representation
 - Equivalent to classical representation in expressive power
 - Less natural for logicians, more natural for engineers and most computer scientists
 - Useful in non-classical planning problems as a way to handle numbers, functions, time

State-Space Planning

34

Search Algorithms

Search tree

- nodes = states
- edges = actions

35

Search Algorithms

Search tree

- nodes = states
- edges = actions

- Most common search method: depth-first search
 - In general, sound but not complete
 - But classical planning has only finitely many states

 \rightarrow can make depth-first search complete by doing loop-checking

Exercise

Exercise: Interchange Values of Variables

- Operator assign(v,w,x,y)
 - precond: value(v,x), value(w,y)
 - effects: ¬value(v,x), value(v,y)
- Initial state $s_0 = \{ value(a,3), value(b,5), value(c,0) \}$
- Goal $g = \{ value(a,5), value(b,3) \}$
- In the search tree for this planning problem,
 - what is the length of the shortest path to a solution?
 - what is the length of the longest path in the tree?

Planning with Heuristic Search

- Explicitly search with heuristic h(s) that estimates cost from s to goal
- General idea:

heuristic function = length of optimal plan for a **relaxed problem**

- Example:
 - Manhattan distance in 15-puzzle

How to get such heuristics automatically?

General-Purpose Heuristics for Classical Planning

- Automatic extraction of informative heuristic function from the problem P itself
- Most common relaxation in planning: ignore all negative effects of the operators.
 Let P⁺ be obtained from planning problem P by dropping the negative effects.
 If c*(P⁺,s) is optimal cost of P⁺ with initial state s, then the heuristic is set to

 $h(s) = c^{*}(P^{+},s)$

This heuristic is intractable in general, but easy to approximate

Example.

Operator assign(v,w,x,y)

- s₀ = { value(a,3), value(b,5), value(c,0) }, g = { value(a,5), value(b,3) }
- Optimal relaxed plan: assign(a,b,3,5), assign(b,a,5,3), hence $h(s_0) = 2$

Example

- Operator assign(v,w,x,y) precond: value(v,x), value(w,y) effects: ¬value(v,x), value(v,y)
- g = { value(a,5), value(b,3) }
- s₀ = { value(a,3), value(b,5), value(c,0) }

Consider all possible successor states after one action:

$$s_1 = \{ value(a,5), value(b,5), value(c,0) \}$$
 $h(s_1) = \infty$ $s_2 = \{ value(a,3), value(b,3), value(c,0) \}$ $h(s_2) = \infty$ $s_3 = \{ value(a,0), value(b,5), value(c,0) \}$ $h(s_3) = \infty$ $s_4 = \{ value(a,3), value(b,5), value(c,3) \}$ $h(s_4) = 2$ $s_5 = \{ value(a,3), value(b,0), value(c,0) \}$ $h(s_5) = \infty$ $s_6 = \{ value(a,3), value(b,5), value(c,5) \}$ $h(s_6) = 2$

41

Example

- Operator assign(v,w,x,y) precond: value(v,x), value(w,y) effects: ¬value(v,x), value(v,y)
- g = { value(a,5), value(b,3) }
- s₄ = { value(a,3), value(b,5), value(c,3) }

Consider all possible successor states after next action:

- $s_7 = \{ value(a,5), value(b,5), value(c,3) \}$ $h(s_1) = 1$
- $s_8 = \{ value(a,3), value(b,3), value(c,3) \}$ $h(s_8) = \infty$
- $s_9 = \{ value(a,3), value(b,5), value(c,5) \}$ $h(s_9) = 2$

One of the successor states of s_7 is a goal state:

$$s_{10} = \{ value(a,5), value(b,3), value(c,3) \}$$

Planning-Graph Techniques

History

- Before Graphplan came out, most planning researchers were working on Plan Space Search-like planners
- **Graphplan** caused a sensation because it was so much faster
- Many subsequent planning systems have used ideas from it
 - IPP, STAN, GraphHTN, SGP, Blackbox, Medic, TGP, LPG
 - Many of them even much faster than the original Graphplan

Planning

Motivation

• A standard tree search may try lots of actions that are unrelated to the goal

- One way to reduce branching factor:
- First create a relaxed problem
 - Remove some restrictions of the original problem

 \implies Want the relaxed problem to be easy to solve (polynomial time)

- The solutions to the relaxed problem will include all solutions to the original problem
- Then do a modified version of the original search
 - Restrict its search space to include only those actions that occur in solutions to the relaxed problem

Graphplan

procedure Graphplan:

- for *k* = 0, 1, 2, ...
 - Graph expansion:

 \rightarrow create a "planning graph" that contains k "levels"

- Check whether the planning graph satisfies a necessary (but insufficient) condition for plan existence
- If it does, then

do **solution extraction**:

- backward search, modified to consider only the actions in the planning graph
- if we find a solution, then return it

relaxed problem

- Operator NamePreconditionsEffectseat(c)have(c)¬have(c), eaten(c)bake(c)¬have(c)have(c)
- Also have the maintenance actions: one for each literal
- s0 = { have(cake) }
- g = { have(cake), eaten(cake) }

state-level 0

have(cake)

- Operator NamePreconditionsEffectseat(c)have(c)¬have(c), eaten(c)bake(c)¬have(c)have(c)
- Also have the maintenance actions: one for each literal
- s0 = { have(cake) }

COMP4418 19T2

- Operator NamePreconditionsEffectseat(c)have(c)¬have(c), eaten(c)bake(c)¬have(c)have(c)
- Also have the maintenance actions: one for each literal
- s0 = { have(cake) }

Solution extraction **not** called since goals are mutex

52

The Planning Graph

- Search space for a relaxed version of the planning problem
- Alternating layers of ground literals and actions
 - Nodes at action-level *i* : actions that might be possible to execute at time *i*
 - Nodes at state-level i: literals that might possibly be true at time i
 - Edges: preconditions and effects

Planning

Mutual Exclusion

- Two actions at the same action-level are mutex if
 - 1. Inconsistent effects: an effect of one negates an effect of the other
 - 2. Interference: one deletes a precondition of the other
 - 3. Competing needs: they have mutually exclusive preconditions
- Otherwise they don't interfere with each other
 - Both may appear in a solution plan
- Two literals at the same state-level are mutex if
 - 4. Inconsistent support: one is the negation of the other, or all ways of achieving them are pairwise mutex

Recursive propagation of mutexes

Mutexes in the Cake-Example

	Planning			56
Level	Mutexes		Rule	
A1	eat(cake)	m _{have(cake)}	1 (also 2)	
A1	eat(cake)	m _{¬eaten(cake)}	1, 2	
S1	have(cake)	¬have(cake)	4	
S1	eaten(cake)	¬eaten(cake)	4	
S1	have(cake)	eaten(cake)	4	
S1	¬have(cake)	¬eaten(cake)	4	
A2	bake(cake)	eat(cake)	1, 3	
A2	bake(cake)	m _{¬have(cake)}	1, 2	
A2	bake(cake)	m _{have(cake)}	2	
A2	eat(cake)	m _{have(cake)}	1, 2	
A2	eat(cake)	m _{¬have(cake)}	2, 3	
A2	eat(cake)	m _{eaten(cake)}	3	
A2	eat(cake)	m _{¬eaten(cake)}	1, 2	
A2	m _{have(cake)}	m _{¬have(cake)}	1, 2, 3	
A2	m _{eaten(cake)}	m _{¬eaten(cake)}	1, 2, 3	
S2	have(cake)	¬have(cake)	4	
S2	eaten(cake)	¬eaten(cake)	4	
S2	¬have(cake)	¬eaten(cake)	4	.5

Solution extraction succeeds

(= plan without mutexes)

Planning Solution Extraction

Comparison with State-Space Planning

- Advantage:
 - The backward-search part (solution extraction) of Graphplan—which is the hard part—will only look at the actions in the planning graph
 - smaller search space than state-space planning; thus faster
- Disadvantage:
 - To generate the planning graph, Graphplan creates a huge number of ground atoms
 - Many of them may be irrelevant
- For classical planning, the advantage outweighs the disadvantage
 - GraphPlan solves classical planning problems much faster than SSP without heuristcs

Summary

- Representations for classical planning
 - Classical representation
 - State-variable representation
- State-space planning
 - with heuristics
- Planning graphs
 - Creating the graph
 - Adding mutexes
 - Searching the graph