
Week2 1

Number Systems

& Encoding

Lecturer: Sri Parameswaran

Author: Hui Annie Guo

Modified: Sri Parameswaran

Week2 2

Lecture overview

 Basics of computing with digital systems

 Binary numbers

 Floating point numbers

 Encoding

 BCD

 ASCII

 Others

Week2 3

Number representation

 Any number can be represented in the form

of

ra0
baseradix,:r

ra...raara...rara
)...aa.a...aa(a

i

m

m

1

1-01

1n

1n

n

n

rm-1-011nn



 









Week2 4

Decimal

 Example

 The place values, from right to left, are 1, 10, 100,

1000

 The base or radix is 10

 All digits must be less than the base, namely,

0~9

7109105103
(3597)

23
10



Week2 5

Binary

 Example

 The place values, from right to left, are 1, 2, 4, 8

 The base or radix is 2

 All digits must be less than the base, namely,

0~1

1212021
(1011)

23
2



What are the first 16 binary integers?

Week2 6

Hexadecimal

 Example

 The place values, from right to left, are 1, 16, 162,

163

 The base or radix is 16

 All digits must be less than the base, namely,

0~9,A,B,C,D,E,F

111641621615

16416216F

(F24B)

23

23

16



 B

Week2 7

Which numbers to use?

 Digital machines use binary numbers

 Because digital devices can easily produce high

or low level voltages, which can represent 1 or 0.

 Hexadecimals or sometimes octal numbers

are used

 For neat binary representation

 For easy number conversion between binary and

decimal

 Humans are familiar with decimals

Week2 8

Number conversion

 From base r to base 10

 Using

 Examples:

m

m

1

1-01

1n

1n

n

n

m-1-011nn

ra...raara...rara

)...aa.a...aa(a













r

Week2 9

Examples

 From base 2

 From base 8

 From base 16

11.5211212021)(1011.1 -123

2 

25.517825808081(1005.2) 123

8  

26610160161(10A) 2

16 

Week2 10

Number conversion

 From base 10 to base r

Based on the formula

 For whole number

 Divide the number/quotient repeatedly by r until the

quotient is zero and the remainders are the digits of base

r number, in reverse order

 For fraction

 Multiply the number/fraction repeatedly by r, the whole

numbers of the products are the digits of the base r

fraction number

m

m

1

1-01

1n

1n

n

n

m-1-011nn

ra...raara...rara

)...aa.a...aa(a













r

Week2 11

Examples

 To base 2

 To convert (11.25)10 to binary

 For whole number (11)10 – division (by 2)

 11 1

 5 1

 2 0

 1 1

 0

 For fraction (0.25)10 – multiplication (by 2)

 0.25

 0.5 0

 0.0 1

 (11.25)10=(1011.01) 2

Week2 12

Examples

 To base 8

 To convert (99.25)10 to octal

 For whole number (99)10 – division (by 8)

 99 3

 12 4

 1 1

 0

 For fraction (0.25)10 – multiplication (by 8)

 0.25

 0.0 2

 (99.25)10=(143.2) 8

Week2 13

Examples

 To base 16

 To convert (99.25)10 to hexadecimal

 For whole number (99)10 – division (by 16)

 99 3

 6 6

 0

 For fraction (0.25)10 – multiplication (by 16)

 0.25

 0.0 4

 (99.25)10=(63.4) hex

Week2 14

Number conversion

 Between binary and octal

 Direct mapping based on the observation:

 The expressions in parentheses, being less than 8,

are the octal digits.

2

2

1

2

0

2

1

2

2

2

62

322

326

2

8)(mn08)(jkl

8)(fgh8)(cde8)(0ab

20)2n2(m

2l)2k2(jh)2g2(f

2e)2d2(c2b)2(a

jklmn)(abcdefgh.

















Week2 15

Number conversion

 Between binary and octal (cont.)

 Binary to octal

 The binary digits (“bits”) are grouped from the radix point,

three digits a group. Each group corresponds to an octal

digit.

 Octal to binary

 Each of octal digits is expanded to three binary digits

Week2 16

Examples

 Binary to octal

 Convert (10101100011010001000.10001) 2 to octal:

 010 101 100 011 010 001 000 . 100 010 2

 = 2 5 4 3 2 1 0 . 4 2 8

 = 2543210.42 8 .

 Note:

 Whole number parts are grouped from right to left.

The leading 0 is optional

 Fractional parts are grouped from left to right and

padded with 0s

Week2 17

Examples

 Octal to binary

 Convert 37425.62 8 to binary :

 3 7 4 2 5 . 6 2 8

 = 011 111 100 010 101 . 110 010 2

 = 11111100010101.11001 2

 Note:

 For whole number parts, the leading 0s can be

omitted.

 For fractional parts, the trailing 0s can be omitted.

Week2 18

Number conversion

 Between binary and hexadecimal

 Binary to hexadecimal

 The binary digits (“bits”) are grouped from the radix point,

four binary digits a group. Each group corresponds to a

hexadecimal digit.

 Hexadecimal to binary

 Each of hexadecimal digits is expanded to four binary

digits

Week2 19

Examples

 Binary to hexadecimal

 Convert 10101100011010001000.10001 2 to

hexadecimal :

 1010 1100 0110 1000 1000 . 1000 1000 2

 = A C 6 8 8 . 8 8 16

 = AC688.8816 .

 Note:

 Whole number parts are grouped from right to left.

The leading 0 is optional

 Fractional parts are grouped from left to right and

padded with 0s

Week2 20

Examples

 Hexadecimal to binary

 Convert 2F6A.78 16 to binary :

 2 F 6 A . 7 8 16

 = 0010 1111 0110 1010 . 0111 1000 2

 = 10111101101010.01111 2

 Note:

 For whole number parts, the leading 0s can be

omitted.

 For fractional parts, the trailing 0s can be omitted.

Week2 21

Conversion to binary via octal

The direct conversion
of 200110 to binary
looks like this ...
 2001

 1000 1

 500 0

 250 0

 125 0

 62 1

 31 0

 15 1

 7 1

 3 1

 1 1

 0 1

... and gives 11111010001.

It may be quicker to

convert to octal first ...
 2001

 250 1

 31 2

 3 7

 0 3

... yielding 3721 8 , which

can be instantly converted

to 11 111 010 001 2 .

Week2 22

Binary arithmetic operations

 Similar to decimal calculations

 Examples of addition and multiplication are

given in the next two slides.

Week2 23

Binary additions

 Example:

 Addition of two 4-bit unsigned binary numbers.

How many bits are required for holding the result?

 1001+0110 = (__________)

Week2 24

Binary multiplications

 Example:

 Multiplication of two 4-bit unsigned binary

numbers. How many bits are required for holding

the result?

 1001*0110 = (____________________)

Week2 25

Negative numbers &

subtraction

 Subtraction can be defined as addition of the additive

inverse:

 a – b = a + (-b)

 To eliminate subtraction in binary arithmetic, we can

represent –b by 2’s complement of b.

 In n-digit binary arithmetic, 2’s complement of b is

b* = 2n – b

 (b*)* = b

 The MSB (Most Significant Bit) of a 2’s complement number

is the sign bit

 For example, for a 4-bit 2’s complement system,

 (1001)  -7, (0111)  7

Week2 26

Examples

-- 2’s complement numbers

 Represent the following decimal numbers

using 8-bit 2’s complement format

(a) 0

(b) 7

(c) 127

(d) -12

 Can all the above numbers be represented

by 4-bits?

Week2 27

Examples
4-bit 2’s-complement

additions/subtractions

(1) 0101 - 0010 (5 - 2):

 0101

 + 1110 (= 0010*)

 = 10011

(2) 0010 - 0101 (2 - 5):

 0010

 + 1011 (= 0101*)

 = 1101 (= 0011*).

 Result means -3.

(3) -0101 - 0010 (-5 - 2):
 1011 (= 0101*)

 + 1110 (= 0010*)

 = 11001

 Result is 0111* (how?)

 and means -7.

(4) 0101 + 0010 (5 + 2):
This is trivial, as no conversions are

required. The result is 0111 (= 7).

Week2 28

Overflow in two’s-complement

 Assume a, b are positive numbers in an n-bit

2’s complement systems,

 For a+b

 If a+b > 2n-1 - 1, then a+b represents a negative

number; this is positive overflow.

 For -a-b

 If –a-b < 2n-1, then –a-b results in a positive number;

this is negative overflow.

Week2 29

Positive overflow detection

Addition of 4-bit positive

numbers without

overflow looks like

this:

 0xxx

 + 0xxx

 = 0xxx .

The “carry in” to the

MSB must have been

0, and the carry out is

0.

Positive overflow looks

like this:

 0xxx

 + 0xxx

 = 1xxx .

The “carry in” to the

MSB must have been

1, but the carry out is

0.

Overflow occurs when

 carry in carry out.

Week2 30

Negative overflow detection

Addition of negative
twos-complement
numbers without
overflow:

 1xxx

 + 1xxx

 = 11xxx .

The carry in to the MSB
must have been 1
(otherwise the sum bit
would be 0), and the
carry out is 1.

Negative overflow:

 1xxx

 + 1xxx

 = 10xxx .

The carry in to the MSB

must have been 0, but

the carry out is 1.

So negative overflow,

like positive, occurs

when

 carry in carry out.

Week2 31

Overflow detection

 For n-bit 2’s complement systems, condition

of overflow for both addition and substraction:

 The MSB has a carry-in different from the carry-

out

Week2 32

Examples

1. Do the following calculations, where all

numbers are 4-bit 2’s complement numbers.

Check whether there is any overflow.

(a) 1000-0001

(b) 1000+0101

(c) 0101+0110

Week2 33

Floating point numbers

 Example

 Normal Form

 Things to be encoded:

 sign bit

 significant

 exponent

1.01 x 2-12

Radix (base)
Binary point

 Integer

Exponent

 +(-) 1.x * 2 y

sign bit significand exponent

Week2 34

IEEE 754 FP standard—single

precision

 Bit 31 for sign

 S=1 for negative numbers, 0 for positive numbers

 Bits 23-30 for biased exponent

 The real exponent = E –127

 127 is called bias.

 Bits 0-22 for significand

 S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF
 31 30 23 22 1 0

Sign bit Biased Exponent Significand

bits

Week2 35

IEEE 754 FP Standard—Single

Precision (cont.)
The value, v, of the FP representation is determined as

follows:
 If 0<E<255 then V=(-1) S * 2 E-127 * 1.F

 where "1.F" is intended to represent the binary number created
by prefixing F with an implicit leading 1 and a binary point.

 If E = 255 and F is nonzero, then V=NaN ("Not a number")

 If E = 255 and F is zero and S is 1, then V= -Infinity

 If E = 255 and F is zero and S is 0, then V=Infinity

 If E = 0 and F is nonzero, then V=(-1) S * 2 -126 * 0.F. These are
unnormalized numbers or subnormal numbers.

 If E = 0 and F is 0 and S is 1, then V=-0

 If E = 0 and F is 0 and S is 0, then V=0

Week2 36

IEEE 754 FP Standard—Single

Precision (cont.)

 Subnormal numbers reduce the chance of

underflow.

 Without subnormal numbers, the smallest

positive number is 2 –127

 With subnormal numbers, the smallest positive

number is 0.00000000000000000000001 *2 -

126 =2 –(126+23) =2-149

Week2 37

Floating point additions

Given two decimal values

 a = 12.025

 b = 9.5

(a) What are their IEEE format representations?

(b) How to calculate a+b in the IEEE format?

And what is the result?

Week2 38

Encoding

 Beside numbers, a computer machine needs

to represent all types of information it is to

process.

 Examples:

Week2 39

Example 1

 To encode a decimal digit with 7 digits for 7-

segment display

S0

S6

S3

S1

S2 S4

S5

 A B C D S0 S1 S2 S3 S4 S5 S6

 0 0 0 0 1 1 1 1 1 1 0
 0 0 0 1 0 1 1 0 0 0 0
 0 0 1 0 1 1 0 1 1 0 1
 0 0 1 1 1 1 1 1 0 0 1
 0 1 0 0 0 1 1 0 0 1 1
 0 1 0 1 1 0 1 1 0 1 1
 0 1 1 0 1 0 1 1 1 1 1
 0 1 1 1 1 1 1 0 0 0 0
 1 0 0 0 1 1 1 1 1 1 1
 1 0 0 1 1 1 1 1 0 1 1
 1 0 1 0 x x x x x x x
 1 0 1 1 x x x x x x x
 1 1 0 0 x x x x x x x
 1 1 0 1 x x x x x x x
 1 1 1 0 x x x x x x x

 1 1 1 1 x x x x x x x

Week2 40

Example 2

 To encode the locations in a memory.

Assume the memory size is 2kB with (2

Bytes/location).

 1024 locations

 Binary encoding

 10-bit

Week2 41

Binary codes for decimal digits

 Can be coded with 4-bit binary numbers

 Common ones:

Decimal 8,4,2,1 Excess3 8,4, - 2, - 1 Gray

0 0000 0011 0000 0000

1 0001 0100 0111 0100

2 0010 0101 0110 0101

3 0011 0110 0101 0111

4 0100 0111 0100 0110

5 0101 1000 1011 0010

6 0110 1001 1010 0011

7 0111 1010 1001 0001

8 1000 1011 1000 1001

9 1001 1 100 1111 1000

BCD

Week2 42

ASCII

 American Standard Code for Information

Interchange.

 Enable computers and computer programs to

exchange information

 Provide 256 codes

 Standard

 Extended

 Nearly every computer uses American

Standard Code for Information Interchange

(ASCII)

Week2 43

ASCII

 Uppercase + 32 = Lowercase (e.g, B+32=b)

 tab=9, carriage return=13, backspace=8, Null=0

32 48 0 64 @ 80 P 96 ` 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 " 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 c 115 s

...

47 / 63 ? 79 O 95 _ 111 o 127 DEL

No. No. No. No. No. No. char char char char char

char

Week2 44

Strings

 Characters normally combined into strings, which

have variable length

 e.g., “student@unsw.edu.au”

 How to represent a variable length string?

 1st position of string reserved for length of string (Pascal)

 an accompanying variable has the length of string (as in a

structure)

 last position of string is indicated by a character used to

mark end of string

 C uses 0 (Null in ASCII) to mark the end of a string

 How to represent “PASS”?

Week2 45

Reading Material

 Appendix A in Microcontrollers and

Microcomputers.

Week2 46

Questions

1. Do the following calculations by changing

the given decimal numbers to 8-bit 2’s

complement numbers and then performing

the indicated operation on the 2’s

complement numbers. Were there any 2’s

complement overflows?

(a) (+127)+(-127)

(b) (-50)-(-100)

(c) (+75)+(126)

Week2 47

Questions

2. How to represent number (-13)

 (a) in 8-bit 2’s complement format (what is the

minimum number bits required for such

number?)

 (b) IEEE 32-bit FP format

Week2 48

Questions

3. Find the equivalent numbers.

 (a) (11111111)2’s complement = (______)Hex

 (b) 25hex = (_________)2

 (c) (01110011)BCD = (___________)2

 (d) (11000011)2 = (__________)8

Week2 49

Questions

4. How many bits do you need to represent a~z

26 letters and 0~9 ten digits? Why?

5. A 32-bit address is given in hexadecimal

format 0X2468BAFF, what is the address in

binary form?

7. Convert the 8-bit two’s complement numbers

0100110 and 11001110 to the equivalent 16-

bit two’s complement numbers.

Week2 50

Some Programming Examples
/* Example 1: Reading a value from a memory location

 and write that back into another location

*/

/* The header file to include */

.include "m2560def.inc"

ldi r16,10 //Loading a value of 10 into register r16

sts 0x000206,r16 //Storing the value in r16 into the memory location 000206

lds r17,0x000206 //Loading the value in 000206 into register r17

sts 0x00020C,r17 //Storing the value in r17 into the memory location 00020C

loop: rjmp loop //An infinite loop to end the program for AVR....

/* The values can be observed in the Memory window....View ->Memory ->data*/

Week2 51

/* Example2: Copy an Array into another array..

 The array is considered as a sequence of memory blocks..*/

/* The header file to include */

.include "m2560def.inc"

/**** Storing some values into the array memory locations *****/

ldi r16,10

sts 0x000200,r16

ldi r16,11

sts 0x000201,r16

ldi r16,12

sts 0x000202,r16

ldi r16,13

sts 0x000203,r16

ldi r16,14

sts 0x000204,r16

/*****Copying the array from memory into another array *********/

lds r16,0x000200

sts 0x000205,r16

lds r16,0x000201

sts 0x000206,r16

lds r16,0x000202

sts 0x000207,r16

lds r16,0x000203

sts 0x000208,r16

lds r16,0x000204

sts 0x000209,r16

loop: rjmp loop //infinte loop...

Week2 52

/* Example3: Add two arrays and store it a new array..

 The array is considered as a sequence of memory blocks....

*/

/* The header file to include */

.include "m2560def.inc"

/**** Storing some values into the first array....*****/

ldi r16,10

sts 0x000200,r16

ldi r16,11

sts 0x000201,r16

ldi r16,12

sts 0x000202,r16

ldi r16,13

sts 0x000203,r16

ldi r16,14

sts 0x000204,r16

/**** Storing some values into the second array....*****/

ldi r16,15

sts 0x000205,r16

ldi r16,16

sts 0x000206,r16

ldi r16,17

sts 0x000207,r16

ldi r16,18

sts 0x000208,r16

ldi r16,19

sts 0x000209,r16

Week2 53

/* Retrieving the values from the array add the values

together

 and write them back into another array

*/

lds r16,0x000200 //value taken from the first array

lds r17,0x000205 //value taken from the second array

add r16,r17 //adding the values together

sts 0x00020A,r16 //storing the value into another

array

lds r16,0x000201

lds r17,0x000206

add r16,r17

sts 0x00020B,r16

lds r16,0x000202

lds r17,0x000207

add r16,r17

sts 0x00020C,r16

lds r16,0x000203

lds r17,0x000208

add r16,r17

sts 0x00020D,r16

lds r16,0x000204

lds r17,0x000209

add r16,r17

sts 0x00020E,r16

loop: rjmp loop

Example3 – cont’d

Week2 54

/* Retrieving the values from the array add the values together

 and write them back into another array

*/

lds r16,0x000200 //value taken from the first array

lds r17,0x000205 //value taken from the second array

add r16,r17 //adding the values together

sts 0x00020A,r16 //storing the value into another array

adc r18,r0 //carry is added to register r18

lds r16,0x000201

lds r17,0x000206

add r16,r17

sts 0x00020B,r16

adc r18,r0

lds r16,0x000202

lds r17,0x000207

add r16,r17

sts 0x00020C,r16

adc r18,r0

lds r16,0x000203

lds r17,0x000208

add r16,r17

sts 0x00020D,r16

adc r18,r0

lds r16,0x000204

lds r17,0x000209

add r16,r17

sts 0x00020E,r16

adc r18,r0

loop: rjmp loop //infinite loop...

Example 4 –

First part same as for

Example 3.

