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Week2 2 

Lecture overview 

 Basics of computing with digital systems 

 Binary numbers 

 Floating point numbers 

 Encoding 

 BCD 

 ASCII 

 Others  
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Number representation 

 Any number can be represented in the form 

of  
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Decimal 

 Example 

 

 

 

 The place values, from right to left, are 1, 10, 100, 

1000 

 The base or radix is 10 

  All digits must be less than the base, namely, 

0~9 

 

7109105103
(3597)

23
10
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Binary 

 Example 

 

 

 

 The place values, from right to left, are 1, 2, 4, 8 

 The base or radix is 2 

  All digits must be less than the base, namely, 

0~1 

 

1212021
(1011)

23
2



What are the first 16 binary integers? 
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Hexadecimal 

 Example 

 

 

 

 The place values, from right to left, are 1, 16, 162, 

163 

 The base or radix is 16 

  All digits must be less than the base, namely, 

0~9,A,B,C,D,E,F 

 

111641621615

16416216F

(F24B)

23

23

16
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Which numbers to use? 

 Digital machines use binary numbers 

 Because digital devices can easily produce high 

or low level voltages, which can represent 1 or 0. 

 Hexadecimals or sometimes octal numbers 

are used  

 For neat binary representation 

 For easy number conversion between binary and 

decimal 

 Humans are familiar with decimals 
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Number conversion    

 From base r  to base 10 

 Using 

 

 

 

 Examples:  
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Examples    

 From base 2  

 

 From base 8 

 

 From base 16 
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Number conversion    

 From base 10  to base r 

Based on the formula 

 

 

 For whole number 

 Divide the number/quotient repeatedly by r until the 

quotient is zero and the remainders are the digits of base 

r number, in reverse order 

 For fraction 

 Multiply the number/fraction repeatedly by r, the whole 

numbers of the products are the digits of the base r 

fraction number 
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Examples    

 To base 2 

 To convert (11.25)10 to binary 

 For whole number (11)10 – division (by 2) 

  11 1 

   5 1 

   2 0 

   1 1 

   0  

 For fraction (0.25)10 – multiplication (by 2) 

   0.25 

   0.5 0 

   0.0 1 

 

  (11.25)10=(1011.01) 2 
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Examples    

 To base 8 

 To convert (99.25)10 to octal 

 For whole number (99)10 – division (by 8) 

  99 3 

  12 4 

   1 1 

   0  

 For fraction (0.25)10 – multiplication (by 8) 

   0.25 

   0.0 2 

 

  (99.25)10=(143.2) 8 
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Examples    

 To base 16 

 To convert (99.25)10 to hexadecimal 

 For whole number (99)10 – division (by 16) 

  99 3 

  6 6 

  0  

 For fraction (0.25)10 – multiplication (by 16) 

   0.25 

   0.0 4 

 

  (99.25)10=(63.4) hex 
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Number conversion    

 Between binary and octal 

 Direct mapping based on the observation: 

 

 

 

 

 

 

 

 The expressions in parentheses, being less than 8, 

are the octal digits. 
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Number conversion    

 Between binary and octal (cont.) 

 Binary to octal 

 The binary digits (“bits”) are grouped from the radix point, 

three digits a group. Each group corresponds to an octal 

digit. 

 Octal to binary 

 Each of octal digits is expanded to three binary digits 
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Examples    

 Binary to octal 

 Convert (10101100011010001000.10001) 2 to octal: 

     010 101 100 011 010 001 000 . 100 010 2 

    =      2     5     4     3     2     1     0   .    4     2 8 

    =   2543210.42 8 . 

 Note:  

 Whole number parts are grouped from right to left. 

The leading 0 is optional 

 Fractional parts are grouped from left to right and 

padded with 0s  
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Examples    

 Octal to binary 

 Convert 37425.62 8 to binary : 

      3     7     4     2     5   .    6     2 8 

      =  011 111 100 010 101  . 110 010 2 

    =  11111100010101.11001 2 

 Note:  

 For whole number parts, the leading 0s can be 

omitted. 

 For fractional parts, the trailing 0s can be omitted. 
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Number conversion    

 Between binary and hexadecimal 

 Binary to hexadecimal 

 The binary digits (“bits”) are grouped from the radix point, 

four binary digits a group. Each group corresponds to a 

hexadecimal digit. 

 Hexadecimal to binary 

 Each of hexadecimal digits is expanded to four binary 

digits 
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Examples    

 Binary to hexadecimal 

 Convert 10101100011010001000.10001 2 to 

hexadecimal : 

     1010 1100 0110 1000 1000 . 1000 1000 2 

    =      A       C      6        8      8    .    8      8    16     

    =   AC688.8816 . 

 Note:  

 Whole number parts are grouped from right to left. 

The leading 0 is optional 

 Fractional parts are grouped from left to right and 

padded with 0s  
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Examples    

 Hexadecimal to binary 

 Convert 2F6A.78 16 to binary : 

        2        F      6      A   .     7       8 16 

      =   0010 1111 0110 1010 . 0111 1000 2 

    =  10111101101010.01111 2 

 Note:  

 For whole number parts, the leading 0s can be 

omitted. 

 For fractional parts, the trailing 0s can be omitted. 
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Conversion to binary via octal 

The direct conversion 
of 200110 to binary 
looks like this ... 
 2001 

 1000 1 

   500 0 

   250 0 

   125 0 

     62 1 

     31 0 

     15 1 

       7 1 

       3 1 

       1 1 

       0 1 

... and gives 11111010001. 

It may be quicker to 

convert to octal first ... 
 2001 

   250  1 

     31  2 

       3  7 

       0  3 

... yielding 3721 8 , which 

can be instantly converted 

to 11 111 010 001 2 .  
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Binary arithmetic operations 

 Similar to decimal calculations 

 Examples of addition and multiplication are 

given in the next two slides. 
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Binary additions 

 Example: 

 Addition of two 4-bit unsigned binary numbers. 

How many bits are required for holding the result? 

 

 1001+0110 = (__________) 
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Binary multiplications 

 Example: 

 Multiplication of two 4-bit unsigned binary 

numbers. How many bits are required for holding 

the result? 

 

 1001*0110 = (____________________) 
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Negative numbers & 

subtraction 

 Subtraction can be defined as addition of the additive 

inverse: 

   a – b = a + (-b)  

 To eliminate subtraction in binary arithmetic, we can 

represent –b by 2’s complement of b. 

 In n-digit binary arithmetic, 2’s complement of b is 

b* = 2n – b 

 (b*)* = b 

 The MSB (Most Significant Bit) of a 2’s complement number 

is the sign bit  

 For example, for a 4-bit 2’s complement system, 

 (1001)  -7,  (0111)  7 
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Examples 

-- 2’s complement numbers  

 Represent the following decimal numbers 

using 8-bit 2’s complement format 

(a) 0 

(b) 7 

(c) 127 

(d) -12 

 

 Can all the above numbers be represented 

by 4-bits? 
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Examples 
4-bit 2’s-complement 

additions/subtractions 

(1)  0101 - 0010 (5 - 2): 

      0101 

 +   1110  (= 0010*) 

 = 10011 

  

(2)  0010 - 0101 (2 - 5): 

      0010 

 +   1011  (= 0101*) 

 =   1101  (= 0011*). 

 Result means -3. 

(3)  -0101 - 0010 (-5 - 2): 
      1011  (= 0101*) 

 +   1110  (= 0010*) 

 = 11001 

 Result is 0111* (how?) 

 and means  -7. 

 

(4)  0101 + 0010 (5 + 2): 
This is trivial, as no conversions are 

required.  The result is 0111 (= 7). 
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Overflow in two’s-complement 

 Assume a, b are positive numbers in an n-bit 

2’s complement systems, 

 For a+b 

 If a+b > 2n-1 - 1, then a+b represents a negative 

number; this is positive overflow. 

 For -a-b 

 If –a-b < 2n-1, then –a-b results in a positive number; 

this is negative overflow. 
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Positive overflow detection 

Addition of 4-bit positive 

numbers without 

overflow looks like 

this: 

      0xxx 

  +  0xxx 

  =  0xxx . 

The “carry in” to the 

MSB must have been 

0, and the carry out is 

0.   

Positive overflow looks 

like this: 

     0xxx 

 +  0xxx 

 =  1xxx . 

The “carry in” to the 

MSB must have been 

1, but the carry out is 

0. 

Overflow occurs when 

 carry in  carry out.
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Negative overflow detection 

Addition of negative 
twos-complement 
numbers without 
overflow: 

       1xxx 

 +    1xxx 

 =  11xxx . 

The carry in to the MSB 
must have been 1 
(otherwise the sum bit 
would be 0), and the 
carry out is 1. 

Negative overflow: 

       1xxx 

 +    1xxx 

 =  10xxx . 

The carry in to the MSB 

must have been 0, but 

the carry out is 1. 

So negative overflow, 

like positive, occurs 

when 

 carry in  carry out.
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Overflow detection 

 For n-bit 2’s complement systems, condition 

of overflow for both addition and substraction: 

 The MSB has a carry-in different from the carry-

out 
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Examples 

1. Do the following calculations, where all 

numbers are 4-bit 2’s complement numbers. 

Check whether there is any overflow. 

(a) 1000-0001 

(b) 1000+0101 

(c) 0101+0110 
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Floating point numbers 

 Example 

 

 

 Normal Form 

 

 

 Things to be encoded: 

 sign bit 

 significant 

 exponent 

1.01 x 2-12 

Radix (base) 
Binary point 

 
       Integer 

Exponent 

 +(-) 1.x * 2 y 

sign bit      significand       exponent 
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IEEE 754 FP standard—single 

precision 

 

 

 

 

 

 Bit 31 for sign 

 S=1 for negative numbers, 0 for positive numbers 

 Bits 23-30 for biased exponent 

  The real exponent = E –127 

  127 is called bias. 

 Bits 0-22 for significand 

 

 

 S  EEEEEEEE  FFFFFFFFFFFFFFFFFFFFFFF  
  31  30                     23 22                                                                 1 0 

Sign bit Biased Exponent Significand 

bits 
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IEEE 754 FP Standard—Single 

Precision (cont.) 
The value, v, of the FP representation is determined as 

follows: 
 If 0<E<255 then V=(-1) S * 2 E-127 * 1.F   

 where "1.F" is intended to represent the binary number created 
by prefixing F with an implicit leading 1 and a binary point.  

  If E = 255 and F is nonzero, then V=NaN ("Not a number")  

  If E = 255 and F is zero and S is 1, then V= -Infinity  

  If E = 255 and F is zero and S is 0, then V=Infinity  

  If E = 0 and F is nonzero, then V=(-1) S * 2 -126 * 0.F. These are 
unnormalized numbers or subnormal numbers.  

  If E = 0 and F is 0 and S is 1, then V=-0  

  If E = 0 and F is 0 and S is 0, then V=0  
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IEEE 754 FP Standard—Single 

Precision (cont.) 

 Subnormal numbers reduce the chance of 

underflow. 

 Without subnormal numbers, the smallest 

positive number is 2 –127 

 With subnormal numbers, the smallest positive 

number is 0.00000000000000000000001 *2 -

126  =2 –(126+23) =2-149 
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Floating point additions 

Given two decimal values 

 a = 12.025 

 b =  9.5 

(a) What are their IEEE format representations? 

(b) How to calculate a+b in the IEEE format? 

And what is the result? 
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Encoding 

 Beside numbers, a computer machine needs 

to represent all types of information it is to 

process.  

 Examples: 
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Example 1 

 To encode a decimal digit with 7 digits for 7-

segment display 

S0 

S6 

S3 

S1 

S2 S4 

S5 

     A  B C  D S0  S1  S2  S3  S4  S5  S6 

     0  0  0  0 1   1   1   1   1   1   0 
     0  0  0  1 0   1   1   0   0   0   0 
     0  0  1  0 1   1   0   1   1   0   1 
     0  0  1  1 1   1   1   1   0   0   1 
     0  1  0  0 0   1   1   0   0   1   1 
     0  1  0  1 1   0   1   1   0   1   1 
     0  1  1  0 1   0   1   1   1   1   1 
     0  1  1  1 1   1   1   0   0   0   0 
     1  0  0  0 1   1   1   1   1   1   1 
     1  0  0  1 1   1   1   1   0   1   1 
     1  0  1  0 x   x   x   x   x   x   x 
     1  0  1  1 x   x   x   x   x   x   x 
     1  1  0  0 x   x   x   x   x   x   x 
     1  1  0  1 x   x   x   x   x   x   x 
     1  1  1  0 x   x   x   x   x   x   x 

     1  1  1  1 x   x   x   x   x   x   x 
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Example 2 

 To encode the locations in a memory. 

Assume the memory size is 2kB with  (2 

Bytes/location).  

 1024 locations 

 Binary encoding 

 10-bit  
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Binary codes for decimal digits 

 Can be coded with 4-bit binary numbers  

 Common ones: 

Decimal 8,4,2,1   Excess3   8,4, - 2, - 1   Gray   

0   0000   0011   0000   0000   

1   0001   0100   0111   0100   

2   0010   0101   0110   0101   

3   0011   0110   0101   0111   

4   0100   0111   0100   0110   

5   0101   1000   1011   0010   

6   0110   1001   1010   0011   

7   0111   1010   1001   0001   

8   1000   1011   1000   1001   

9   1001   1 100   1111   1000   

BCD 
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ASCII 

 American Standard Code for Information 

Interchange. 

 Enable computers and computer programs to 

exchange information 

 Provide 256 codes 

 Standard 

 Extended  

 Nearly every computer uses American 

Standard Code for Information Interchange 

(ASCII) 
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ASCII 

 

 

 

 

 

 

 Uppercase + 32 = Lowercase (e.g, B+32=b) 

 tab=9, carriage return=13, backspace=8, Null=0 

 

32  48 0 64 @ 80 P 96 ` 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 " 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 c 115 s

... ... ... ... ... ...

47 / 63 ? 79 O 95 _ 111 o 127 DEL

No. No. No. No. No. No. char char char char char 

char 
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Strings 

 Characters normally combined into strings, which 

have variable length 

  e.g., “student@unsw.edu.au” 

 How to represent a variable length string? 

 1st position of string reserved for length of string (Pascal) 

 an accompanying variable has the length of string (as in a 

structure) 

 last position of string is indicated by a character used to 

mark end of string 

  C uses 0 (Null in ASCII) to mark the end of a string 

 How to represent “PASS”? 
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Reading Material 

 Appendix A in Microcontrollers and 

Microcomputers. 
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Questions 

1. Do the following calculations by changing 

the given decimal numbers to 8-bit 2’s 

complement numbers and then performing 

the indicated operation on the 2’s 

complement numbers. Were there any 2’s 

complement overflows? 

(a) (+127)+(-127) 

(b) (-50)-(-100) 

(c) (+75)+(126) 
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Questions 

2. How to represent number (-13) 

 (a) in 8-bit 2’s complement format (what is the 

minimum number bits required for such 

number?) 

 (b) IEEE 32-bit FP format 
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Questions 

3. Find the equivalent numbers. 

 (a) (11111111)2’s complement = (______)Hex 

 (b) 25hex = (_________)2 

      (c) (01110011)BCD = (___________)2 

      (d) (11000011)2 = (__________)8 
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Questions 

4. How many bits do you need to represent a~z        

26 letters and 0~9 ten digits? Why? 

5. A 32-bit address is given in hexadecimal 

format 0X2468BAFF, what is the address in 

binary form? 

7. Convert the 8-bit two’s complement numbers 

0100110 and 11001110 to the equivalent 16-

bit two’s complement numbers. 



Week2 50 

Some Programming Examples 
/* Example 1: Reading a value from a memory location 

              and write that back into another location 

*/ 

 

 

/* The header file to include */ 

 

.include "m2560def.inc" 

 

 

ldi r16,10         //Loading a value of 10 into register r16 

 

sts 0x000206,r16   //Storing the value in r16 into the memory location 000206 

 

lds r17,0x000206   //Loading the value in 000206 into register r17 

 

sts 0x00020C,r17   //Storing the value in r17 into the memory location 00020C 

 

loop: rjmp loop    //An infinite loop to end the program for AVR.... 

 

 

/* The values can be observed in the Memory window....View ->Memory ->data*/ 
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/* Example2: Copy an Array into another array.. 

             The array is considered as a sequence of memory blocks..*/ 

 

/* The header file to include */ 

.include "m2560def.inc" 

/****  Storing some values into the array memory locations *****/ 

ldi r16,10 

sts 0x000200,r16 

ldi r16,11 

sts 0x000201,r16 

ldi r16,12 

sts 0x000202,r16 

ldi r16,13 

sts 0x000203,r16 

ldi r16,14 

sts 0x000204,r16 

/*****Copying the array from memory into another array *********/ 

lds r16,0x000200 

sts 0x000205,r16 

lds r16,0x000201 

sts 0x000206,r16 

lds r16,0x000202 

sts 0x000207,r16 

lds r16,0x000203 

sts 0x000208,r16 

lds r16,0x000204 

sts 0x000209,r16 

loop: rjmp loop     //infinte loop... 
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/* Example3: Add two arrays and store it a new array.. 

             The array is considered as a sequence of memory blocks.... 

*/ 

/* The header file to include */ 

.include "m2560def.inc" 

/****  Storing some values into the first array....*****/ 

ldi r16,10 

sts 0x000200,r16 

ldi r16,11 

sts 0x000201,r16 

ldi r16,12 

sts 0x000202,r16 

ldi r16,13 

sts 0x000203,r16 

ldi r16,14 

sts 0x000204,r16 

/****  Storing some values into the second array....*****/ 

ldi r16,15 

sts 0x000205,r16 

ldi r16,16 

sts 0x000206,r16 

ldi r16,17 

sts 0x000207,r16 

ldi r16,18 

sts 0x000208,r16 

ldi r16,19 

sts 0x000209,r16 
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/* Retrieving the values from the array add the values 

together  

   and write them back into another array   

*/ 

lds r16,0x000200    //value taken from the first array 

lds r17,0x000205    //value taken from the second array 

add r16,r17         //adding the values together 

sts 0x00020A,r16    //storing the value into another 

array 

 

lds r16,0x000201 

lds r17,0x000206 

add r16,r17 

sts 0x00020B,r16 

 

lds r16,0x000202 

lds r17,0x000207 

add r16,r17 

sts 0x00020C,r16 

 

lds r16,0x000203 

lds r17,0x000208 

add r16,r17 

sts 0x00020D,r16 

 

lds r16,0x000204 

lds r17,0x000209 

add r16,r17 

sts 0x00020E,r16 

 

loop: rjmp loop 

Example3 – cont’d 
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/* Retrieving the values from the array add the values together  

   and write them back into another array   

*/ 

lds r16,0x000200    //value taken from the first array 

lds r17,0x000205    //value taken from the second array 

add r16,r17         //adding the values together 

sts 0x00020A,r16    //storing the value into another array  

adc r18,r0          //carry is added to register r18 

lds r16,0x000201 

lds r17,0x000206 

add r16,r17 

sts 0x00020B,r16 

adc r18,r0 

lds r16,0x000202 

lds r17,0x000207 

add r16,r17 

sts 0x00020C,r16 

adc r18,r0 

lds r16,0x000203 

lds r17,0x000208 

add r16,r17 

sts 0x00020D,r16 

adc r18,r0 

lds r16,0x000204 

lds r17,0x000209 

add r16,r17 

sts 0x00020E,r16 

adc r18,r0 

 

loop: rjmp loop    //infinite loop... 

 

Example 4 –  

First part same as for 

Example 3.  


