COMP2111 Week 5
Term 1, 2019
Hoare Logic
Sir Tony Hoare

- Pioneer of formal verification
- Invented quicksort
- Invented the null reference
- Invented CSP (formal specification language)
- Invented Hoare Logic
Summary

- \mathcal{L}: A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
Summary

- L: A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
Consider the vocabulary of basic arithmetic:

- **Constant symbols:** 0, 1, 2, …
- **Function symbols:** +, ∗, …
- **Predicate symbols:** <, ≤, ≥, |, …

- An (arithmetic) expression is a term over this vocabulary.
- A boolean expression is a predicate formula over this vocabulary.
Consider the vocabulary of basic arithmetic:

- Constant symbols: 0, 1, 2, …
- Function symbols: +, *, …
- Predicate symbols: <, ≤, ≥, |, …

An **(arithmetic) expression** is a term over this vocabulary.

A **boolean expression** is a predicate formula over this vocabulary.
\(L\): A simple imperative programming language

Consider the vocabulary of basic arithmetic:
- Constant symbols: 0, 1, 2, …
- Function symbols: +, ∗, …
- Predicate symbols: <, ≤, ≥, |, …

An (arithmetic) expression is a term over this vocabulary.
A boolean expression is a predicate formula over this vocabulary.
The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: $x := e$

where x is a variable and e is an arithmetic expression.

Sequencing: $P;Q$

Conditional: if b then P else Q fi

where b is a boolean expression.

While: while b do P od
The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: $x := e$
where x is a variable and e is an arithmetic expression.

Sequencing: $P;Q$

Conditional: if b then P else Q fi
where b is a boolean expression.

While: while b do P od
The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: $x := e$

where x is a variable and e is an arithmetic expression.

Sequencing: $P; Q$

Conditional: if b then P else Q fi

where b is a boolean expression.

While: while b do P od
The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: $x := e$

where x is a variable and e is an arithmetic expression.

Sequencing: $P; Q$

Conditional: if b then P else Q fi

where b is a boolean expression.

While: while b do P od
Factorial in \mathcal{L}

Example

\[
\begin{align*}
 f &:= 1; \\
 k &:= 0; \\
 \textbf{while} & k < n \textbf{ do} \\
 & k := k + 1; \\
 & f := f \times k \\
 \textbf{od}
\end{align*}
\]
Summary

- \mathcal{L}: A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
Summary

- \mathcal{L}: A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
Hoare triple (Syntax)

\[\{ \varphi \} \; P \; \{ \psi \} \]

Intuition:

\(\varphi \): The **precondition** – an assertion about the state prior to the execution of the code fragment.

\(P \): The **code fragment**

\(\psi \): The **postcondition** – an assertion about the state after to the execution of the code fragment *if it terminates.*
Hoare triple (Syntax)

\{ \varphi \} P \{ \psi \}

Intuition:

\(\varphi\): The **precondition** – an assertion about the state prior to the execution of the code fragment.

\(P\): The **code fragment**

\(\psi\): The **postcondition** – an assertion about the state after to the execution of the code fragment *if it terminates*.
Hoare triple (Syntax)

\{ \varphi \} \text{ } P \{ \psi \}

Intuition:

\varphi: The \textbf{precondition} – an assertion about the state prior to the execution of the code fragment.

\textit{P}: The \textbf{code fragment}

\psi: The \textbf{postcondition} – an assertion about the state after to the execution of the code fragment \textit{if it terminates}.
Example

\[
\{(x = 0)\} \ x := 1 \{(x = 1)\}
\]

\[
\{(x = 0)\} \ x := 1 \{(x = 500)\}
\]

\[
\{(x > 0)\} \ y := 0 - x \{(y < 0) \land (x \neq y)\}
\]
Hoare triple: Examples

Example

\[
\{ (x = 0) \} x := 1 \{ (x = 1) \}
\]

\[
\{ (x = 0) \} x := 1 \{ (x = 500) \}
\]

\[
\{ (x > 0) \} y := 0 - x \{ (y < 0) \land (x \neq y) \}
\]
Hoare triple: Examples

Example

\[
\begin{align*}
\{(x = 0)\} & \ x := 1 \ \{(x = 1)\} \\
\{(x = 0)\} & \ x := 1 \ \{(x = 500)\} \\
\{(x > 0)\} & \ y := 0 - x \ \{(y < 0) \land (x \neq y)\}
\end{align*}
\]
Hoare triple: Examples

Example

\{ n \geq 0 \} \\
\text{\hspace{1em} } f := 1; \\
\text{\hspace{1em} } k := 0; \\
\textbf{while} \ k < n \ \textbf{do} \\
\hspace{2em} k := k + 1; \\
\hspace{2em} f := f \times k \\
\textbf{od} \\
\{ f = n! \}
Summary

- \mathcal{L}: A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic
Motivation

Question

We know what we want informally; how do we establish when a triple is valid?

- Develop a semantics (see next lecture), OR
- Derive the triple in a syntactic manner (i.e. proof)

Hoare logic consists of one axiom and four inference rules for deriving Hoare triples.
Motivation

Question

We know what we want informally; how do we establish when a triple is valid?

- Develop a semantics (see next lecture), OR
- Derive the triple in a syntactic manner (i.e. proof)

Hoare logic consists of one axiom and four inference rules for deriving Hoare triples.
Motivation

Question

We know what we want informally; how do we establish when a triple is valid?

- Develop a semantics (see next lecture), OR
- Derive the triple in a syntactic manner (i.e. proof)

Hoare logic consists of one axiom and four inference rules for deriving Hoare triples.
Assignment

\[
\{ \varphi[e/x] \} x := e \{ \varphi \} \quad \text{(ass)}
\]

Intuition:
If \(x \) has property \(Q \) after executing the assignment; then \(e \) must have property \(Q \) before executing the assignment
Example

\{(y = 0)\} \ x := y \{(x = 0)\}

\{(x = y)\} \ x := y \{(x = y)\}
Example

\{(y = 0)\} x := y \{(x = 0)\}

\{(y = y)\} x := y \{(x = y)\}

\{(y = 1)\} x := 1 \{(x < 2)\}

\{(y = 3)\} x := y \{(x > 2)\}
Assignment: Example

Example

\{(y = 0)\} x := y \{(x = 0)\}

\{(y = y)\} x := y \{(x = y)\}

\{(1 > 2)\} x := 1 \{(x < 2)\}

\{(y = 3)\} x := y \{(x > 2)\}
Assignment: Example

Example

\{(y = 0)\} x := y \{(x = 0)\}

\{(y = y)\} x := y \{(x = y)\}

\{(1 < 2)\} x := 1 \{(x < 2)\}

\{(y = 3)\} x := y \{(x > 2)\}
Assignment: Example

Example

\{(y = 0)\} x := y \{(x = 0)\}

\{(y = y)\} x := y \{(x = y)\}

\{(1 < 2)\} x := 1 \{(x < 2)\}

\{(y = 3)\} x := y \{(x > 2)\}
Assignment: Example

Example

\{(y = 0)\} x := y \{(x = 0)\}

\{(y = y)\} x := y \{(x = y)\}

\{(1 < 2)\} x := 1 \{(x < 2)\}

\{(y = 3)\} x := y \{(x > 2)\} \hspace{1cm} Problem!
Sequence

\[
\{\varphi\} \quad P \quad \{\psi\} \quad \{\psi\} \quad Q \quad \{\rho\}
\]

(\text{seq})

Intuition:
If the postcondition of \(P \) matches the precondition of \(Q \) we can sequentially combine the two program fragments
Example

\[
\begin{align*}
\{(0 = 0)\} & \ x := 0 \ \{(x = 0)\} & \{(x = 0)\} & \ y := 0 \ \{(x = y)\} \\
\{(0 = 0)\} & \ x := 0; \ y := 0 \ \{(x = y)\} & \{\text{seq}\}
\end{align*}
\]
Example:

\[
\begin{align*}
\{(0 = 0)\} & \ x := 0 \{(x = 0)\} \\
\{(x = 0)\} & \ y := 0 \{(x = y)\} \\
\{(0 = 0)\} & \ x := 0; y := 0 \{(x = y)\} \\
\end{align*}
\]
Sequence: Example

Example

\[
\begin{align*}
\{ (0 = 0) \} & \ x := 0 \ { (x = 0) } \\
\{ (x = 0) \} & \ y := 0 \ { (x = y) } \\
\{ (0 = 0) \} & \ x := 0 ; \ y := 0 \ { (x = y) } \\
\end{align*}
\]
Conditional

\[
\{\varphi \land g\} P \{\psi\} \quad \{\varphi \land \neg g\} Q \{\psi\}
\]

\[
\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi } \{\psi\}
\]

(if)

Intuition:

- When a conditional is executed, either \(P \) or \(Q \) will be executed.
- If \(\psi \) is a postcondition of the conditional, then it must be a postcondition of both branches.
- Likewise, if \(\varphi \) is a precondition of the conditional, then it must be a precondition of both branches.
- Which branch gets executed depends on \(g \), so we can assume \(g \) to be a precondition of \(P \) and \(\neg g \) to be a precondition of \(Q \) (strengthen the preconditions).
While

\[
\begin{align*}
\{\varphi \land g\} & \ P \ \{\varphi\} \\
\{\varphi\} & \text{while } g \ \text{do } P \ \text{od } \{\varphi \land \neg g\}
\end{align*}
\] (loop)

Intuition:
- φ is a **loop-invariant**. It must be both a pre- and postcondition of P so that sequences of Ps can be run together.
- If the while loop terminates, g cannot hold.
Precondition strengthening and Postcondition weakening

\[
\varphi' \rightarrow \varphi \quad \{\varphi\} P \{\psi\} \quad \psi \rightarrow \psi' \quad (\text{cons})
\]

Intuition:

- Adding assertions to the precondition makes it more likely the postcondition will be reached
- Removing assertions to the postcondition makes it more likely the postcondition will be reached
- If you can reach the postcondition initially, then you can reach it in the more likely scenario