
COMP2111 Week 5
Term 1, 2019
Hoare Logic

1



Sir Tony Hoare

Pioneer of formal verification

Invented quicksort

Invented the null reference

Invented CSP (formal specification language)

Invented Hoare Logic

2



Summary

L: A simple imperative programming language

Hoare triples (SYNTAX)

Hoare logic (PROOF)

Semantics for Hoare logic

3



Summary

L: A simple imperative programming language

Hoare triples (SYNTAX)

Hoare logic (PROOF)

Semantics for Hoare logic

4



L: A simple imperative programming language

Consider the vocabulary of basic arithmetic:

Constant symbols: 0, 1, 2, . . .

Function symbols: +, ∗, . . .
Predicate symbols: <,≤,≥, |, . . .

An (arithmetic) expression is a term over this vocabulary.

A boolean expression is a predicate formula over this
vocabulary.

5



L: A simple imperative programming language

Consider the vocabulary of basic arithmetic:

Constant symbols: 0, 1, 2, . . .

Function symbols: +, ∗, . . .
Predicate symbols: <,≤,≥, |, . . .

An (arithmetic) expression is a term over this vocabulary.

A boolean expression is a predicate formula over this
vocabulary.

6



L: A simple imperative programming language

Consider the vocabulary of basic arithmetic:

Constant symbols: 0, 1, 2, . . .

Function symbols: +, ∗, . . .
Predicate symbols: <,≤,≥, |, . . .

An (arithmetic) expression is a term over this vocabulary.

A boolean expression is a predicate formula over this
vocabulary.

7



The language L

The language L is a simple imperative programming language
made up of four statements:

Assignment: x :=e
where x is a variable and e is an arithmetic
expression.

Sequencing: P;Q

Conditional: if b then P else Q fi
where b is a boolean expression.

While: while b do P od

8



The language L

The language L is a simple imperative programming language
made up of four statements:

Assignment: x :=e
where x is a variable and e is an arithmetic
expression.

Sequencing: P;Q

Conditional: if b then P else Q fi
where b is a boolean expression.

While: while b do P od

9



The language L

The language L is a simple imperative programming language
made up of four statements:

Assignment: x :=e
where x is a variable and e is an arithmetic
expression.

Sequencing: P;Q

Conditional: if b then P else Q fi
where b is a boolean expression.

While: while b do P od

10



The language L

The language L is a simple imperative programming language
made up of four statements:

Assignment: x :=e
where x is a variable and e is an arithmetic
expression.

Sequencing: P;Q

Conditional: if b then P else Q fi
where b is a boolean expression.

While: while b do P od

11



Factorial in L

Example

f := 1;
k := 0;
while k < n do
k := k + 1;
f := f ∗ k

od

12



Summary

L: A simple imperative programming language

Hoare triples (SYNTAX)

Hoare logic (PROOF)

Semantics for Hoare logic

13



Summary

L: A simple imperative programming language

Hoare triples (SYNTAX)

Hoare logic (PROOF)

Semantics for Hoare logic

14



Hoare triple (Syntax)

{ϕ}P {ψ}

Intuition:

ϕ: The precondition – an assertion about the state prior to the
execution of the code fragment.

P: The code fragment

ψ: The postcondition – an assertion about the state after to the
execution of the code fragment if it terminates.

15



Hoare triple (Syntax)

{ϕ}P {ψ}

Intuition:

ϕ: The precondition – an assertion about the state prior to the
execution of the code fragment.

P: The code fragment

ψ: The postcondition – an assertion about the state after to the
execution of the code fragment if it terminates.

16



Hoare triple (Syntax)

{ϕ}P {ψ}

Intuition:

ϕ: The precondition – an assertion about the state prior to the
execution of the code fragment.

P: The code fragment

ψ: The postcondition – an assertion about the state after to the
execution of the code fragment if it terminates.

17



Hoare triple: Examples

Example

{(x = 0)} x := 1 {(x = 1)}

{(x = 0)} x := 1 {(x = 500)}

{(x > 0)} y := 0− x {(y < 0) ∧ (x 6= y)}

18



Hoare triple: Examples

Example

{(x = 0)} x := 1 {(x = 1)}

{(x = 0)} x := 1 {(x = 500)}

{(x > 0)} y := 0− x {(y < 0) ∧ (x 6= y)}

19



Hoare triple: Examples

Example

{(x = 0)} x := 1 {(x = 1)}

{(x = 0)} x := 1 {(x = 500)}

{(x > 0)} y := 0− x {(y < 0) ∧ (x 6= y)}

20



Hoare triple: Examples

Example

{n ≥ 0}
f := 1;
k := 0;
while k < n do
k := k + 1;
f := f ∗ k

od
{f = n!}

21



Summary

L: A simple imperative programming language

Hoare triples (SYNTAX)

Hoare logic (PROOF)

Semantics for Hoare logic

22



Motivation

Question

We know what we want informally; how do we establish when a
triple is valid?

Develop a semantics (see next lecture), OR

Derive the triple in a syntactic manner (i.e. proof)

Hoare logic consists of one axiom and four inference rules for
deriving Hoare triples.

23



Motivation

Question

We know what we want informally; how do we establish when a
triple is valid?

Develop a semantics (see next lecture), OR

Derive the triple in a syntactic manner (i.e. proof)

Hoare logic consists of one axiom and four inference rules for
deriving Hoare triples.

24



Motivation

Question

We know what we want informally; how do we establish when a
triple is valid?

Develop a semantics (see next lecture), OR

Derive the triple in a syntactic manner (i.e. proof)

Hoare logic consists of one axiom and four inference rules for
deriving Hoare triples.

25



Assignment

(ass)
{ϕ[e/x ]} x := e {ϕ}

Intuition:
If x has property Q after executing the assignment; then e must
have property Q before executing the assignment

26



Assignment: Example

Example

{(y = 0)} x := y {(x = 0)}

{(y = y)} x := y {(x = y)}

{(1 < 2)} x := 1 {(x < 2)}

{(y = 3)} x := y {(x > 2)} Problem!

27



Assignment: Example

Example

{(y = 0)} x := y {(x = 0)}

{(y = y)} x := y {(x = y)}

{(1 < 2)} x := 1 {(x < 2)}

{(y = 3)} x := y {(x > 2)} Problem!

28



Assignment: Example

Example

{(y = 0)} x := y {(x = 0)}

{(y = y)} x := y {(x = y)}

{(1 < 2)} x := 1 {(x < 2)}

{(y = 3)} x := y {(x > 2)} Problem!

29



Assignment: Example

Example

{(y = 0)} x := y {(x = 0)}

{(y = y)} x := y {(x = y)}

{(1 < 2)} x := 1 {(x < 2)}

{(y = 3)} x := y {(x > 2)} Problem!

30



Assignment: Example

Example

{(y = 0)} x := y {(x = 0)}

{(y = y)} x := y {(x = y)}

{(1 < 2)} x := 1 {(x < 2)}

{(y = 3)} x := y {(x > 2)} Problem!

31



Assignment: Example

Example

{(y = 0)} x := y {(x = 0)}

{(y = y)} x := y {(x = y)}

{(1 < 2)} x := 1 {(x < 2)}

{(y = 3)} x := y {(x > 2)} Problem!

32



Sequence

{ϕ}P {ψ} {ψ}Q {ρ}
(seq)

{ϕ}P;Q {ρ}

Intuition:
If the postcondition of P matches the precondition of Q we can
sequentially combine the two program fragments

33



Sequence: Example

Example

{(0 = 0)} x := 0 {(x = 0)} {(x = 0)} y := 0 {(x = y)}
(seq)

{(0 = 0)} x := 0; y := 0 {(x = y)}

34



Sequence: Example

Example

{(0 = 0)} x := 0 {(x = 0)} {(x = 0)} y := 0 {(x = y)}
(seq)

{(0 = 0)} x := 0; y := 0 {(x = y)}

35



Sequence: Example

Example

{(0 = 0)} x := 0 {(x = 0)} {(x = 0)} y := 0 {(x = y)}
(seq)

{(0 = 0)} x := 0; y := 0 {(x = y)}

36



Conditional

{ϕ ∧ g}P {ψ} {ϕ ∧ ¬g}Q {ψ}
(if)

{ϕ} if g then P else Q fi {ψ}

Intuition:

When a conditional is executed, either P or Q will be
executed.

If ψ is a postcondition of the conditional, then it must be a
postcondition of both branches

Likewise, f ϕ is a precondition of the conditional, then it must
be a precondition of both branches

Which branch gets executed depends on g , so we can assume
g to be a precondition of P and ¬g to be a precondition of Q
(strengthen the preconditions).

37



While

{ϕ ∧ g}P {ϕ}
(loop)

{ϕ}while g do P od {ϕ ∧ ¬g}

Intuition:

ϕ is a loop-invariant. It must be both a pre- and
postcondition of P so that sequences of Ps can be run
together.

If the while loop terminates, g cannot hold.

38



Precondition strengthening and Postcondition
weakening

ϕ′ → ϕ {ϕ}P {ψ} ψ → ψ′
(cons)

{ϕ′}P {ψ′}

Intuition:

Adding assertions to the precondition makes it more likely the
postcondition will be reached

Removing assertions to the postcondition makes it more likely
the postcondition will be reached

If you can reach the postcondition initially, then you can reach
it in the more likely scenario

39


