COMP2111 Week 5

Term 1, 2019
Hoare Logic



Sir Tony Hoare

Pioneer of formal verification

Invented quicksort

Invented the null reference

Invented CSP (formal specification language)

Invented Hoare Logic




Summary

@ L: A simple imperative programming language
@ Hoare triples (SYNTAX)
@ Hoare logic (PROOF)

@ Semantics for Hoare logic



Summary

@ L: A simple imperative programming language
@ Hoare triples (SYNTAX)
@ Hoare logic (PROOF)

@ Semantics for Hoare logic



L: A simple imperative programming language

Consider the vocabulary of basic arithmetic:
@ Constant symbols: 0,1,2,...
@ Function symbols: +, %, ...
@ Predicate symbols: <, <,>/|,...



L: A simple imperative programming language

Consider the vocabulary of basic arithmetic:
@ Constant symbols: 0,1,2,...
@ Function symbols: +, %, ...
@ Predicate symbols: <, <, >/|,...

@ An (arithmetic) expression is a term over this vocabulary.



L: A simple imperative programming language

Consider the vocabulary of basic arithmetic:
@ Constant symbols: 0,1,2,...
@ Function symbols: +, %, ...
@ Predicate symbols: <, <, >/|,...

An (arithmetic) expression is a term over this vocabulary.

A boolean expression is a predicate formula over this
vocabulary.
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The language £

The language L is a simple imperative programming language
made up of four statements:
Assignment: x:=e
where x is a variable and e is an arithmetic
expression.
Sequencing: P;Q
Conditional: if b then P else Q fi
where b is a boolean expression.
While: while b do P od



Example

Factorial in .

f.=1:
k:=0;
while k < ndo
k:=k+1;
f=Ffxk
od
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Hoare triple (Syntax)

{} P{y}

Intuition:

(Y2l

The precondition — an assertion about the state prior to the
execution of the code fragment.

The code fragment

The postcondition — an assertion about the state after to the
execution of the code fragment if it terminates.



Example

Hoare triple: Examples

{(x=0)}x:=1{(x=1)}
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Hoare triple: Examples

{(x=0)}x:=1{(x=1)}
{(x=0)}x:=1{(x =500)}




Example

Hoare triple: Examples

{(x=0)}x:=1{(x=1)}
{(x=0)}x:=1{(x =500)}
(x> 0}y = 0—x{(y <) A(x £ )}




Example

Hoare triple: Examples

{n >0}
f=1
k:=0;

while kK < ndo
k:=k+1;
fi=Ffxk

od

{f =nl}
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Motivation

Question

We know what we want informally; how do we establish when a
triple is valid?

@ Develop a semantics (see next lecture), OR

@ Derive the triple in a syntactic manner (i.e. proof)

Hoare logic consists of one axiom and four inference rules for
deriving Hoare triples.



Assignment

(ass)
{ole/x]} x = e{p}

Intuition:

If x has property Q after executing the assignment; then e must

have property Q before executing the assignment



Example

Assignment: Example

{(y =0} x:=y{(x=0)}
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Assignment: Example

{y=0)}x:=y{(x=0)}
{y=y)ix=y{x=y)}
{ Pxi=1{(x <2)}
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Example

{(r=0}x:=y{(x=0)}
{(r=y)x=y{lx=y)}
{(1<2)}x:=1{(x<2)}
{(r =3} x=y{(x>2)}




Assignment: Example

Example

{(r=0}x:=y{(x=0)}
{(r=y)x=y{lx=y)}
{(1<2)}x:=1{(x<2)}
{(r =3} x=y{(x>2)}

Problem!




Sequence

{et P{v}  {v}Q{p} (seq)
{0} P; Q{p}

Intuition:
If the postcondition of P matches the precondition of @ we can
sequentially combine the two program fragments



Example

{

px=0{ poq

Sequence: Example

}y =0{(x=y)}

{

bx =0y :=0{(x=y)}

(seq)




Example

{

Sequence: Example

bx =0{(x=0)}

{x=0)}ty =0{(x=y)}

{ bx =0y :=0{(x=y)}

(seq)




Sequence: Example

Example

{(0=0}x=0{(x=0} {(x=0)}y:=0{(x=y)}

{(0=0)}x:=0y :=0{(x=y)}

(seq)




Conditional

{ongtP{vy  {pn-g}Q{y}
{p}if g then P else Q fi{v}

(if)

Intuition:

@ When a conditional is executed, either P or @ will be
executed.

@ If ¢ is a postcondition of the conditional, then it must be a
postcondition of both branches

o Likewise, f ¢ is a precondition of the conditional, then it must
be a precondition of both branches

@ Which branch gets executed depends on g, so we can assume
g to be a precondition of P and —g to be a precondition of @
(strengthen the preconditions).



While

{pneg} Pip}
{¢} while g do P od {¢p A =g}

(loop)

Intuition:

@ ¢ is a loop-invariant. It must be both a pre- and
postcondition of P so that sequences of Ps can be run
together.

@ If the while loop terminates, g cannot hold.



Precondition strengthening and Postcondition
weakening

o =  A{ptP{Y} Y=
{¢'} P{y'}

(cons)

Intuition:

@ Adding assertions to the precondition makes it more likely the
postcondition will be reached

@ Removing assertions to the postcondition makes it more likely
the postcondition will be reached

@ If you can reach the postcondition initially, then you can reach
it in the more likely scenario



