COMP2111 Week 5 Term 1, 2019 Hoare Logic

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sir Tony Hoare

- Pioneer of formal verification
- Invented quicksort
- Invented the null reference
- Invented CSP (formal specification language)
- Invented Hoare Logic

Summary

- $\bullet \ \mathcal{L}: \ A \ simple \ imperative \ programming \ language$
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Summary

(日) (同) (目) (日) (日) (日)

- \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

\mathcal{L} : A simple imperative programming language

Consider the vocabulary of basic arithmetic:

- Constant symbols: 0, 1, 2, ...
- Function symbols: +, *,...
- Predicate symbols: $<, \leq, \geq, |, \dots$
- An (arithmetic) expression is a term over this vocabulary.
- A boolean expression is a predicate formula over this vocabulary.

\mathcal{L} : A simple imperative programming language

Consider the vocabulary of basic arithmetic:

- Constant symbols: 0,1,2,...
- Function symbols: +, *,...
- Predicate symbols: $<, \leq, \geq, |, \dots$
- An (arithmetic) expression is a term over this vocabulary.
- A boolean expression is a predicate formula over this vocabulary.

\mathcal{L} : A simple imperative programming language

Consider the vocabulary of basic arithmetic:

- Constant symbols: 0,1,2,...
- Function symbols: +, *, ...
- Predicate symbols: $<, \leq, \geq, |, \dots$
- An (arithmetic) expression is a term over this vocabulary.
- A **boolean expression** is a predicate formula over this vocabulary.

・ロト ・ 日 ・ モ ト ・ モ ・ うへの

The language ${\mathcal L}$ is a simple imperative programming language made up of four statements:

Assignment: x := e

where x is a variable and e is an arithmetic expression.

Sequencing: P;Q

Conditional: if b then P else Q fi

where *b* is a boolean expression.

The language ${\cal L}$ is a simple imperative programming language made up of four statements:

Assignment: x := e

where x is a variable and e is an arithmetic expression.

Sequencing: *P*;*Q*

Conditional: if b then P else Q fi

where *b* is a boolean expression.

The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: x:=e where x is a variable and e is an arithmetic expression. Sequencing: P;Q

Conditional: if *b* then *P* else *Q* fi

where b is a boolean expression.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: x:=e
 where x is a variable and e is an arithmetic
 expression.
Sequencing: P;Q
Conditional: if b then P else Q fi

where b is a boolean expression.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Factorial in ${\cal L}$

Example

f := 1;k := 0;while <math>k < n do k := k + 1; f := f * kod

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- $\bullet \ \mathcal{L}: \ A \ simple \ imperative \ programming \ language$
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- $\bullet \ \mathcal{L}: \ A \ simple \ imperative \ programming \ language$
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Hoare triple (Syntax)

 $\left\{\varphi\right\} P\left\{\psi\right\}$

Intuition:

- φ : The **precondition** an assertion about the state prior to the execution of the code fragment.
- P: The code fragment
- ψ: The postcondition an assertion about the state after to the execution of the code fragment *if it terminates*.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Hoare triple (Syntax)

 $\left\{\varphi\right\} P\left\{\psi\right\}$

Intuition:

- φ : The **precondition** an assertion about the state prior to the execution of the code fragment.
- P: The code fragment
- ψ: The postcondition an assertion about the state after to the execution of the code fragment *if it terminates*.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Hoare triple (Syntax)

 $\left\{\varphi\right\} P\left\{\psi\right\}$

- φ : The **precondition** an assertion about the state prior to the execution of the code fragment.
- P: The code fragment
- ψ : The **postcondition** an assertion about the state after to the execution of the code fragment *if it terminates*.

Example

 $\{(x = 0)\} x := 1 \{(x = 1)\}$ $\{(x = 0)\} x := 1 \{(x = 500)\}$ $\{(x > 0)\} y := 0 - x \{(y < 0) \land (x \neq y)\}$

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Example

 $\{(x = 0)\} x := 1 \{(x = 1)\}$ $\{(x = 0)\} x := 1 \{(x = 500)\}$ $\{(x > 0)\} y := 0 - x \{(y < 0) \land (x \neq y)\}$

Example

$$\{(x = 0)\} x := 1 \{(x = 1)\}$$
$$\{(x = 0)\} x := 1 \{(x = 500)\}$$
$$\{(x > 0)\} y := 0 - x \{(y < 0) \land (x \neq y)\}$$

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○

Example	
	$\{n \ge 0\}$
	f := 1;
	k := 0;
	while $k < n$ do
	k:=k+1;
	f := f * k
	od
	$\{f=n!\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- $\bullet \ \mathcal{L}: \ A \ simple \ imperative \ programming \ language$
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Motivation

Question

We know what we want informally; how do we establish when a triple is valid?

- Develop a semantics (see next lecture), OR
- Derive the triple in a syntactic manner (i.e. proof)

Hoare logic consists of one axiom and four inference rules for deriving Hoare triples.

Motivation

Question

We know what we want informally; how do we establish when a triple is valid?

- Develop a semantics (see next lecture), OR
- Derive the triple in a syntactic manner (i.e. proof)

Hoare logic consists of one axiom and four inference rules for deriving Hoare triples.

(ロ) (同) (E) (E) (E)

Motivation

Question

We know what we want informally; how do we establish when a triple is valid?

- Develop a semantics (see next lecture), OR
- Derive the triple in a syntactic manner (i.e. proof)

Hoare logic consists of one axiom and four inference rules for deriving Hoare triples.

(ロ) (同) (E) (E) (E)

Assignment

$$\overline{\{\varphi[e/x]\} x := e \{\varphi\}} \quad (ass)$$

Intuition:

If x has property Q after executing the assignment; then e must have property Q before executing the assignment

Example

 $\{(y = 0)\} x := y \{(x = 0)\}$ $\{(y = y)\} x := y \{(x = y)\}$ $\{(y = 3)\} x := y \{(x > 2)\}$

▲ロ ▶ ▲ □ ▶ ▲ 三 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example

 $\{(y = 0)\} x := y \{(x = 0)\}$ $\{(y = y)\} x := y \{(x = y)\}$ $\{(y = 3)\} x := y \{(x > 2)\}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − つへぐ

Example

$$\{(y = 0)\} x := y \{(x = 0)\}$$
$$\{(y = y)\} x := y \{(x = y)\}$$
$$\{(1 < 2)\} x := 1 \{(x < 2)\}$$
$$\{(y = 3)\} x := y \{(x > 2)\}$$

(ロ) (回) (目) (目) (日) (の)

Example

$$\{(y = 0)\} x := y \{(x = 0)\}$$
$$\{(y = y)\} x := y \{(x = y)\}$$
$$\{(1 < 2)\} x := 1 \{(x < 2)\}$$
$$\{(y = 3)\} x := y \{(x > 2)\}$$
Problem

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Example

$$\{(y = 0)\} x := y \{(x = 0)\}$$
$$\{(y = y)\} x := y \{(x = y)\}$$
$$\{(1 < 2)\} x := 1 \{(x < 2)\}$$
$$\{(y = 3)\} x := y \{(x > 2)\}$$
Problem

うしん 叫 イビットビット 雪 シュロッ

$$\frac{\{\varphi\} P\{\psi\} \ \{\psi\} Q\{\rho\}}{\{\varphi\} P; Q\{\rho\}} \quad (\mathsf{seq})$$

Intuition:

If the postcondition of ${\cal P}$ matches the precondition of ${\cal Q}$ we can sequentially combine the two program fragments

Sequence: Example

Example $\frac{\{(0=0)\} x := 0 \{(x=0)\}}{\{(0=0)\} x := 0; y := 0 \{(x=y)\}} \quad (seq)$

Sequence: Example

Example

$$\frac{\{(0=0)\} x := 0 \{(x=0)\}}{\{(0=0)\} x := 0; y := 0 \{(x=y)\}}$$
(seq)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Sequence: Example

Example

$$\{(0=0)\} x := 0 \{(x=0)\} \qquad \{(x=0)\} y := 0 \{(x=y)\} \\ \{(0=0)\} x := 0; y := 0 \{(x=y)\} \qquad (seq)$$

Conditional

$$\frac{\{\varphi \land g\} P\{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ if } \{\psi\}} \quad \text{(if)}$$

- When a conditional is executed, either *P* or *Q* will be executed.
- If ψ is a postcondition of the conditional, then it must be a postcondition of *both* branches
- Likewise, f φ is a precondition of the conditional, then it must be a precondition of both branches
- Which branch gets executed depends on g, so we can assume g to be a precondition of P and ¬g to be a precondition of Q (strengthen the preconditions).

While

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

- φ is a loop-invariant. It must be both a pre- and postcondition of P so that sequences of Ps can be run together.
- If the while loop terminates, g cannot hold.

Precondition strengthening and Postcondition weakening

$$\frac{\varphi' \to \varphi \quad \{\varphi\} P \{\psi\} \quad \psi \to \psi'}{\{\varphi'\} P \{\psi'\}} \quad (\text{cons})$$

- Adding assertions to the precondition makes it more likely the postcondition will be reached
- Removing assertions to the postcondition makes it more likely the postcondition will be reached
- If you can reach the postcondition initially, then you can reach it in the more likely scenario