COMP2111 Week 5 Term 1, 2019 Hoare Logic

Sir Tony Hoare

- Pioneer of formal verification
- Invented quicksort
- Invented the null reference
- Invented CSP (formal specification language)
- Invented Hoare Logic

Summary

- \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Summary

- \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

\mathcal{L} : A simple imperative programming language

Consider the vocabulary of basic arithmetic:

- Constant symbols: $0,1,2, \ldots$
- Function symbols: $+, *, \ldots$
- Predicate symbols: $<, \leq, \geq, \mid, \ldots$

\mathcal{L} : A simple imperative programming language

Consider the vocabulary of basic arithmetic:

- Constant symbols: $0,1,2, \ldots$
- Function symbols: $+, *, \ldots$
- Predicate symbols: $<, \leq, \geq, \mid, \ldots$
- An (arithmetic) expression is a term over this vocabulary.

\mathcal{L} : A simple imperative programming language

Consider the vocabulary of basic arithmetic:

- Constant symbols: $0,1,2, \ldots$
- Function symbols: $+, *, \ldots$
- Predicate symbols: $<, \leq, \geq, \mid, \ldots$
- An (arithmetic) expression is a term over this vocabulary.
- A boolean expression is a predicate formula over this vocabulary.

The language \mathcal{L}

The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: $x:=e$
where x is a variable and e is an arithmetic expression.

The language \mathcal{L}

The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: $x:=e$
where x is a variable and e is an arithmetic expression.
Sequencing: $P ; Q$

The language \mathcal{L}

The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: $x:=e$
where x is a variable and e is an arithmetic expression.
Sequencing: $P ; Q$
Conditional: if b then P else $Q \mathbf{f i}$ where b is a boolean expression.

The language \mathcal{L}

The language \mathcal{L} is a simple imperative programming language made up of four statements:

Assignment: $x:=e$
where x is a variable and e is an arithmetic expression.
Sequencing: $P ; Q$
Conditional: if b then P else $Q \mathbf{f i}$ where b is a boolean expression.
While: while b do P od

Factorial in \mathcal{L}

Example

$$
\begin{aligned}
& f:=1 ; \\
& k:=0 ; \\
& \text { while } k<n \text { do } \\
& \quad k:=k+1 ; \\
& \quad f:=f * k \\
& \text { od }
\end{aligned}
$$

Summary

- \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Summary

- \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Hoare triple (Syntax)

$$
\{\varphi\} P\{\psi\}
$$

Intuition:
φ : The precondition - an assertion about the state prior to the execution of the code fragment.

Hoare triple (Syntax)

$$
\{\varphi\} P\{\psi\}
$$

Intuition:
φ : The precondition - an assertion about the state prior to the execution of the code fragment.
P : The code fragment

Hoare triple (Syntax)

$$
\{\varphi\} P\{\psi\}
$$

Intuition:
φ : The precondition - an assertion about the state prior to the execution of the code fragment.
P : The code fragment
ψ : The postcondition - an assertion about the state after to the execution of the code fragment if it terminates.

Hoare triple: Examples

Example

$$
\{(x=0)\} x:=1\{(x=1)\}
$$

Hoare triple: Examples

Example

$$
\begin{aligned}
& \{(x=0)\} x:=1\{(x=1)\} \\
& \{(x=0)\} x:=1\{(x=500)\}
\end{aligned}
$$

Hoare triple: Examples

Example

$$
\begin{aligned}
& \{(x=0)\} x:=1\{(x=1)\} \\
& \{(x=0)\} x:=1\{(x=500)\} \\
& \{(x>0)\} y:=0-x\{(y<0) \wedge(x \neq y)\}
\end{aligned}
$$

Hoare triple: Examples

Example

$$
\begin{aligned}
& \{n \geq 0\} \\
& f:=1 ; \\
& k:=0 ; \\
& \text { while } k<n \text { do } \\
& \quad k:=k+1 ; \\
& \quad f:=f * k \\
& \text { od } \\
& \{f=n!\}
\end{aligned}
$$

Summary

- \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Motivation

Question

We know what we want informally; how do we establish when a triple is valid?

Motivation

Question

We know what we want informally; how do we establish when a triple is valid?

- Develop a semantics (see next lecture), OR

Hoare logic consists of one axiom and four inference rules for deriving Hoare triples.

Motivation

Question

We know what we want informally; how do we establish when a triple is valid?

- Develop a semantics (see next lecture), OR
- Derive the triple in a syntactic manner (i.e. proof)

Hoare logic consists of one axiom and four inference rules for deriving Hoare triples.

Assignment

$$
\begin{equation*}
\overline{\{\varphi[e / x]\} x:=e\{\varphi\}} \tag{ass}
\end{equation*}
$$

Intuition:
If x has property Q after executing the assignment; then e must have property Q before executing the assignment

Assignment: Example

Example

$$
\{(y=0)\} x:=y\{(x=0)\}
$$

Assignment: Example

Example

$$
\begin{aligned}
& \{(y=0)\} x:=y\{(x=0)\} \\
& \{\quad\} x:=y\{(x=y)\}
\end{aligned}
$$

Assignment: Example

Example

$$
\begin{aligned}
& \{(y=0)\} x:=y\{(x=0)\} \\
& \{(y=y)\} x:=y\{(x=y)\}
\end{aligned}
$$

Assignment: Example

Example

$$
\begin{aligned}
& \{(y=0)\} x:=y\{(x=0)\} \\
& \{(y=y)\} x:=y\{(x=y)\} \\
& \{\quad\} x:=1\{(x<2)\}
\end{aligned}
$$

Assignment: Example

Example

$$
\begin{aligned}
& \{(y=0)\} x:=y\{(x=0)\} \\
& \{(y=y)\} x:=y\{(x=y)\} \\
& \{(1<2)\} x:=1\{(x<2)\} \\
& \{(y=3)\} x:=y\{(x>2)\}
\end{aligned}
$$

Assignment: Example

Example

$$
\begin{aligned}
& \{(y=0)\} x:=y\{(x=0)\} \\
& \{(y=y)\} x:=y\{(x=y)\} \\
& \{(1<2)\} x:=1\{(x<2)\} \\
& \{(y=3)\} x:=y\{(x>2)\} \quad \text { Problem! }
\end{aligned}
$$

Sequence

$$
\frac{\{\varphi\} P\{\psi\} \quad\{\psi\} Q\{\rho\}}{\{\varphi\} P ; Q\{\rho\}}
$$

Intuition:
If the postcondition of P matches the precondition of Q we can sequentially combine the two program fragments

Sequence: Example

Example

$$
\frac{\{\quad\} x:=0\{\quad\} \quad\{\quad\} y:=0\{(x=y)\}}{\{\quad\} x:=0 ; y:=0\{(x=y)\}} \text { (seq) }
$$

Sequence: Example

Example

$$
\frac{\{\quad\} x:=0\{(x=0)\} \quad\{(x=0)\} y:=0\{(x=y)\}}{\{\quad\} x:=0 ; y:=0\{(x=y)\}}
$$

Sequence: Example

Example

$$
\frac{\{(0=0)\} x:=0\{(x=0)\} \quad\{(x=0)\} y:=0\{(x=y)\}}{\{(0=0)\} x:=0 ; y:=0\{(x=y)\}}
$$

Conditional

$$
\begin{equation*}
\frac{\{\varphi \wedge g\} P\{\psi\} \quad\{\varphi \wedge \neg g\} Q\{\psi\}}{\{\varphi\} \text { if } g \text { then } P \text { else } Q \mathbf{f i}\{\psi\}} \tag{if}
\end{equation*}
$$

Intuition:

- When a conditional is executed, either P or Q will be executed.
- If ψ is a postcondition of the conditional, then it must be a postcondition of both branches
- Likewise, $\mathrm{f} \varphi$ is a precondition of the conditional, then it must be a precondition of both branches
- Which branch gets executed depends on g, so we can assume g to be a precondition of P and $\neg g$ to be a precondition of Q (strengthen the preconditions).

While

$$
\frac{\{\varphi \wedge g\} P\{\varphi\}}{\{\varphi\} \text { while } g \text { do } P \text { od }\{\varphi \wedge \neg g\}} \quad \text { (loop) }
$$

Intuition:

- φ is a loop-invariant. It must be both a pre- and postcondition of P so that sequences of $P \mathrm{~s}$ can be run together.
- If the while loop terminates, g cannot hold.

Precondition strengthening and Postcondition weakening

$$
\begin{array}{ccc}
\varphi^{\prime} \rightarrow \varphi & \{\varphi\} P\{\psi\} & \psi \rightarrow \psi^{\prime} \tag{cons}\\
\hline & \left\{\varphi^{\prime}\right\} P\left\{\psi^{\prime}\right\}
\end{array}
$$

Intuition:

- Adding assertions to the precondition makes it more likely the postcondition will be reached
- Removing assertions to the postcondition makes it more likely the postcondition will be reached
- If you can reach the postcondition initially, then you can reach it in the more likely scenario

