
12. Exponential Time Hypothesis

COMP6741: Parameterized and Exact Computation

Serge Gaspers12

1School of Computer Science and Engineering, UNSW Australia
2Optimisation Resarch Group, NICTA

Semester 2, 2015

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 1 / 23

Outline

1 SAT and k-SAT

2 Subexponential time algorithms

3 ETH and SETH

4 Algorithmic lower bounds based on ETH

5 Algorithmic lower bounds based on SETH

6 Further Reading

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 2 / 23

Outline

1 SAT and k-SAT

2 Subexponential time algorithms

3 ETH and SETH

4 Algorithmic lower bounds based on ETH

5 Algorithmic lower bounds based on SETH

6 Further Reading

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 3 / 23

SAT

SAT
Input: A propositional formula F in conjunctive normal form (CNF)
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F) satisfying all clauses of F?

k-SAT
Input: A CNF formula F where each clause has length at most k
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F) satisfying all clauses of F?

Example:

(x1 ∨ x2) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 4 / 23

Algorithms for SAT

Brute-force: O∗(2n)

... after > 50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions,
...)

fastest known algorithm for SAT: O∗(2n·(1−1/O(logm/n))), where m is the
number of clauses [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]

However: no O∗(1.9999n) time algorithm is known

fastest known algorithms for 3-SAT: O∗(1.3071n) randomized [Hertli, 2014]

and O∗(1.3303n) deterministic [Makino, Tamaki, Yamamoto, 2013]

Could it be that 3-SAT cannot be solved in 2o(n) time?

Could it be that SAT cannot be solved in O∗((2− ε)n) time for any ε > 0?

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 5 / 23

Algorithms for SAT

Brute-force: O∗(2n)

... after > 50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions,
...)

fastest known algorithm for SAT: O∗(2n·(1−1/O(logm/n))), where m is the
number of clauses [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]

However: no O∗(1.9999n) time algorithm is known

fastest known algorithms for 3-SAT: O∗(1.3071n) randomized [Hertli, 2014]

and O∗(1.3303n) deterministic [Makino, Tamaki, Yamamoto, 2013]

Could it be that 3-SAT cannot be solved in 2o(n) time?

Could it be that SAT cannot be solved in O∗((2− ε)n) time for any ε > 0?

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 5 / 23

Algorithms for SAT

Brute-force: O∗(2n)

... after > 50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions,
...)

fastest known algorithm for SAT: O∗(2n·(1−1/O(logm/n))), where m is the
number of clauses [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]

However: no O∗(1.9999n) time algorithm is known

fastest known algorithms for 3-SAT: O∗(1.3071n) randomized [Hertli, 2014]

and O∗(1.3303n) deterministic [Makino, Tamaki, Yamamoto, 2013]

Could it be that 3-SAT cannot be solved in 2o(n) time?

Could it be that SAT cannot be solved in O∗((2− ε)n) time for any ε > 0?

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 5 / 23

Algorithms for SAT

Brute-force: O∗(2n)

... after > 50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions,
...)

fastest known algorithm for SAT: O∗(2n·(1−1/O(logm/n))), where m is the
number of clauses [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]

However: no O∗(1.9999n) time algorithm is known

fastest known algorithms for 3-SAT: O∗(1.3071n) randomized [Hertli, 2014]

and O∗(1.3303n) deterministic [Makino, Tamaki, Yamamoto, 2013]

Could it be that 3-SAT cannot be solved in 2o(n) time?

Could it be that SAT cannot be solved in O∗((2− ε)n) time for any ε > 0?

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 5 / 23

Outline

1 SAT and k-SAT

2 Subexponential time algorithms

3 ETH and SETH

4 Algorithmic lower bounds based on ETH

5 Algorithmic lower bounds based on SETH

6 Further Reading

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 6 / 23

NP-hard problems in subexponential time?

Are there any NP-hard problems that can be solved in 2o(n) time?

Yes. For example, Independent Set is NP-comlpete even when the input
graph is planar (can be drawn in the plane without edge crossings). Planar
graphs have treewidth O(

√
n) and tree decompositions of that width can be

found in polynomial time (“Planar separator theorem” [Lipton, Tarjan, 1979]).
Using a tree decomposition based algorithm, Independent Set can be
solved in 2O(

√
n) time on planar graphs.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 7 / 23

NP-hard problems in subexponential time?

Are there any NP-hard problems that can be solved in 2o(n) time?

Yes. For example, Independent Set is NP-comlpete even when the input
graph is planar (can be drawn in the plane without edge crossings). Planar
graphs have treewidth O(

√
n) and tree decompositions of that width can be

found in polynomial time (“Planar separator theorem” [Lipton, Tarjan, 1979]).
Using a tree decomposition based algorithm, Independent Set can be
solved in 2O(

√
n) time on planar graphs.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 7 / 23

Outline

1 SAT and k-SAT

2 Subexponential time algorithms

3 ETH and SETH

4 Algorithmic lower bounds based on ETH

5 Algorithmic lower bounds based on SETH

6 Further Reading

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 8 / 23

ETH and SETH

Definition 1

For each k ≥ 3, define δk to be the infinimum1 of the set of constants c such that
k-SAT can be solved in O∗(2c·n) time.

Conjecture 2 (Exponential Time Hyphothesis (ETH))

δ3 > 0.

Conjecture 3 (Strong Exponential Time Hyphothesis (SETH))

limk→∞ δk = 1.

Notes: (1) ETH ⇒ 3-SAT cannot be solved in 2o(n) time.
SETH ⇒ SAT cannot be solved in O∗((2− ε)n) time for any ε > 0.

1The infinimum of a set of numbers is the largest number that is smaller or equal to each
number in the set. E.g., the infinimum of {ε ∈ R : ε > 0} is 0.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 9 / 23

Outline

1 SAT and k-SAT

2 Subexponential time algorithms

3 ETH and SETH

4 Algorithmic lower bounds based on ETH

5 Algorithmic lower bounds based on SETH

6 Further Reading

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 10 / 23

Algorithmic lower bounds based on ETH

Suppose ETH is true

Can we infer lower bounds on the running time needed to solve other
problems?

Suppose there is a polynomial-time reduction from 3-SAT to a graph problem
Π, which constructs an equivalent instance where the number of vertices of
the output graph equals the number of variables of the input formula,
|V | = |var(F)|.
Using the reduction, we can conclude that, if Π has an O∗(2o(|V |)) time
algorithm, then 3-SAT has an O∗(2o(|var(F)|)) time algorithm, contradicting
ETH.

Therefore, we conclude that Π has no O∗(2o(|V |)) time algorithm unless ETH
fails.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 11 / 23

Algorithmic lower bounds based on ETH

Suppose ETH is true

Can we infer lower bounds on the running time needed to solve other
problems?

Suppose there is a polynomial-time reduction from 3-SAT to a graph problem
Π, which constructs an equivalent instance where the number of vertices of
the output graph equals the number of variables of the input formula,
|V | = |var(F)|.
Using the reduction, we can conclude that, if Π has an O∗(2o(|V |)) time
algorithm, then 3-SAT has an O∗(2o(|var(F)|)) time algorithm, contradicting
ETH.

Therefore, we conclude that Π has no O∗(2o(|V |)) time algorithm unless ETH
fails.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 11 / 23

Sparsification Lemma

Issue: Many reductions from 3-SAT create a number of vertices / variables /
elements that are related to the number of clauses of the 3-SAT instance.

Theorem 4 (Sparsification Lemma, [Impagliazzo, Paturi, Zane, 2001])

For each ε > 0 and positive integer k, there is a O∗(2ε·n) time algorithm that
takes as input a k-CNF formula F with n variables and outputs an equivalent
formula F ′ =

∨t
i=1 Fi that is a disjunction of t ≤ 2εn formulas Fi with

var(Fi) = var(F) and |cla(Fi)| = O(n).

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 12 / 23

Sparsification Lemma

Issue: Many reductions from 3-SAT create a number of vertices / variables /
elements that are related to the number of clauses of the 3-SAT instance.

Theorem 4 (Sparsification Lemma, [Impagliazzo, Paturi, Zane, 2001])

For each ε > 0 and positive integer k, there is a O∗(2ε·n) time algorithm that
takes as input a k-CNF formula F with n variables and outputs an equivalent
formula F ′ =

∨t
i=1 Fi that is a disjunction of t ≤ 2εn formulas Fi with

var(Fi) = var(F) and |cla(Fi)| = O(n).

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 12 / 23

3-SAT with a linear number of clauses

Corollary 5

ETH ⇒ 3-SAT cannot be solved in O∗(2o(n+m)) time where m denotes the
number of clauses of F .

Observation: Let A, B be parameterized problems and f , g be non-decreasing
functions.
Suppose there is a polynomial-parameter transformation from A to B such that if
the parameter of an instance of A is k, then the parameter of the constructed
instance of B is at most g(k). Then an O∗(2o(f(k))) time algorithm for B implies
an O∗(2o(f(g(k)))) time algorithm for A.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 13 / 23

More general reductions are possible

Definition 6 (SERF-reduction)

A SubExponential Reduction Family from a parameterized problem A to a
parameterized problem B is a family of Turing reductions from A to B (i.e., an
algorithm for A, making queries to an oracle for B that solves any instance for B
in constant time) for each ε > 0 such that

for every instance I for A with parameter k, the running time is O∗(2εk), and

for every query I ′ to B with parameter k′, we have that k′ ∈ O(k) and
|I ′| = |I|O(1).

Note: If A is SERF-reducible to B and A has no 2o(k) time algorithm, then B
has no 2o(k

′) time algorithm.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 14 / 23

Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.
For simplicity, assume all clauses have length 3.
3-CNF Formula F = (u ∨ v ∨ ¬y) ∧ (¬u ∨ y ∨ z) ∧ (¬v ∨ w ∨ x) ∧ (x ∨ y ∨ ¬z)

¬u u ¬v v ¬w w ¬x x ¬y y ¬z z

For a 3-CNF formula with n variables and m clauses, we create a Vertex
Cover instance with |V | = 2n+ 3m and k = n+ 2m.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 15 / 23

Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.
For simplicity, assume all clauses have length 3.
3-CNF Formula F = (u ∨ v ∨ ¬y) ∧ (¬u ∨ y ∨ z) ∧ (¬v ∨ w ∨ x) ∧ (x ∨ y ∨ ¬z)

¬u u ¬v v ¬w w ¬x x ¬y y ¬z z

For a 3-CNF formula with n variables and m clauses, we create a Vertex
Cover instance with |V | = 2n+ 3m and k = n+ 2m.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 15 / 23

Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.
For simplicity, assume all clauses have length 3.
3-CNF Formula F = (u ∨ v ∨ ¬y) ∧ (¬u ∨ y ∨ z) ∧ (¬v ∨ w ∨ x) ∧ (x ∨ y ∨ ¬z)

¬u u ¬v v ¬w w ¬x x ¬y y ¬z z

For a 3-CNF formula with n variables and m clauses, we create a Vertex
Cover instance with |V | = 2n+ 3m and k = n+ 2m.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 15 / 23

Vertex Cover has no subexponential algorithm II

Theorem 7

ETH ⇒ Vertex Cover has no 2o(|V |) time algorithm.

Theorem 8

ETH ⇒ Vertex Cover has no 2o(k) time algorithm.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 16 / 23

Outline

1 SAT and k-SAT

2 Subexponential time algorithms

3 ETH and SETH

4 Algorithmic lower bounds based on ETH

5 Algorithmic lower bounds based on SETH

6 Further Reading

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 17 / 23

Hitting Set

Recall: A hitting set of a set system S = (V,H) is a subset X of V such that X
contains at least one element of each set in H, i.e., X ∩ Y 6= ∅ for each Y ∈ H.

elts-Hitting Set
Input: A set system S = (V,H) and an integer k
Parameter: n = |V |
Question: Does S have a hitting set of size at most k?

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 18 / 23

SETH-lower bound for Hitting Set

CNF Formula F = (u ∨ v ∨ ¬y) ∧ (¬u ∨ y ∨ z) ∧ (¬v ∨ w ∨ x) ∧ (x ∨ y ∨ ¬z)
Inidence graph of equivalent Hitting Set instance:

¬u u
¬v v

¬w w
¬x x

¬y y
¬z z

sets

elts

sets

For a CNF formula with n variables and m clauses, we create a Hitting Set
instance with |V | = 2n and k = n.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 19 / 23

SETH-lower bound for Hitting Set

Theorem 9

SETH ⇒ Hitting Set has no O∗((2− ε)|V |/2) time algorithm for any ε > 0.

Note: With a more ingenious reduction, one can show that Hitting Set has no
O∗((2− ε)|V |) time algorithm for any ε > 0 under SETH.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 20 / 23

Exercise

A dominating set of a graph G = (V,E) is a set of vertices S ⊆ V such that
NG[S] = V .

vertex-Dominating Set
Input: A graph G = (V,E) and an integer k
Parameter: n = |V |
Question: Does G have a dominating set of size at most k?

Prove that ETH ⇒ vertex-Dominating Set has no 2o(n) time algorithm.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 21 / 23

Outline

1 SAT and k-SAT

2 Subexponential time algorithms

3 ETH and SETH

4 Algorithmic lower bounds based on ETH

5 Algorithmic lower bounds based on SETH

6 Further Reading

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 22 / 23

Further Reading

Chapter 14, Lower bounds based on the Exponential-Time Hypothesis in
Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Micha lPilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

Section 11.3, Subexponential Algorithms and ETH in
Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer,
2010.

Section 29.5, The Sparsification Lemma in
Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 23 / 23

	SAT and k-SAT
	Subexponential time algorithms
	ETH and SETH
	Algorithmic lower bounds based on ETH
	Algorithmic lower bounds based on SETH
	Further Reading

