12. Exponential Time Hypothesis COMP6741: Parameterized and Exact Computation

 $\mathsf{Serge}\ \mathsf{Gaspers}^{12}$

¹School of Computer Science and Engineering, UNSW Australia ²Optimisation Resarch Group, NICTA

Semester 2, 2015

- SAT and k-SAT
- Subexponential time algorithms
- 3 ETH and SETH
- 4 Algorithmic lower bounds based on ETH
- 5 Algorithmic lower bounds based on SETH
- 6 Further Reading

- SAT and k-SAT
- Subexponential time algorithms
- 3 ETH and SETH
- 4 Algorithmic lower bounds based on ETH
- 5 Algorithmic lower bounds based on SETH
- 6 Further Reading

SAT

SAT

Input: A propositional formula F in conjunctive normal form (CNF)

Parameter: n = |var(F)|, the number of variables in F

Question: Is there an assignment to var(F) satisfying all clauses of F?

k-SAT

Input: A CNF formula F where each clause has length at most k

Parameter: n = |var(F)|, the number of variables in F

Question: Is there an assignment to var(F) satisfying all clauses of F?

Example:

$$(x_1 \lor x_2) \land (\neg x_2 \lor x_3 \lor \neg x_4) \land (x_1 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

• Brute-force: $O^*(2^n)$

- Brute-force: $O^*(2^n)$
- \bullet ... after >50 years of SAT solving (SAT association, SAT conference, JSAT journal, annual SAT competitions, ...)

- Brute-force: $O^*(2^n)$
- \bullet ... after >50 years of SAT solving (SAT association, SAT conference, JSAT journal, annual SAT competitions, ...)
- fastest known algorithm for SAT: $O^*(2^{n \cdot (1-1/O(\log m/n))})$, where m is the number of clauses [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]
- However: no $O^*(1.9999^n)$ time algorithm is known
- fastest known algorithms for 3-SAT: $O^*(1.3071^n)$ randomized [Hertli, 2014] and $O^*(1.3303^n)$ deterministic [Makino, Tamaki, Yamamoto, 2013]

- Brute-force: $O^*(2^n)$
- \bullet ... after >50 years of SAT solving (SAT association, SAT conference, JSAT journal, annual SAT competitions, ...)
- fastest known algorithm for SAT: $O^*(2^{n \cdot (1-1/O(\log m/n))})$, where m is the number of clauses [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]
- However: no $O^*(1.9999^n)$ time algorithm is known
- fastest known algorithms for 3-SAT: $O^*(1.3071^n)$ randomized [Hertli, 2014] and $O^*(1.3303^n)$ deterministic [Makino, Tamaki, Yamamoto, 2013]
- Could it be that 3-SAT cannot be solved in $2^{o(n)}$ time?
- Could it be that SAT cannot be solved in $O^*((2-\epsilon)^n)$ time for any $\epsilon>0$?

- SAT and k-SAT
- Subexponential time algorithms
- 3 ETH and SETH
- 4 Algorithmic lower bounds based on ETH
- 5 Algorithmic lower bounds based on SETH
- 6 Further Reading

NP-hard problems in subexponential time?

ullet Are there any NP-hard problems that can be solved in $2^{o(n)}$ time?

NP-hard problems in subexponential time?

- Are there any NP-hard problems that can be solved in $2^{o(n)}$ time?
- Yes. For example, INDEPENDENT SET is NP-comlpete even when the input graph is planar (can be drawn in the plane without edge crossings). Planar graphs have treewidth $O(\sqrt{n})$ and tree decompositions of that width can be found in polynomial time ("Planar separator theorem" [Lipton, Tarjan, 1979]). Using a tree decomposition based algorithm, INDEPENDENT SET can be solved in $2^{O(\sqrt{n})}$ time on planar graphs.

- SAT and k-SAT
- Subexponential time algorithms
- 3 ETH and SETH
- 4 Algorithmic lower bounds based on ETH
- 5 Algorithmic lower bounds based on SETH
- 6 Further Reading

ETH and SETH

Definition 1

For each $k \geq 3$, define δ_k to be the infinimum¹ of the set of constants c such that k-SAT can be solved in $O^*(2^{c \cdot n})$ time.

Conjecture 2 (Exponential Time Hyphothesis (ETH))

 $\delta_3 > 0$.

Conjecture 3 (Strong Exponential Time Hyphothesis (SETH))

 $\lim_{k\to\infty}\delta_k=1.$

Notes: (1) ETH \Rightarrow 3-SAT cannot be solved in $2^{o(n)}$ time.

SETH \Rightarrow SAT cannot be solved in $O^*((2-\epsilon)^n)$ time for any $\epsilon > 0$.

¹The infinimum of a set of numbers is the largest number that is smaller or equal to each number in the set. E.g., the infinimum of $\{\varepsilon \in \mathbb{R} : \varepsilon > 0\}$ is 0.

- SAT and k-SAT
- Subexponential time algorithms
- 3 ETH and SETH
- 4 Algorithmic lower bounds based on ETH
- 5 Algorithmic lower bounds based on SETH
- 6 Further Reading

Algorithmic lower bounds based on ETH

- Suppose ETH is true
- Can we infer lower bounds on the running time needed to solve other problems?

Algorithmic lower bounds based on ETH

- Suppose ETH is true
- Can we infer lower bounds on the running time needed to solve other problems?
- Suppose there is a polynomial-time reduction from 3-SAT to a graph problem Π , which constructs an equivalent instance where the number of vertices of the output graph equals the number of variables of the input formula, $|V| = |\mathsf{var}(F)|$.
- Using the reduction, we can conclude that, if Π has an $O^*(2^{o(|V|)})$ time algorithm, then 3-SAT has an $O^*(2^{o(|\mathsf{var}(F)|)})$ time algorithm, contradicting ETH.
- Therefore, we conclude that Π has no $O^*(2^{o(|V|)})$ time algorithm unless ETH fails.

Sparsification Lemma

Issue: Many reductions from 3-SAT create a number of vertices / variables / elements that are related to the number of clauses of the 3-SAT instance.

Sparsification Lemma

Issue: Many reductions from 3-SAT create a number of vertices / variables / elements that are related to the number of clauses of the 3-SAT instance.

Theorem 4 (Sparsification Lemma, [Impagliazzo, Paturi, Zane, 2001])

For each $\varepsilon>0$ and positive integer k, there is a $O^*(2^{\varepsilon\cdot n})$ time algorithm that takes as input a k-CNF formula F with n variables and outputs an equivalent formula $F'=\bigvee_{i=1}^t F_i$ that is a disjunction of $t\leq 2^{\varepsilon n}$ formulas F_i with $\mathrm{var}(F_i)=\mathrm{var}(F)$ and $|\mathrm{cla}(F_i)|=O(n)$.

3-SAT with a linear number of clauses

Corollary 5

 $ETH \Rightarrow 3\text{-}SAT$ cannot be solved in $O^*(2^{o(n+m)})$ time where m denotes the number of clauses of F.

Observation: Let A, B be parameterized problems and f, g be non-decreasing functions.

Suppose there is a polynomial-parameter transformation from A to B such that if the parameter of an instance of A is k, then the parameter of the constructed instance of B is at most g(k). Then an $O^*(2^{o(f(k))})$ time algorithm for B implies an $O^*(2^{o(f(g(k)))})$ time algorithm for A.

More general reductions are possible

Definition 6 (SERF-reduction)

A SubExponential Reduction Family from a parameterized problem A to a parameterized problem B is a family of Turing reductions from A to B (i.e., an algorithm for A, making queries to an oracle for B that solves any instance for B in constant time) for each $\varepsilon>0$ such that

- \bullet for every instance I for A with parameter k , the running time is $O^*(2^{\varepsilon k})$, and
- for every query I' to B with parameter k', we have that $k' \in O(k)$ and $|I'| = |I|^{O(1)}$.

Note: If A is SERF-reducible to B and A has no $2^{o(k)}$ time algorithm, then B has no $2^{o(k')}$ time algorithm.

Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.

For simplicity, assume all clauses have length 3.

3-CNF Formula $F = (u \lor v \lor \neg y) \land (\neg u \lor y \lor z) \land (\neg v \lor w \lor x) \land (x \lor y \lor \neg z)$

Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.

For simplicity, assume all clauses have length 3.

$$\text{3-CNF Formula } F = (u \vee \textcolor{red}{v} \vee \neg y) \wedge (\neg u \vee y \vee z) \wedge (\neg \textcolor{red}{v} \vee w \vee \textcolor{red}{x}) \wedge (\textcolor{red}{x} \vee y \vee \neg z)$$

For a 3-CNF formula with n variables and m clauses, we create a VERTEX COVER instance with |V|=2n+3m and k=n+2m.

Vertex Cover has no subexponential algorithm II

Theorem 7

 $ETH \Rightarrow VERTEX COVER$ has no $2^{o(|V|)}$ time algorithm.

Theorem 8

 $ETH \Rightarrow VERTEX COVER$ has no $2^{o(k)}$ time algorithm.

- SAT and k-SAT
- Subexponential time algorithms
- 3 ETH and SETH
- 4 Algorithmic lower bounds based on ETH
- 5 Algorithmic lower bounds based on SETH
- 6 Further Reading

Hitting Set

Recall: A hitting set of a set system S = (V, H) is a subset X of V such that X contains at least one element of each set in H, i.e., $X \cap Y \neq \emptyset$ for each $Y \in H$.

elts-Hitting Set

Input: A set system S = (V, H) and an integer k

Parameter: n = |V|

Question: Does S have a hitting set of size at most k?

SETH-lower bound for Hitting Set

CNF Formula $F = (u \lor v \lor \neg y) \land (\neg u \lor y \lor z) \land (\neg v \lor w \lor x) \land (x \lor y \lor \neg z)$ Inidence graph of equivalent Hitting Set instance:

For a CNF formula with n variables and m clauses, we create a HITTING SET instance with |V|=2n and k=n.

SETH-lower bound for Hitting Set

Theorem 9

SETH \Rightarrow HITTING SET has no $O^*((2-\varepsilon)^{|V|/2})$ time algorithm for any $\varepsilon > 0$.

Note: With a more ingenious reduction, one can show that HITTING SET has no $O^*((2-\varepsilon)^{|V|})$ time algorithm for any $\varepsilon>0$ under SETH.

Exercise

A dominating set of a graph G=(V,E) is a set of vertices $S\subseteq V$ such that $N_G[S]=V$.

vertex-Dominating Set

Input: A graph G = (V, E) and an integer k

Parameter: n = |V|

Question: Does G have a dominating set of size at most k?

• Prove that ETH \Rightarrow vertex-DOMINATING SET has no $2^{o(n)}$ time algorithm.

- SAT and k-SAT
- Subexponential time algorithms
- ETH and SETH
- 4 Algorithmic lower bounds based on ETH
- 5 Algorithmic lower bounds based on SETH
- 6 Further Reading

Further Reading

- Chapter 14, Lower bounds based on the Exponential-Time Hypothesis in Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Section 11.3, Subexponential Algorithms and ETH in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.
- Section 29.5, The Sparsification Lemma in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.