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@ SAT and k-SAT
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SAT
Input: A propositional formula F in conjunctive normal form (CNF)
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F') satisfying all clauses of F?
k-SAT
Input: A CNF formula F' where each clause has length at most &
Parameter: n = |var(F')|, the number of variables in F
Question: Is there an assignment to var([') satisfying all clauses of F7
Example:

(1 Vo) A(maa Vas Voxg) Al Vag) A(may V —xg Vo)
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Algorithms for SAT

@ Brute-force: O*(2")
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Algorithms for SAT

@ Brute-force: O*(2")

@ ... after > 50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions,

)

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 5/



Algorithms for SAT

@ Brute-force: O*(2")

@ ... after > 50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions,

o fastest known algorithm for SAT: O* (27 (1= 1/OUogm/n)) where m is the
number of clauses [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]

@ However: no O*(1.9999™) time algorithm is known

o fastest known algorithms for 3-SAT: O*(1.3071"™) randomized [Hertli, 2014]
and O*(1.3303™) deterministic [Makino, Tamaki, Yamamoto, 2013]
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Algorithms for SAT

@ Brute-force: O*(2")

@ ... after > 50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions,

o fastest known algorithm for SAT: O* (27 (1= 1/OUogm/n)) where m is the
number of clauses [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]

@ However: no O*(1.9999™) time algorithm is known

o fastest known algorithms for 3-SAT: O*(1.3071"™) randomized [Hertli, 2014]
and O*(1.3303™) deterministic [Makino, Tamaki, Yamamoto, 2013]

e Could it be that 3-SAT cannot be solved in 2°(") time?
o Could it be that SAT cannot be solved in O*((2 — ¢)™) time for any ¢ > 07
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© Subexponential time algorithms
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NP-hard problems in subexponential time?

o Are there any NP-hard problems that can be solved in 2°(") time?
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NP-hard problems in subexponential time?

o Are there any NP-hard problems that can be solved in 2°(") time?

@ Yes. For example, INDEPENDENT SET is NP-comlpete even when the input
graph is planar (can be drawn in the plane without edge crossings). Planar
graphs have treewidth O(y/n) and tree decompositions of that width can be
found in polynomial time (“Planar separator theorem” [Lipton, Tarjan, 1979]).
Using a tree decomposition based algorithm, INDEPENDENT SET can be
solved in 200 time on planar graphs.
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© ETH and SETH
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ETH and SETH

Definition 1

For each k > 3, define ), to be the infinimum® of the set of constants ¢ such that
E-SAT can be solved in O*(2¢™) time.

Conjecture 2 (Exponential Time Hyphothesis (ETH))
53 > 0.

Conjecture 3 (Strong Exponential Time Hyphothesis (SETH))

linlkﬂoc 5k =1,

Notes: (1) ETH = 3-SAT cannot be solved in 2°(") time.
SETH = SAT cannot be solved in O*((2 — ¢)™) time for any € > 0.

IThe infinimum of a set of numbers is the largest number that is smaller or equal to each
number in the set. E.g., the infinimum of {e € R: e > 0} is 0.
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@ Algorithmic lower bounds based on ETH
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Algorithmic lower bounds based on ETH

@ Suppose ETH is true

@ Can we infer lower bounds on the running time needed to solve other
problems?
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Algorithmic lower bounds based on ETH

Suppose ETH is true

@ Can we infer lower bounds on the running time needed to solve other
problems?

@ Suppose there is a polynomial-time reduction from 3-SAT to a graph problem
IT, which constructs an equivalent instance where the number of vertices of
the output graph equals the number of variables of the input formula,

V[ = [var(F)].

@ Using the reduction, we can conclude that, if IT has an O*(2°(VD)) time
algorithm, then 3-SAT has an O*(20(“’a'(F)D) time algorithm, contradicting
ETH.

o Therefore, we conclude that T has no O*(2°(VD) time algorithm unless ETH
fails.
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Sparsification Lemma

Issue: Many reductions from 3-SAT create a number of vertices / variables /
elements that are related to the number of clauses of the 3-SAT instance.

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 12 /23



Sparsification Lemma

Issue: Many reductions from 3-SAT create a number of vertices / variables /
elements that are related to the number of clauses of the 3-SAT instance.

Theorem 4 (Sparsification Lemma,

For each € > 0 and positive integer k, there is a O*(25™) time algorithm that
takes as input a k-CNF formula F' with n variables and outputs an equivalent
formula F' = \/f‘:1 F; that is a disjunction of t < 2°™ formulas F; with
var(F;) = var(F) and |cla(F;)| = O(n).
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3-SAT with a linear number of clauses

ETH = 3-SAT cannot be solved in O* (2°("*+™)) time where m denotes the
number of clauses of F'.

Observation: Let A, B be parameterized problems and f, g be non-decreasing
functions.

Suppose there is a polynomial-parameter transformation from A to B such that if
the parameter of an instance of A is k, then the parameter of the constructed
instance of B is at most g(k). Then an O*(2°(/(*)) time algorithm for B implies
an O*(2°U((F)) time algorithm for A.
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More general reductions are possible

Definition 6 (SERF-reduction)

A SubExponential Reduction Family from a parameterized problem A to a
parameterized problem B is a family of Turing reductions from A to B (i.e., an
algorithm for A, making queries to an oracle for B that solves any instance for B
in constant time) for each € > 0 such that

e for every instance I for A with parameter k, the running time is O*(2°%), and

o for every query I’ to B with parameter k', we have that £’ € O(k) and
1’| = |7]°0).

Note: If A is SERF-reducible to B and A has no 2°(%) time algorithm, then B
has no 2°(5") time algorithm.
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Vertex Cover has no subexponential algorithm

S. Gaspers (UNSW) Exponential Time Hypothesis Semester 2, 2015 15 /23



Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.
For simplicity, assume all clauses have length 3.

3-CNF Formula F = (uVoV-y)A(-uVyVz)A(-oVwVae)AxVyV-z)

S. Gaspers (UNSW)

Exponential Time Hypothesis

Semester 2, 2015 15 /23



Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.
For simplicity, assume all clauses have length 3.

3-CNF Formula F = (uVoV-y)A(-uVyVz)A(-oVwVae)AxVyV-z)

-w w o Y Y -z z

For a 3-CNF formula with n variables and m clauses, we create a VERTEX
COVER instance with |V| = 2n + 3m and k = n + 2m.
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Vertex Cover has no subexponential algorithm Il

ETH = VERTEX COVER has no 2°UVD time algorithm.

Theorem 8

ETH = VERTEX COVER has no 2°*) time algorithm.
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© Algorithmic lower bounds based on SETH
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Recall: A hitting set of a set system S = (V, H) is a subset X of V such that X
contains at least one element of each set in H,i.e., X NY # () foreach Y € H.

elts-HITTING SET
Input: A set system S = (V, H) and an integer k
Parameter: n = |V|
Question: Does S have a hitting set of size at most k?

dHEs
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SETH-lower bound for Hitting Set

CNF Formula F= (uV oV —y)A(—uVyVz)A(—oVwVe)A(xVyV-oz)
Inidence graph of equivalent Hitting Set instance:

sets

elts

sets

For a CNF formula with n variables and m clauses, we create a HITTING SET
instance with |V| = 2n and k = n.
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SETH-lower bound for Hitting Set

Theorem 9

SETH = HITTING SET has no O*((2 — ¢)!VI/2) time algorithm for any = > 0.

Note: With a more ingenious reduction, one can show that HITTING SET has no
O*((2 — £)IVl) time algorithm for any £ > 0 under SETH.
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Exercise

A dominating set of a graph G = (V, E) is a set of vertices S C V such that
Ng[S]=V.

vertex-DOMINATING SET
Input: A graph G = (V, E) and an integer k
Parameter: n = |V|
Question: Does G have a dominating set of size at most k?

@ Prove that ETH = vertex-DOMINATING SET has no 2°(") time algorithm.
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@ Further Reading
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Further Reading

o Chapter 14, Lower bounds based on the Exponential-Time Hypothesis in
Marek Cygan, Fedor V. Fomin, tukasz Kowalik, Daniel Lokshtanov, Déniel
Marx, Marcin Pilipczuk, MichatPilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

@ Section 11.3, Subexponential Algorithms and ETH in
Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer,
2010.

@ Section 29.5, The Sparsification Lemma in
Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.
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