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1936: Alonzo Church and Alan Turing independently show there isn't
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Church: Logical process (Lambda calculus)

Godel: General recursive functions



Formally defining an algorithm

Turing:  Mechanical process (Turing Machines)
Church: Logical process (Lambda calculus)

Godel: General recursive functions
All approaches are equivalent!
Church-Turing thesis

Every effectively calculable function is equivalent to one computed
by a Turing Machine.
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@ Everything is a function:
o Booleans, numbers, ...

@ “Computation” is captured with function application and
rewriting

@ Lead to the concept of Functional programming
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Functional programming

What is Functional Programming?

@ Programming paradigm distinct from Imperative
programming, Object Oriented programming

@ Extensively used in academia. Can be found in industry (e.g.
Jane Street)

@ Covered in COMP3161 (others?)
@ Languages: Haskell, ML, OCaml, Scala



Examples

Example

leaves and internal functions from Assignment 1.
A tree is either:

@ Empty: 7
@ A node with two trees as children: Node(t, t2)
leaves defined recursively as:
@ leaves(7) =0
@ leaves(Node(7,7)) =1
o leaves(Node(t, to)) = leaves(t1) + leaves(to)
internal defined recursively as:
@ internal(r) = —1
o internal(Node(7,7)) =0
o internal(Node(t, tp)) = 1+ internal(t;) + internal(tp)




Examples

Example

leaves and internal functions from Assignment 1.

In Haskell:
Tree = Empty | Node Tree Tree

leaves Empty = 0

leaves (Node Empty Empty) =1

leaves (Node tl t2) = leaves tl + leaves t2
internal Empty = —1

internal (Node Empty Empty) = 0
internal (Node tl1 t2) =1 + internal tl
+ internal t2
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@ Everything is a function (more-or-less)

@ Programs are pure (no side-effects)



Functional programming

Guiding principles:
@ Everything is a function (more-or-less)

@ Programs are pure (no side-effects)

Pros/cons:
@ Easy to prove properties: theoretically well-behaved

@ Interactivity is complicated: 1/O, Error handling



Currying

A function of n variables can be viewed as a function of 1 variable
that returns a function of n — 1 variables

Example

@ Consider f : N> — N given by f(x,y) = x + 2y.
@ For every x € N let g : N — N be given by gi(y) = x + 2y

@ Now consider h: N — (N — N) given by h(x) = gx. We have:

h(x)(y) = f(x,y)




Currying

A function of n variables can be viewed as a function of 1 variable
that returns a function of n — 1 variables

Example

@ Consider f : N> — N given by f(x,y) = x + 2y.
@ For every x € N let g : N — N be given by gi(y) = x + 2y

@ Now consider h: N — (N — N) given by h(x) = gx. We have:

h(x)(y) = f(x,y)

In general:
(AxB—=C)=2(A—(B—= ()
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Lambda calculus in a nutshell

@ Everything is a function of one variable
e Booleans, numbers, ...

@ “Computation” is captured with function application and
rewriting



Lambda calculus: formally

SYNTAX: A A-term is defined recursively as follows:
@ x is a A-term for any variable x
o (Application) If M and N are A-terms then MN is a \-term
o (Abstraction) If M is a A-term then Ax.M is a A-term



Lambda calculus: formally

SYNTAX: A A-term is defined recursively as follows:
@ x is a A-term for any variable x
o (Application) If M and N are A-terms then MN is a \-term
o (Abstraction) If M is a A-term then Ax.M is a A-term

SEMANTICS: Intuitively:
@ MN corresponds to the result of passing N as the argument
to the function M (applying M to N)
@ A\x.M is the definition of a new function that binds x to be
the (independent) variable of the function (e.g. anonymous

functions)



Lambda calculus

Example
The following are A-terms:
o Mx.(Ay.y)
° Mx.(A\y.x)
° Ax.(Ay.xy)
@ AnAf.Ax.f(nfx)
® Ap.(A\q.(pq)p)

: Examples




Reductions

Reductions are rewrite rules.

a-reductions correspond to variable refactoring:

@ Rename bound variables, e.g.:

Mx.(Ayx) 5 Az(\y.2)



Reductions

[-reductions correspond to function evaluation (i.e.
computation):

@ Only applies to A-terms of the form M'N where M’ is of the
form Ax.M

@ Substitute occurrences of x with N, that is:

Ox.MN 2 M[N/x]

@ For example:

(Ax.xx)(Ay.y) LN
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Reductions

[-reductions correspond to function evaluation (i.e.
computation):

@ Only applies to A-terms of the form M'N where M’ is of the
form Ax.M

@ Substitute occurrences of x with N, that is:

Ox.MN 2 M[N/x]

@ For example:

Mex)Oyy) S QunOvy) S Oyy)



Lambda calculus: Examples

Example

Consider the following A-terms:

o Y =JXx.(\y.y)

o X = Ax.(Ay.x)

o A= Ap.(Aq.(pq)p)
We have:

(AX)Y =

((Ap-(Aq.(Pg)p))X)Y
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Example
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Lambda calculus: Examples

Example
Consider the following A-terms:
o Y =JXx.(\y.y)

o X = Ax.(Ay.x)
o A= Ap.(Ag.(pq)p)
We have:
(AX)Y ((Ap-(Aq-(Pq)P))X)Y

2 (Aa.(Xq)X))Y
B (xv)x

5 (Ox. (X)) Y)X
5 Oy Y)X
5y




Lambda calculus: Examples

Example
Consider the following A-terms:

o Y =2JXx.(\y.y)

o X = Xx.(\y.x)

o A= Ap.(Ag.(pq)p)
We have:

(AX)Y =" Y

Similarly we can show:

(AVX =" Y  (AY)Y =* Y (AX)X =* X

So A behaves like A if we view X as true and Y as false




Lambda calculus: Examples

Example

Consider the following A-terms:
o Y =JXx.(\y.y)
@ S = An. A x.f(nfx)

It is possible to show
SY —=* Ax.(\y.xy)

S(SY) =% Mx.(A\y.x(xy))
S(S(SY)) —* Ax.(Ayx(x(xy)))




Lambda calculus: Examples

Example
What happens if we try to reduce:

(Ax.xx)(Ax.xx)?




Lambda calculus: Further topics

@ Normal forms
o Typing
o Combinators (e.g. defining recursion)

@ Combinatory logic



