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Entscheidungsproblem
1928: David Hilbert asks if there is a “mechanical procedure” that,

given a finite set of first-order formulas T , and and formula ϕ,
decides if

T |= ϕ

1936: Alonzo Church and Alan Turing independently show there isn’t
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Formally defining an algorithm

Turing: Mechanical process (Turing Machines)

Church: Logical process (Lambda calculus)

Gödel: General recursive functions

All approaches are equivalent!

Church-Turing thesis

Every effectively calculable function is equivalent to one computed
by a Turing Machine.
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Lambda calculus in a nutshell

Everything is a function:

Booleans, numbers, ...

“Computation” is captured with function application and
rewriting

Lead to the concept of Functional programming
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Functional programming

What is Functional Programming?

Programming paradigm distinct from Imperative
programming, Object Oriented programming

Extensively used in academia. Can be found in industry (e.g.
Jane Street)

Covered in COMP3161 (others?)

Languages: Haskell, ML, OCaml, Scala
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Examples

Example

leaves and internal functions from Assignment 1.
A tree is either:

Empty: τ

A node with two trees as children: Node(t1, t2)

leaves defined recursively as:

leaves(τ) = 0

leaves(Node(τ, τ)) = 1

leaves(Node(t1, t2)) = leaves(t1) + leaves(t2)

internal defined recursively as:

internal(τ) = −1

internal(Node(τ, τ)) = 0

internal(Node(t1, t2)) = 1 + internal(t1) + internal(t2)
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Examples

Example

leaves and internal functions from Assignment 1.

In Haskell:

Tree = Empty | Node Tree Tree

l e a v e s Empty = 0
l e a v e s ( Node Empty Empty ) = 1
l e a v e s ( Node t1 t2 ) = l e a v e s t1 + l e a v e s t2

i n t e r n a l Empty = −1
i n t e r n a l ( Node Empty Empty ) = 0
i n t e r n a l ( Node t1 t2 ) = 1 + i n t e r n a l t1

+ i n t e r n a l t2

15



Functional programming

Guiding principles:

Everything is a function (more-or-less)

Programs are pure (no side-effects)

Pros/cons:

Easy to prove properties: theoretically well-behaved

Interactivity is complicated: I/O, Error handling
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Currying

A function of n variables can be viewed as a function of 1 variable
that returns a function of n − 1 variables

Example

Consider f : N2 → N given by f (x , y) = x + 2y .

For every x ∈ N let gx : N→ N be given by gx(y) = x + 2y

Now consider h : N→ (N→ N) given by h(x) = gx . We have:

h(x)(y) = f (x , y)

In general:
(A× B → C ) ∼= (A→ (B → C ))
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Lambda calculus in a nutshell

Everything is a function of one variable

Booleans, numbers, ...

“Computation” is captured with function application and
rewriting
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Lambda calculus: formally

SYNTAX: A λ-term is defined recursively as follows:

x is a λ-term for any variable x

(Application) If M and N are λ-terms then MN is a λ-term

(Abstraction) If M is a λ-term then λx .M is a λ-term

SEMANTICS: Intuitively:

MN corresponds to the result of passing N as the argument
to the function M (applying M to N)

λx .M is the definition of a new function that binds x to be
the (independent) variable of the function (e.g. anonymous
functions)
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Lambda calculus: Examples

Example

The following are λ-terms:

λx .(λy .y)

λx .(λy .x)

λx .(λy .xy)

λn.λf .λx .f (nfx)

λp.(λq.(pq)p)
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Reductions

Reductions are rewrite rules.

α-reductions correspond to variable refactoring:

Rename bound variables, e.g.:

λx .(λy .x)
α−→ λz .(λy .z)
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Reductions

β-reductions correspond to function evaluation (i.e.
computation):

Only applies to λ-terms of the form M ′N where M ′ is of the
form λx .M

Substitute occurrences of x with N, that is:

(λx .M)N
β−→ M[N/x ]

For example:

(λx .xx)(λy .y)
β−→ (λy .y)(λy .y)

β−→ (λy .y)
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Lambda calculus: Examples
Example

Consider the following λ-terms:

Y = λx .(λy .y)

X = λx .(λy .x)

A = λp.(λq.(pq)p)

We have:

(AX )Y = ((λp.(λq.(pq)p))X )Y
β−→ (λq.(Xq)X ))Y
β−→ (XY )X
β−→ ((λx .(λy .x))Y )X
β−→ (λy .Y )X
β−→ Y
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Lambda calculus: Examples

Example

Consider the following λ-terms:

Y = λx .(λy .y)

X = λx .(λy .x)

A = λp.(λq.(pq)p)

We have:
(AX )Y →∗ Y

Similarly we can show:

(AY )X →∗ Y (AY )Y →∗ Y (AX )X →∗ X

So A behaves like ∧ if we view X as true and Y as false
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Lambda calculus: Examples

Example

Consider the following λ-terms:

Y = λx .(λy .y)

S = λn.λf .λx .f (nfx)

It is possible to show

SY →∗ λx .(λy .xy)
S(SY ) →∗ λx .(λy .x(xy))

S(S(SY )) →∗ λx .(λy .x(x(xy)))
...

...
...
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Lambda calculus: Examples

Example

What happens if we try to reduce:

(λx .xx)(λx .xx)?
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Lambda calculus: Further topics

Normal forms

Typing

Combinators (e.g. defining recursion)

Combinatory logic
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