COMP2111 Week 9
 Term 1, 2019
 Introduction to Lambda Calculus

Summary

- History
- Functional programming
- Lambda calculus

Summary

- History
- Functional programming
- Lambda calculus

Entscheidungsproblem

1928: David Hilbert asks if there is a "mechanical procedure" that, given a finite set of first-order formulas T, and and formula φ, decides if

$$
T \models \varphi
$$

Entscheidungsproblem

1928: David Hilbert asks if there is a "mechanical procedure" that, given a finite set of first-order formulas T, and and formula φ, decides if

$$
T \models \varphi
$$

1936: Alonzo Church and Alan Turing independently show there isn't

Formally defining an algorithm

Turing: Mechanical process (Turing Machines)
Church: Logical process (Lambda calculus)
Gödel: General recursive functions

Formally defining an algorithm

Turing: Mechanical process (Turing Machines)
Church: Logical process (Lambda calculus)
Gödel: General recursive functions

All approaches are equivalent!

Church-Turing thesis
Every effectively calculable function is equivalent to one computed by a Turing Machine.

Lambda calculus in a nutshell

- Everything is a function:

Lambda calculus in a nutshell

- Everything is a function:
- Booleans, numbers, ...

Lambda calculus in a nutshell

- Everything is a function:
- Booleans, numbers, ...
- "Computation" is captured with function application and rewriting

Lambda calculus in a nutshell

- Everything is a function:
- Booleans, numbers, ...
- "Computation" is captured with function application and rewriting
- Lead to the concept of Functional programming

Summary

- History
- Functional programming
- Lambda calculus

Functional programming

What is Functional Programming?

- Programming paradigm distinct from Imperative programming, Object Oriented programming
- Extensively used in academia. Can be found in industry (e.g. Jane Street)
- Covered in COMP3161 (others?)
- Languages: Haskell, ML, OCaml, Scala

Examples

Example

leaves and internal functions from Assignment 1.
A tree is either:

- Empty: τ
- A node with two trees as children: $\operatorname{Node}\left(t_{1}, t_{2}\right)$
leaves defined recursively as:
- leaves $(\tau)=0$
- leaves $(\operatorname{Node}(\tau, \tau))=1$
- leaves $\left(\operatorname{Node}\left(t_{1}, t_{2}\right)\right)=$ leaves $\left(t_{1}\right)+\operatorname{leaves}\left(t_{2}\right)$
internal defined recursively as:
- internal $(\tau)=-1$
- internal $(\operatorname{Node}(\tau, \tau))=0$
- internal $\left(\operatorname{Node}\left(t_{1}, t_{2}\right)\right)=1+\operatorname{internal}\left(t_{1}\right)+\operatorname{internal}\left(t_{2}\right)$

Examples

Example

leaves and internal functions from Assignment 1.
In Haskell:
Tree $=$ Empty \mid Node Tree Tree
leaves Empty $=0$
leaves (Node Empty Empty) $=1$
leaves (Node t1 t2) = leaves t1 + leaves t2
internal Empty $=-1$
internal (Node Empty Empty) $=0$
internal (Node t1 t2) $=1+$ internal t1

+ internal

Functional programming

Guiding principles:

- Everything is a function (more-or-less)
- Programs are pure (no side-effects)

Functional programming

Guiding principles:

- Everything is a function (more-or-less)
- Programs are pure (no side-effects)

Pros/cons:

- Easy to prove properties: theoretically well-behaved
- Interactivity is complicated: I/O, Error handling

Currying

A function of n variables can be viewed as a function of 1 variable that returns a function of $n-1$ variables

Example

- Consider $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ given by $f(x, y)=x+2 y$.
- For every $x \in \mathbb{N}$ let $g_{x}: \mathbb{N} \rightarrow \mathbb{N}$ be given by $g_{x}(y)=x+2 y$
- Now consider $h: \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \mathbb{N})$ given by $h(x)=g_{x}$. We have:

$$
h(x)(y)=f(x, y)
$$

Currying

A function of n variables can be viewed as a function of 1 variable that returns a function of $n-1$ variables

Example

- Consider $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ given by $f(x, y)=x+2 y$.
- For every $x \in \mathbb{N}$ let $g_{x}: \mathbb{N} \rightarrow \mathbb{N}$ be given by $g_{x}(y)=x+2 y$
- Now consider $h: \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \mathbb{N})$ given by $h(x)=g_{x}$. We have:

$$
h(x)(y)=f(x, y)
$$

In general:

$$
(A \times B \rightarrow C) \cong(A \rightarrow(B \rightarrow C))
$$

Summary

- History
- Functional programming
- Lambda calculus

Lambda calculus in a nutshell

- Everything is a function
- Booleans, numbers, ...
- "Computation" is captured with function application and rewriting

Lambda calculus in a nutshell

- Everything is a function of one variable
- Booleans, numbers, ...
- "Computation" is captured with function application and rewriting

Lambda calculus: formally

SYNTAX: A λ-term is defined recursively as follows:

- x is a λ-term for any variable x
- (Application) If M and N are λ-terms then $M N$ is a λ-term
- (Abstraction) If M is a λ-term then $\lambda x . M$ is a λ-term

Lambda calculus: formally

SYNTAX: A λ-term is defined recursively as follows:

- x is a λ-term for any variable x
- (Application) If M and N are λ-terms then $M N$ is a λ-term
- (Abstraction) If M is a λ-term then $\lambda x . M$ is a λ-term

SEMANTICS: Intuitively:

- MN corresponds to the result of passing N as the argument to the function M (applying M to N)
- $\lambda x . M$ is the definition of a new function that binds x to be the (independent) variable of the function (e.g. anonymous functions)

Lambda calculus: Examples

Example

The following are λ-terms:

- $\lambda x .(\lambda y \cdot y)$
- $\lambda x .(\lambda y \cdot x)$
- $\lambda x .(\lambda y \cdot x y)$
- $\lambda n . \lambda f . \lambda x . f(n f x)$
- $\lambda p .(\lambda q .(p q) p)$

Reductions

Reductions are rewrite rules.
α-reductions correspond to variable refactoring:

- Rename bound variables, e.g.:

$$
\lambda x .(\lambda y \cdot x) \quad \xrightarrow{\alpha} \quad \lambda z .(\lambda y \cdot z)
$$

Reductions

β-reductions correspond to function evaluation (i.e. computation):

- Only applies to λ-terms of the form $M^{\prime} N$ where M^{\prime} is of the form λx.M
- Substitute occurrences of x with N, that is:

$$
(\lambda x . M) N \quad \xrightarrow{\beta} \quad M[N / x]
$$

- For example:

$$
(\lambda x \cdot x x)(\lambda y \cdot y) \quad \xrightarrow{\beta}
$$

Reductions

β-reductions correspond to function evaluation (i.e. computation):

- Only applies to λ-terms of the form $M^{\prime} N$ where M^{\prime} is of the form λx.M
- Substitute occurrences of x with N, that is:

$$
(\lambda x . M) N \quad \xrightarrow{\beta} \quad M[N / x]
$$

- For example:

$$
(\lambda x \cdot x x)(\lambda y \cdot y) \quad \xrightarrow{\beta} \quad(\lambda y \cdot y)(\lambda y \cdot y)
$$

Reductions

β-reductions correspond to function evaluation (i.e. computation):

- Only applies to λ-terms of the form $M^{\prime} N$ where M^{\prime} is of the form λx.M
- Substitute occurrences of x with N, that is:

$$
(\lambda x \cdot M) N \quad \xrightarrow{\beta} \quad M[N / x]
$$

- For example:

$$
(\lambda x \cdot x x)(\lambda y \cdot y) \quad \xrightarrow{\beta} \quad(\lambda y \cdot y)(\lambda y \cdot y) \quad \xrightarrow{\beta} \quad(\lambda y \cdot y)
$$

Lambda calculus: Examples

Example

Consider the following λ-terms:

- $Y=\lambda x \cdot(\lambda y \cdot y)$
- $X=\lambda x .(\lambda y \cdot x)$
- $A=\lambda p .(\lambda q .(p q) p)$

We have:

$$
(A X) Y=((\lambda p \cdot(\lambda q \cdot(p q) p)) X) Y
$$

Lambda calculus: Examples

Example

Consider the following λ-terms:

$$
\begin{aligned}
& \text { Y }=\lambda x \cdot(\lambda y \cdot y) \\
& X=\lambda x \cdot(\lambda y \cdot x) \\
& A=\lambda p \cdot(\lambda q \cdot(p q) p)
\end{aligned}
$$

We have:

$$
\begin{aligned}
(A X) Y & =((\lambda p \cdot(\lambda q \cdot(p q) p)) X) Y \\
& \xrightarrow{\beta}(\lambda q \cdot(X q) X)) Y
\end{aligned}
$$

Lambda calculus: Examples

Example

Consider the following λ-terms:

$$
\begin{aligned}
& \text { Y }=\lambda x \cdot(\lambda y \cdot y) \\
& X=\lambda x \cdot(\lambda y \cdot x) \\
& A=\lambda p \cdot(\lambda q \cdot(p q) p)
\end{aligned}
$$

We have:

$$
\begin{aligned}
(A X) Y & =((\lambda p \cdot(\lambda q \cdot(p q) p)) X) Y \\
& \xrightarrow{\beta}(\lambda q \cdot(X q) X)) Y \\
& \xrightarrow{\beta}(X Y) X
\end{aligned}
$$

Lambda calculus: Examples

Example

Consider the following λ-terms:

$$
\begin{aligned}
& \text { Y }=\lambda x \cdot(\lambda y \cdot y) \\
& X=\lambda x \cdot(\lambda y \cdot x) \\
& A=\lambda p \cdot(\lambda q \cdot(p q) p)
\end{aligned}
$$

We have:

$$
\begin{aligned}
(A X) Y & =((\lambda p \cdot(\lambda q \cdot(p q) p)) X) Y \\
& \xrightarrow{\beta} \\
& \xrightarrow{\beta}(\lambda q \cdot(X q) X)) Y \\
& \xrightarrow{\beta}(X Y) X \\
& ((\lambda x \cdot(\lambda y \cdot x)) Y) X
\end{aligned}
$$

Lambda calculus: Examples

Example

Consider the following λ-terms:

$$
\begin{aligned}
& \text { Y }=\lambda x \cdot(\lambda y \cdot y) \\
& X=\lambda x \cdot(\lambda y \cdot x) \\
& A=\lambda p \cdot(\lambda q \cdot(p q) p)
\end{aligned}
$$

We have:

$$
\begin{aligned}
(A X) Y & =((\lambda p \cdot(\lambda q \cdot(p q) p)) X) Y \\
& \xrightarrow{\beta}(\lambda q \cdot(X q) X)) Y \\
& \xrightarrow{\beta}(X Y) X \\
& \xrightarrow{\beta}((\lambda x \cdot(\lambda y \cdot x)) Y) X \\
& \xrightarrow{\beta}(\lambda y \cdot Y) X
\end{aligned}
$$

Lambda calculus: Examples

Example

Consider the following λ-terms:

$$
\begin{aligned}
& \text { Y }=\lambda x \cdot(\lambda y \cdot y) \\
& X=\lambda x \cdot(\lambda y \cdot x) \\
& \text { - } A=\lambda p \cdot(\lambda q \cdot(p q) p)
\end{aligned}
$$

We have:

$$
\begin{aligned}
(A X) Y & =((\lambda p \cdot(\lambda q \cdot(p q) p)) X) Y \\
& \xrightarrow{\beta}(\lambda q \cdot(X q) X)) Y \\
& \xrightarrow{\beta}(X Y) X \\
& \xrightarrow{\beta}((\lambda x \cdot(\lambda y \cdot x)) Y) X \\
& \xrightarrow{\beta}(\lambda y \cdot Y) X \\
& \xrightarrow{\beta} Y
\end{aligned}
$$

Lambda calculus: Examples

Example

Consider the following λ-terms:

- $Y=\lambda x$. $(\lambda y \cdot y)$
- $X=\lambda x .(\lambda y . x)$
- $A=\lambda p .(\lambda q .(p q) p)$

We have:

$$
(A X) Y \rightarrow^{*} Y
$$

Similarly we can show:

$$
(A Y) X \rightarrow^{*} Y \quad(A Y) Y \rightarrow^{*} Y \quad(A X) X \rightarrow^{*} X
$$

So A behaves like \wedge if we view X as true and Y as false

Lambda calculus: Examples

Example

Consider the following λ-terms:

$$
\begin{aligned}
& Y=\lambda x \cdot(\lambda y \cdot y) \\
& \text { - } S=\lambda n \cdot \lambda f \cdot \lambda x \cdot f(n f x)
\end{aligned}
$$

It is possible to show

$$
\begin{array}{rll}
S Y & \rightarrow^{*} & \lambda x \cdot(\lambda y \cdot x y) \\
S(S Y) & \rightarrow^{*} & \lambda x \cdot(\lambda y \cdot x(x y)) \\
S(S(S Y)) & \rightarrow^{*} & \lambda x \cdot(\lambda y \cdot x(x(x y)))
\end{array}
$$

Lambda calculus: Examples

Example

What happens if we try to reduce:

$$
(\lambda x \cdot x x)(\lambda x \cdot x x) ?
$$

Lambda calculus: Further topics

- Normal forms
- Typing
- Combinators (e.g. defining recursion)
- Combinatory logic

