
A Quick Overview of Python

Week 1

Yulei Sui
School of Computer Science and Engineering

University of New South Wales, Australia

1

COMP6131 Software Security Analysis 2025

Introduction to Python Programming

What is Python?
• Python is a high-level, interpreted general-purpose multi-paradigm

programming language.

Why learn Python?
• Language for web development, data analysis, machine learning, and

scripting.
• User-friendly syntax which can quickly write programs and easily interface

with high-performance libraries
• Provides rich library support for many applications
• A popular and extensively used language

2

COMP6131 Software Security Analysis 2025

Introduction to Python Programming

What is Python?
• Python is a high-level, interpreted general-purpose multi-paradigm

programming language.
Why learn Python?

• Language for web development, data analysis, machine learning, and
scripting.

• User-friendly syntax which can quickly write programs and easily interface
with high-performance libraries

• Provides rich library support for many applications
• A popular and extensively used language

2

COMP6131 Software Security Analysis 2025

Introduction to Python Programming

What is Python?
• Python is a high-level, interpreted general-purpose multi-paradigm

programming language.
Why learn Python?

• Language for web development, data analysis, machine learning, and
scripting.

• User-friendly syntax which can quickly write programs and easily interface
with high-performance libraries

• Provides rich library support for many applications

• A popular and extensively used language

2

COMP6131 Software Security Analysis 2025

Introduction to Python Programming

What is Python?
• Python is a high-level, interpreted general-purpose multi-paradigm

programming language.
Why learn Python?

• Language for web development, data analysis, machine learning, and
scripting.

• User-friendly syntax which can quickly write programs and easily interface
with high-performance libraries

• Provides rich library support for many applications
• A popular and extensively used language

2

COMP6131 Software Security Analysis 2025

Python

• This short introduction does not aim to cover every detailed aspect of Python,
but rather the basic Python syntax/features in order to develop algorithms to
fulfil the assignment tasks in this course.

• You are encouraged to learn and practice more advanced Python
syntax/features.

• https://docs.python.org/3/tutorial/
• https://www.w3schools.com/python/
• https://cgi.cse.unsw.edu.au/~cs2041/25T1/topic/python_intro/slides
• Google search ‘Python programming‘ or ‘Introduction to Python programming‘

3

COMP6131 Software Security Analysis 2025

https://docs.python.org/3/tutorial/
https://www.w3schools.com/python/
https://cgi.cse.unsw.edu.au/~cs2041/25T1/topic/python_intro/slides

Python

• This short introduction does not aim to cover every detailed aspect of Python,
but rather the basic Python syntax/features in order to develop algorithms to
fulfil the assignment tasks in this course.

• You are encouraged to learn and practice more advanced Python
syntax/features.

• https://docs.python.org/3/tutorial/
• https://www.w3schools.com/python/
• https://cgi.cse.unsw.edu.au/~cs2041/25T1/topic/python_intro/slides
• Google search ‘Python programming‘ or ‘Introduction to Python programming‘

3

COMP6131 Software Security Analysis 2025

https://docs.python.org/3/tutorial/
https://www.w3schools.com/python/
https://cgi.cse.unsw.edu.au/~cs2041/25T1/topic/python_intro/slides

Write Your First Python Program

print("Welcome to software security analysis course!")

A Hello World example under Software-Security-Analysis:

https://github.com/SVF-tools/Software-Security-Analysis/blob/main/HelloWorld/hello.py

4

COMP6131 Software Security Analysis 2025

https://github.com/SVF-tools/Software-Security-Analysis/blob/main/HelloWorld/hello.py

If Statements in Python
x = int(input("Please enter an integer: "))

Please enter an integer: 42

if x < 0:

x = 0

print('Negative changed to zero')

elif x == 0:

print('Zero')

elif x == 1:

print("Single")

else:

print('More')

An if statement example from the Python docs:

https://docs.python.org/3/tutorial/controlflow.html#if-statements

5

COMP6131 Software Security Analysis 2025

https://docs.python.org/3/tutorial/controlflow.html#if-statements

For Loops in Python

words = ['cat', 'window', 'defenestrate']

for i in range(len(words)):

print(words[i], len(words[i]))

for w in words:

print(w, len(w))

A for loop example from the Python docs:

https://docs.python.org/3/tutorial/controlflow.html#for-statementss

6

COMP6131 Software Security Analysis 2025

https://docs.python.org/3/tutorial/controlflow.html#for-statementss

For Loops in Python

words = ['cat', 'window', 'defenestrate']

for i in range(len(words)):

print(words[i], len(words[i]))

for w in words:

print(w, len(w))

A for loop example from the Python docs:

https://docs.python.org/3/tutorial/controlflow.html#for-statementss

6

COMP6131 Software Security Analysis 2025

https://docs.python.org/3/tutorial/controlflow.html#for-statementss

Containers/Collections

#Python lists

node_ids = []

node_ids.append(1)

node_ids.append(2)

node_ids.append(2)

for i in node_ids:

print(i)

#Python sets

node_ids = set()

node_ids.add(1)

node_ids.add(2)

node_ids.add(2)

for i in node_ids:

print(i)

7

COMP6131 Software Security Analysis 2025

Containers/Collections

#Python lists

node_ids = []

node_ids.append(1)

node_ids.append(2)

node_ids.append(2)

for i in node_ids:

print(i)

#Python sets

node_ids = set()

node_ids.add(1)

node_ids.add(2)

node_ids.add(2)

for i in node_ids:

print(i)

7

COMP6131 Software Security Analysis 2025

Functions in Python
def fib(n): # write Fibonacci series less than n

"""Return a Fibonacci series less than n."""

series = []

a, b = 0, 1

while a < n:

series.append(a)

a, b = b, a+b

print(fib(2000))

An alternative function definition with the typing library

from typing import List

def fib(n: int) -> List[int]:

...

A function example from the Python docs:

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

8

COMP6131 Software Security Analysis 2025

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

Functions in Python
def fib(n): # write Fibonacci series less than n

"""Return a Fibonacci series less than n."""

series = []

a, b = 0, 1

while a < n:

series.append(a)

a, b = b, a+b

print(fib(2000))

An alternative function definition with the typing library

from typing import List

def fib(n: int) -> List[int]:

...

A function example from the Python docs:

https://docs.python.org/3/tutorial/controlflow.html#defining-functions
8

COMP6131 Software Security Analysis 2025

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

Python Classes and Objects
• Python objects: everything in Python is an object, there are no primitive types.
• A Python class is a template for objects, and an object is an instance of a

class.
• All methods are public by default, a prefixed in the function name is used for

protected methods or for private methods.

class Graph:

def __init__(self, n: int, e: int):

self.num_of_nodes: int = n

self.num_of_edges: int = e

def get_num_of_nodes(self) -> int:

return self.num_of_nodes

def set_num_of_nodes(self, n: int):

return self.nodes

def get_paths(self) -> Set[str]:

return self.paths

graph_obj = Graph(5, 10)

print(graph_obj.get_num_of_nodes)

9

COMP6131 Software Security Analysis 2025

Python Classes and Objects
• Python objects: everything in Python is an object, there are no primitive types.
• A Python class is a template for objects, and an object is an instance of a

class.
• All methods are public by default, a prefixed in the function name is used for

protected methods or for private methods.
class Graph:

def __init__(self, n: int, e: int):

self.num_of_nodes: int = n

self.num_of_edges: int = e

def get_num_of_nodes(self) -> int:

return self.num_of_nodes

def set_num_of_nodes(self, n: int):

return self.nodes

def get_paths(self) -> Set[str]:

return self.paths

graph_obj = Graph(5, 10)

print(graph_obj.get_num_of_nodes)

9

COMP6131 Software Security Analysis 2025

Python Classes and Objects
• Python objects: everything in Python is an object, there are no primitive types.
• A Python class is a template for objects, and an object is an instance of a

class.
• All methods are public by default, a prefixed in the function name is used for

protected methods or for private methods.
class Graph:

def __init__(self, n: int, e: int):

self.num_of_nodes: int = n

self.num_of_edges: int = e

def get_num_of_nodes(self) -> int:

return self.num_of_nodes

def set_num_of_nodes(self, n: int):

return self.nodes

def get_paths(self) -> Set[str]:

return self.paths

graph_obj = Graph(5, 10)

print(graph_obj.get_num_of_nodes)

9

COMP6131 Software Security Analysis 2025

Building a Graph with more Functionality

class Node:

def __init__(self, i: int):

self.node_id = i

self.out_edges = set()

def get_node_id(self) -> int:

return self.node_id

def get_out_edges(self) -> Set[Edge]:

return self.out_edges

class Edge:

def __init__(self, s: Node, d: Node):

self.src = s

self.dst = d

def get_src(self) -> Node:

return self.src

def get_dst(self) -> Node:

return self.dst

class Graph:

def __init__(self):

self.nodes: Set[Node] = set()

def get_nodes(self) -> Set[Node]:

return self.nodes

src = Node(1)

dst = Node(2)

edge = Edge(src, dst)

add src's outgoing edge

src.get_out_edges().add(edge)

create a graph object

graph = Graph()

add two nodes into the graph

graph.get_nodes().add(src)

graph.get_nodes().add(dst)

10

COMP6131 Software Security Analysis 2025

Building a Graph with more Functionality

class Node:

def __init__(self, i: int):

self.node_id = i

self.out_edges = set()

def get_node_id(self) -> int:

return self.node_id

def get_out_edges(self) -> Set[Edge]:

return self.out_edges

class Edge:

def __init__(self, s: Node, d: Node):

self.src = s

self.dst = d

def get_src(self) -> Node:

return self.src

def get_dst(self) -> Node:

return self.dst

class Graph:

def __init__(self):

self.nodes: Set[Node] = set()

def get_nodes(self) -> Set[Node]:

return self.nodes

src = Node(1)

dst = Node(2)

edge = Edge(src, dst)

add src's outgoing edge

src.get_out_edges().add(edge)

create a graph object

graph = Graph()

add two nodes into the graph

graph.get_nodes().add(src)

graph.get_nodes().add(dst)

10

COMP6131 Software Security Analysis 2025

Debugging Your Python Programs

• VSCode (https://code.visualstudio.com/docs/python/debugging)
• PDB (https://docs.python.org/3/library/pdb.html)
• Other tactics, such as printing your results

(https://adamj.eu/tech/2021/10/08/tips-for-debugging-with-print/)

11

COMP6131 Software Security Analysis 2025

https://code.visualstudio.com/docs/python/debugging
https://docs.python.org/3/library/pdb.html
https://adamj.eu/tech/2021/10/08/tips-for-debugging-with-print/

