8b. Iterative Compression COMP6741: Parameterized and Exact Computation

Serge Gaspers¹²

¹School of Computer Science and Engineering, UNSW Sydney, Australia ²Decision Sciences, Data61, CSIRO, Australia

Semester 2, 2018

- 2 Feedback Vertex Set
- 3 Min r-Hitting Set

4 Further Reading

- 2 Feedback Vertex Set
- 3 Min r-Hitting Set
- 4 Further Reading

For a minimization problem:

- **Compression step:** Given a solution of size k + 1, compress it to a solution of size k or prove that there is no solution of size k
- **Iteration step:** Incrementally build a solution to the given instance by deriving solutions for larger and larger subinstances

For a minimization problem:

- **Compression step:** Given a solution of size k + 1, compress it to a solution of size k or prove that there is no solution of size k
- **Iteration step:** Incrementally build a solution to the given instance by deriving solutions for larger and larger subinstances
- Seen a lot of success in Parameterized Complexity
- Examples: best known fixed parameter algorithms for (DIRECTED) FEEDBACK VERTEX SET, EDGE BIPARTIZATION, ALMOST 2-SAT,

A vertex cover in a graph G = (V, E) is a subset of its vertices $S \subseteq V$ such that every edge of G has at least one endpoint in S.

We will design a (slow) iterative compression algorithm for VERTEX COVER to illustrate the technique.

VERTEX COVER: Compression Step

$\operatorname{Comp-VC}$

Input: graph G = (V, E), integer k, vertex cover C of size k + 1 of GOutput: a vertex cover C^* of size $\leq k$ of G if one exists

VERTEX COVER: Compression Step

Comp-VC

Input: graph G = (V, E), integer k, vertex cover C of size k + 1 of GOutput: a vertex cover C^* of size $\leq k$ of G if one exists

- Go over all partitions $(C', \overline{C'})$ of C
- $C^* = C' \cup N(\overline{C'})$
- If $\overline{C'}$ is an independent set and $|C^*| \leq k$ then return C^*

S. Gaspers (UNSW)

Use algorithm for $\operatorname{COMP-VC}$ to solve VERTEX $\operatorname{COVER}.$

Use algorithm for $\operatorname{COMP-VC}$ to solve VERTEX COVER .

- Order vertices: $V = \{v_1, v_2, \dots, v_n\}$
- Define $G_i = G[\{v_1, v_2, ..., v_i\}]$
- $C_0 = \emptyset$
- For i = 1..n, find a vertex cover C_i of size $\leq k$ of G_i using the algorithm for COMP-VC with input G_i and $C_{i-1} \cup \{v_i\}$. If G_i has no vertex cover of size $\leq k$, then G has no vertex cover of size $\leq k$.

Final running time: $O^*(2^k)$

- 2 Feedback Vertex Set
 - 3 Min r-Hitting Set
 - 4 Further Reading

Feedback Vertex Set

A feedback vertex set of a multigraph G = (V, E) is a set of vertices $S \subseteq V$ such that G - S is acyclic.

FEEDBACK VERTEX SET (FVS)		
Input:	Multigraph $G = (V, E)$, integer k	
Parameter:	k	
Question:	Does G have a feedback vertex set of size at most k ?	

Note: We already saw an $O^*((3k)^k)$ time algorithm for FVS. We will now aim for a $O^*(c^k)$ time algorithm, with $c \in O(1)$.

Comp-FVS				
Input:	graph $G = (V, E)$, integer k , feedback vertex set S of size $k + 1$ of			
	G			
Output:	a feedback vertex set S^* of size $\leq k$ of G if one exists			

- Order vertices: $V = \{v_1, v_2, \dots, v_n\}$
- Define $G_i = G[\{v_1, v_2, ..., v_i\}]$
- $S_0 = \emptyset$
- For i = 1..n, find a feedback vertex set S_i of size $\leq k$ of G_i using the algorithm for COMP-FVS with input G_i and $S_{i-1} \cup \{v_i\}$. If G_i has no feedback vertex set of size $\leq k$, then G has no feedback vertex set of size $\leq k$.

Suppose COMP-FVS can be solved in $O^*(c^k)$ time. Then, using this iteration, FVS can be solved in $O^*(c^k)$ time.

To solve COMP-FVS, go through all partitions $(S', \overline{S'})$ of S. For each of them, we will want to find a feedback vertex set S^* of G with $|S^*| < |S|$ and $S' \subseteq S^* \subseteq V \setminus \overline{S'}$ if one exists.

To solve COMP-FVS, go through all partitions $(S', \overline{S'})$ of S. For each of them, we will want to find a feedback vertex set S^* of G with $|S^*| < |S|$ and $S' \subseteq S^* \subseteq V \setminus \overline{S'}$ if one exists. Equivalently, find a feedback vertex set S'' of G - S' with $|S''| < |\overline{S'}|$ and $S'' \cap \overline{S'} = \emptyset$.

To solve COMP-FVS, go through all partitions $(S', \overline{S'})$ of S. For each of them, we will want to find a feedback vertex set S^* of G with $|S^*| < |S|$ and $S' \subseteq S^* \subseteq V \setminus \overline{S'}$ if one exists. Equivalently, find a feedback vertex set S'' of G - S' with $|S''| < |\overline{S'}|$ and $S'' \cap \overline{S'} = \emptyset$.

We arrive at the following problem:

DISJOINT-FVS				
Input:	graph $G = (V, E)$, integer k , feedback vertex set S of size $k + 1$ of			
	G			
Output:	a feedback vertex set S^* of G with $ S^* \leq k$ and $S^* \cap S = \emptyset$, if one			
	exists			

To solve COMP-FVS, go through all partitions $(S', \overline{S'})$ of S. For each of them, we will want to find a feedback vertex set S^* of G with $|S^*| < |S|$ and $S' \subseteq S^* \subseteq V \setminus \overline{S'}$ if one exists. Equivalently, find a feedback vertex set S'' of G - S' with $|S''| < |\overline{S'}|$ and $S'' \cap \overline{S'} = \emptyset$.

We arrive at the following problem:

DISJOINT-FVS				
Input:	graph $G = (V, E)$, integer k , feedback vertex set S of size $k + 1$ of			
	G			
Output:	a feedback vertex set S^* of G with $ S^* \leq k$ and $S^* \cap S = \emptyset$, if one			
	exists			

If DISJOINT-FVS can be solved in $O^*(d^k)$ time, then COMP -FVS can be solved in

$$O^*\left(\sum_{i=0}^{k+1}\binom{k+1}{i}d^i\right)\subseteq O^*((d+1)^k) \text{ time}.$$

Algorithm for $\operatorname{DISJOINT-FVS}$

DISJOINT-FVS				
Input:	graph $G = (V, E)$, integer k , feedback vertex set S of size $k + 1$ of			
Output:	G a feedback vertex set S^* of G with $ S^* \leq k$ and $S^* \cap S = \emptyset,$ if one exists			

Denote $A := V \setminus S$.

Start with $S^* = \emptyset$.

(cycle-in-S)

If G[S] is not acyclic, then return No.

(budget-exceeded)

If k < 0, then return No.

S. Gaspers (UNSW)

(finished) If $G - S^*$ is acyclic, then return S^* .

Simplification rules for $\operatorname{DISJOINT}-\operatorname{FVS}$

(creates-cycle)

If $\exists v \in A$ such that $G[S \cup \{v\}]$ is not acyclic, then add v to S^* and remove v from G.

(creates-cycle)

If $\exists v \in A$ such that $G[S \cup \{v\}]$ is not acyclic, then add v to S^* and remove v from G.

Simplification rules for $\operatorname{DISJOINT}-\operatorname{FVS}$

(Degree-2)

If $\exists v \in V$ with $d_G(v) = 2$ and at least one neighbor of v is in A, then add an edge between the neighbors of v (even if there was already an edge) and remove v from G.

Simplification rules for $\operatorname{DISJOINT}-\operatorname{FVS}$

(Degree-2)

If $\exists v \in V$ with $d_G(v) = 2$ and at least one neighbor of v is in A, then add an edge between the neighbors of v (even if there was already an edge) and remove v from G.

```
Select a vertex v \in A with at least 2 neighbors in S.
```

Such a vertex exists if no simplification rule applies (for example, we can take a leaf in G[A]).

Branch into two subproblems:

```
v \in S^*: add v to S^*, remove v from G, and decrease k by 1 v \notin S^*: add v to S
```

• Prove that this algorithm has running time $O^*(4^k)$.

Theorem 1

FEEDBACK VERTEX SET can be solved in $O^*(5^k)$ time.

- 2 Feedback Vertex Set
- 3 Min r-Hitting Set

4 Further Reading

Min r-Hitting Set

A set system S is a pair (V, H), where V is a finite set of elements and H is a set of subsets of V. The rank of S is the maximum size of a set in H, i.e., $\max_{Y \in H} |Y|$.

A hitting set of a set system S = (V, H) is a subset X of V such that X contains at least one element of each set in H, i.e., $X \cap Y \neq \emptyset$ for each $Y \in H$.

(universe)-MIN-r-HITTING SET (r-HS)Input:A rank r set system S = (V, H)Parameter:n = |V|Output:A smallest hitting set of S

Note: The corresponsing decision problem is trivially FPT.

 $\operatorname{COMP-}r\text{-}\operatorname{HS}$

Input: set system S = (V, H), integer k, hitting set X of size k + 1 of SOutput: a hitting set X^* of size $\leq k$ of S if one exists

 $\begin{array}{ll} \text{COMP-}r\text{-HS} \\ \text{Input:} & \text{set system } \mathcal{S} = (V,H) \text{, integer } k \text{, hitting set } X \text{ of size } k+1 \text{ of } \mathcal{S} \\ \text{Output:} & \text{a hitting set } X^* \text{ of size } \leq k \text{ of } \mathcal{S} \text{ if one exists} \end{array}$

Go over all partitions $(X', \overline{X'})$ of X such that $|X'| \ge 2|X| - n - 1$.

 $\begin{array}{ll} \text{COMP-}r\text{-HS} \\ \text{Input:} & \text{set system } \mathcal{S} = (V,H) \text{, integer } k \text{, hitting set } X \text{ of size } k+1 \text{ of } \mathcal{S} \\ \text{Output:} & \text{a hitting set } X^* \text{ of size } \leq k \text{ of } \mathcal{S} \text{ if one exists} \end{array}$

Reject a partition if there is a $Y \in H$ such that $Y \subseteq \overline{X'}$.

 $\begin{array}{ll} \text{COMP-}r\text{-HS} \\ \text{Input:} & \text{set system } \mathcal{S} = (V,H) \text{, integer } k \text{, hitting set } X \text{ of size } k+1 \text{ of } \mathcal{S} \\ \text{Output:} & \text{a hitting set } X^* \text{ of size } \leq k \text{ of } \mathcal{S} \text{ if one exists} \end{array}$

Compute a hitting set X'' of size $\leq k - |X'|$ for (V', H'), where $V' = V \setminus X$ and $H' = \{Y \cap V' : Y \in H \land Y \cap X' = \emptyset\}$, if one exists.

 $\begin{array}{ll} \text{COMP-}r\text{-HS} \\ \text{Input:} & \text{set system } \mathcal{S} = (V,H) \text{, integer } k \text{, hitting set } X \text{ of size } k+1 \text{ of } \mathcal{S} \\ \text{Output:} & \text{a hitting set } X^* \text{ of size } \leq k \text{ of } \mathcal{S} \text{ if one exists} \end{array}$

If one exists, then return $X^* = X' \cup X''$.

• The algorithm considers only partitions into $(X',\overline{X'})$ such that $|X'|\geq 2|X|-n-1.$ Number of partitions:

$$O\left(\max\left\{2^{2n/3}, \max_{2n/3 \le j \le n} \binom{j}{2j-n}\right\}\right) = O\left(\max_{2n/3 \le j \le n} \binom{j}{2j-n}\right)$$

¹the maximum in (1) is obtained for $j \approx 0.6824 \cdot n$

• The algorithm considers only partitions into $(X', \overline{X'})$ such that $|X'| \ge 2|X| - n - 1$. Number of partitions:

$$O\left(\max\left\{2^{2n/3}, \max_{2n/3 \le j \le n} \binom{j}{2j-n}\right\}\right) = O\left(\max_{2n/3 \le j \le n} \binom{j}{2j-n}\right)$$

• The subinstances (V', H') where $V' = V \setminus X$ and $H' = \{Y \cap V : Y \in H \land Y \cap X' = \emptyset\}$ are instances of (r-1)-HS

¹the maximum in (1) is obtained for $j \approx 0.6824 \cdot n$

• The algorithm considers only partitions into $(X', \overline{X'})$ such that $|X'| \ge 2|X| - n - 1$. Number of partitions:

$$O\left(\max\left\{2^{2n/3}, \max_{2n/3 \le j \le n} \binom{j}{2j-n}\right\}\right) = O\left(\max_{2n/3 \le j \le n} \binom{j}{2j-n}\right)$$

- The subinstances (V', H') where $V' = V \setminus X$ and $H' = \{Y \cap V : Y \in H \land Y \cap X' = \emptyset\}$ are instances of (r-1)-HS
- Suppose $(r-1)\text{-}\mathsf{HS}$ can be solved in $O^*((\alpha_{r-1})^n)$ time. Then, $r\text{-}\mathsf{HS}$ can be solved in

$$O^* \left(\max_{2n/3 \le j \le n} \binom{j}{2j-n} (\alpha_{r-1})^{n-j} \right) \text{ time}$$
 (1)

• For example, using a $O(1.6278^n)$ algorithm for 3-HS [Wahlström '07], we obtain a $O(1.8704^n)$ time algorithm for 4-HS ¹.

¹the maximum in (1) is obtained for $j \approx 0.6824 \cdot n$

S. Gaspers (UNSW)

- (V, H) instance of r-HS with $V = \{v_1, v_2, \dots, v_n\}$
- $V_i = \{v_1, v_2, \dots, v_i\}$ for i = 1 to n
- $H_i = \{Y \in H : Y \subseteq V_i\}$

- (V, H) instance of r-HS with $V = \{v_1, v_2, \dots, v_n\}$
- $V_i = \{v_1, v_2, \dots, v_i\}$ for i = 1 to n
- $H_i = \{Y \in H : Y \subseteq V_i\}$
- Note that $|X_{i-1}| \le |X_i| \le |X_{i-1}| + 1$ where X_j is a minimum hitting set of the instance (V_i, H_i)

Theorem 2 ([Fomin, Gaspers, Kratsch, Liedloff, and Saurabh, 2010])

4-HS can be solved in $O(1.8704^n)$ time.

Theorem 2 ([Fomin, Gaspers, Kratsch, Liedloff, and Saurabh, 2010])

4-HS can be solved in $O(1.8704^n)$ time.

• One can generalize this result to the counting version of *r*-HS for any fixed *r*: count the number of minimum hitting sets of the given set system.

Theorem 3 ([Fomin, Gaspers, Kratsch, Liedloff, and Saurabh, 2010])

If there exists a $O^*((\alpha_{k-1})^n)$ time algorithm for #(r-1)-HS with $\alpha_{r-1} \leq 2$, then #r-HS can be solved in time

$$O^*\left(\max_{2n/3\leq j\leq n}\left\{\binom{j}{2j-n}(\alpha_{r-1})^{n-j}\right\}\right).$$

Theorem 3 ([Fomin, Gaspers, Kratsch, Liedloff, and Saurabh, 2010])

If there exists a $O^*((\alpha_{k-1})^n)$ time algorithm for #(r-1)-HS with $\alpha_{r-1} \leq 2$, then #r-HS can be solved in time

$$O^*\left(\max_{2n/3\leq j\leq n}\left\{\binom{j}{2j-n}(\alpha_{r-1})^{n-j}\right\}\right).$$

• If $\alpha_{r-1} \geq 1.6553,$ then the following result is better

Theorem 4 ([Fomin, Gaspers, Kratsch, Liedloff, and Saurabh, 2010])

If there exists a $O^*((\alpha_{r-1})^n)$ time algorithm for #(r-1)-HS with $\alpha_{k-1} \leq 2$, then #r-HS can be solved in time

$$\min_{0.5 \le \beta \le 1} \max\left\{ O^*\left(\binom{n}{\beta n} \right), \ O^*\left(2^{\beta n} (\alpha_{r-1})^{n-\beta n} \right) \right\}.$$

r	#r-HS	r-HS
2	$O(1.2377^n)$ [Wahlström '08]	$O(1.2002^n)$ [Xiao, Nagamoshi '13]
3	$O(1.7198^n)$ [Theorem 3]	$O(1.6278^n)$ [Wahlström '07]
4	$O(1.8997^n)$ [Theorem 4]	$O(1.8704^n)$ [Theorem 3]
5	$O(1.9594^n)$ [Theorem 4]	$O(1.9489^n)$ [Theorem 4]
6	$O(1.9824^n)$ [Theorem 4]	$O(1.9781^n)$ [Theorem 4]
7	$O(1.9920^n)$ [Theorem 4]	$O(1.9902^n)$ [Theorem 4]

Faster algorithm for some of these problems are known [Gaspers, Lee, 2017], [Cochefert, Couturier, Gaspers, Kratsch, 2016], [Fomin, Gaspers, Lokshtanov, Saurabh, 2016].

- 2 Feedback Vertex Set
- 3 Min r-Hitting Set

- Chapter 4, Iterative Compression in Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, MichałPilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Section 11.3, *Iterative Compression* in Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.
- Section 6.1, *Iterative Compression: The Basic Technique* in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- Section 6.2, Edge Bipartization in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.