GSOE9210 Engineering Decisions

Victor Jauregui
vicj@cse.unsw.edu.au
www.cse.unsw.edu.au/~gs9210

Updating belief

(1) Bayesian updating

- Airline case study
(2) Value of information
- Actions which affect epistemic state
(3) Sensitivity analysis

Outline

(1) Bayesian updating

- Airline case study

Case study: capital purchase

Example (Unit purchase)

You're the chief engineer of a small commercial airline which, due to increased demand for its services, is considering buying (B) a used airliner. Another company is offering to sell one of its airliners for $\$ 400,000$. The actual value of a used airliner depends on its reliability, assessment of which would require a detailed inspection.

Question: should you purchase?

Modelling

- Simplification 1: categorise used airliners as either: very reliable $(v R)$, moderately reliable $(m R)$, or unreliable $(u R)$.
- Given: industry airliner reliability records

Reliability			
	$v R$	$m R$	$u R$
Probability	0.2	0.3	0.5
Utility	1.0	0.34	0.01

- Simplification 2: use $\$ M$ as utiles; actual utility should combine management's preferences about risk, financial position (e.g., liquidity), customer sentiment, lost revenues, etc.
- Given: utility of not buying airliner-status quo: 0.17

Decision C (buy or not)

$$
\begin{aligned}
& U(\mathrm{~B})=0.2(1.0)+0.3(0.34)+0.5(0.01)=0.31 \\
& U(\overline{\mathrm{~B}})=0.17
\end{aligned}
$$

	(0.2)	(0.3)	(0.5)	
	$v R$	$m R$	$u R$	
B	1.00	0.34	0.01	
$\overline{\mathrm{~B}}$	0.17	0.17	0.17	

Decision C

- Maximal utility principle: choose alternative with maximal expected utility
- Evaluate decision points/nodes by the maximal utility of its alternatives (i.e., actions/strategies)
- The value of decision node is 0.31 , because $0.31>0.17$; i.e., $0.31=\max \{0.17,0.31\}$

Outline

(2) Value of information

- Actions which affect epistemic state

Get more information?

Example (Additional information)

You have the option to consult an aeronautical engineering firm to conduct an assessment of the airliner for $\$ 10,000$. The firm's report will be either favourable (f) or unfavourable (u).

Firm's assessment reliable?
Guess/estimate that 90% of very reliable planes receive favourable assessment; i.e., $P(f \mid v R)=0.9$

	conditional on:		
Probability of:	$v R$	$m R$	$u R$
f	0.9	0.6	0.1
u	0.1	0.4	0.9

Value of information

Bayesian revision of probabilities

- Now:

$$
\begin{aligned}
P(v R \mid f) & =\frac{P(f \mid v R) P(v R)}{P(f \mid v R) P(v R)+P(f \mid m R) P(m R)+P(f \mid u R) P(u R)} \\
& =\frac{0.9(0.2)}{0.9(0.2)+0.6(0.3)+0.1(0.5)} \\
& =\frac{0.18}{0.41} \approx 0.44
\end{aligned}
$$

- Similarly:

$$
P(m R \mid f) \approx 0.44 \quad P(u R \mid f) \approx 0.12
$$

- For an unfavourable report:

$$
\begin{aligned}
P(v R \mid u) & =\frac{0.02}{0.59} \approx 0.04 \\
P(m R \mid u) & \approx 0.20 \\
P(u R \mid u) & \approx 0.76
\end{aligned}
$$

Utility adjustments

- Question: How does the report's cost $(\$ 10,000)$ affect utility?
- Observation: report cost is small relative to other monetary quantities involved: the cost of the purchase is $\$ 400,000$; i.e., $\$ 10,000 \ll \$ 400,000$
- Simplification 3: model effect by constant shift; i.e., for report costing $\$ x(x \ll 400,000)$, the change of utility is $\Delta u=\frac{x}{1,000,000}$; i.e., evaluate a reliable airliner at $\$ 1 M$
- That is, every $\$ 10 K$ is worth 0.01 utiles

Decision A (report favourable)

- The revised expected utility of buying the airliner is $U(\mathrm{~B})=0.44(0.99)+0.44(0.33)+0.12(0.0)=0.58$
- The utility of not buying it is $U(\overline{\mathrm{~B}})=0.16$.

	(0.44)	(0.44)	(0.12)	
	$v R$	$m R$	$u R$	
B	0.99	0.33	0.0	
$\overline{\mathrm{~B}}$	0.16	0.16	0.16	

Decision B (report unfavourable)

- The revised expected utility of buying the airliner is

$$
U(\mathrm{~B})=0.04(0.99)+0.20(0.33)+0.76(0.0)=0.10
$$

- The utility of not buying it is $U(\overline{\mathrm{~B}})=0.16$.

	(0.04)	(0.20)	(0.76)	
	$v R$	$m R$	$u R$	
B	0.99	0.33	0.0	
B	0.16	0.16	0.16	

Combined decision

- Combine all three possible cases into one big decision problem
- Introduce new decision: commission survey (report), and no survey
- Introduce new event: report outcome (f or u)
- If consultant good, report likely to be good predictor of (i.e., correlated to) aircraft reliability
- Consultant's increased predictive accuracy is valuable in making decision

Combined decision

- From the denominators in the earlier calculations:

$$
\begin{aligned}
& P(f)=0.41 \\
& P(u)=0.59
\end{aligned}
$$

- Therefore if the report is commissioned we have the equivalent lottery:

- The U of this lottery is 0.33

Decision table

	$f, v R$	$f, m R$	$f, u R$	$u, v R$	$u, m R$	$u, u R$	
A_{1}	1.0	0.34	0.01	1.0	0.34	0.01	
A_{2}	0.17	0.17	0.17	0.17	0.17	0.17	
A_{3}	0.99	0.33	0	0.99	0.33	0	
\vdots	\vdots	\vdots		\ldots			
A_{6}							

where
A_{1} no survey; buy airliner
A_{2} no survey; don't buy airliner
A_{3} commission survey; buy airliner
A_{4} commission survey; don't buy
A_{5} commission survey; if favourable, buy airliner; else don't buy
$A_{6} \quad$ commission survey; if favourable, don't buy airliner; else buy

Value of information

- So the optimal policy if the report is commissioned is:

Policy C: report commissioned

If the report is favourable buy airliner, if not don't buy it.

- The value of this policy is $U(\mathrm{C})=0.33$, inclusive of the 0.01 fee
- The optimal policy if the report not commissioned is:

Policy $\overline{\mathrm{C}}$: report not commissioned
Buy the airliner.

- $U(\overline{\mathrm{C}})=0.31$
- How much is the report worth to you?
- $U(\mathrm{C})=0.34-u_{r} \geqslant 0.31=U(\overline{\mathrm{C}})$; i.e., you should commission the report for a value/price up to $u_{r}=0.03$; i.e., $x \sim \$ 30,000$

Outline

(3) Sensitivity analysis

Production and demand

Example (Production)

Alice is the CTO at a company and Bob is the CFO. They are discussing two possible production processes for one of its products. Measured in $\$ \mathrm{~K} /$ year, process A is expected to net $\$ 40$ if demand increases, $\$ 30$ if demand remains stable, and $\$ 20$ if demand falls. Process B requires a greater initial capital expenditure; it will only net $\$ 10$ if demand drops, and $\$ 40$ otherwise.
Future estimates of demand are: 20% of increasing, 30% chance of staying level, and 50% of decreasing.

Which process should Alice implement?

Sensitivity analysis

Example

The decision table is:

$$
\begin{array}{rlcc}
& \begin{array}{ccc}
\frac{5}{10} & \frac{3}{10} & \frac{2}{10} \\
\downarrow & - & \uparrow \\
& \downarrow & \\
\hline \mathrm{A} & \$ 20 & \$ 30
\end{array} \$ 40 & \begin{array}{l}
\$ 27 \\
\mathrm{~B}
\end{array} & \$ 10
\end{array} \$ 40 \quad \$ 40 \quad \$ 25
$$

A has greater expected monetary value

Example

Alice consults Bob who advises her that, under its current financial position, the company's preferences are:

$$
\begin{aligned}
& \$ 20 \sim\left[\frac{3}{5}: \$ 40 \left\lvert\, \frac{2}{5}\right.: \$ 10\right] \\
& \$ 30 \sim\left[\frac{4}{5}: \$ 40 \left\lvert\, \frac{1}{5}\right.: \$ 10\right]
\end{aligned}
$$

The company's utility for money is:

The utility table:

$$
\begin{aligned}
U(\mathrm{~A}) & =\frac{5}{10}\left(\frac{3}{5}\right)+\frac{3}{10}\left(\frac{4}{5}\right)+\frac{2}{10}(1) \\
& =\frac{1}{50}(15+12+10)=\frac{74}{100} \\
U(\mathrm{~B}) & =\frac{5}{10}(0)+\frac{3}{10}(1)+\frac{2}{10}(1) \\
& =\frac{1}{50}(0+15+10)=\frac{50}{100}
\end{aligned}
$$

Therefore A will have greater utility.

Sensitivity analysis

Suppose Bob cannot give precise assessments on the values of $\$ 20$ and $\$ 30$, only bounds:

$$
\begin{aligned}
{\left[\frac{3}{5} \$ 40\right] } & \succ \$ 20 \succ\left[\frac{1}{2} \$ 40\right] \\
\$ 40 & \succ \$ 30 \succ\left[\frac{4}{5} \$ 40\right]
\end{aligned}
$$

The company's utility for money is:

Sensitivity analysis

Bounds on A :

$$
\begin{aligned}
U(\mathrm{~A}) & >\frac{5}{10}\left(\frac{1}{2}\right)+\frac{3}{10}\left(\frac{4}{5}\right)+\frac{2}{10}(1) \\
& =\frac{1}{100}(25+24+20) \\
& =\frac{69}{100} \\
U(\mathrm{~A}) & <\frac{5}{10}\left(\frac{3}{5}\right)+\frac{3}{10}(1)+\frac{2}{10}(1) \\
& =\frac{1}{100}(30+30+20) \\
& =\frac{80}{100}
\end{aligned}
$$

That is:

$$
\frac{69}{100}<U(\mathrm{~A})<\frac{80}{100}
$$

Conclusion:
A is guaranteed to be preferred to $\mathrm{B}\left(U(\mathrm{~B})=\frac{50}{100}\right)$ regardless of the uncertainty over the precise preference for $\$ 20$ and $\$ 30$.

Sensitivity analysis

Summary

- Explored decision problems in greater depth:
- Actions that affect epistemic state (value of information-gathering actions)
- dealing with uncertainty in preferences (sensitivity analysis)
- Updating beliefs (epistemic state) via Bayes's rule
- Value of information: cost of gathering more information versus increase in expected utility due to new information
- Sensitivity analysis:
- decisions under imprecise preferences
- does preference uncertainty affect a decision?

