
GSOE9210 Engineering Decisions

Victor Jauregui

vicj@cse.unsw.edu.au
www.cse.unsw.edu.au/~gs9210

Victor Jauregui

Engineering Decisions

Bayesian updating

• Airline case study

2 Value of information

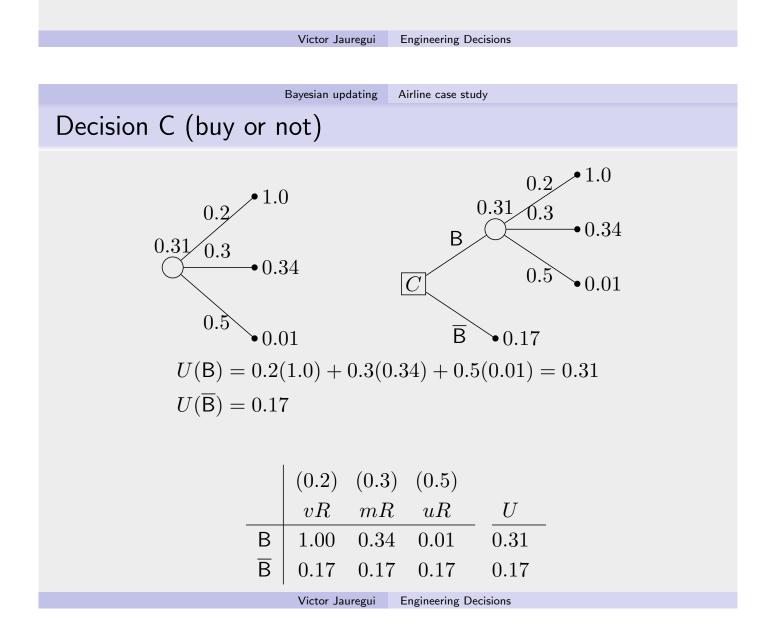
• Actions which affect epistemic state

Sensitivity analysis

Bayesian updating
Outline
 Bayesian updating Airline case study
 Value of information Actions which affect epistemic state
Victor Jauregui Engineering Decisions
Bayesian updating Airline case study
Case study: capital purchase

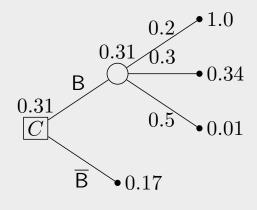
Example (Unit purchase)

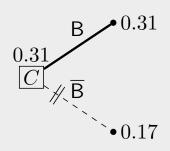
You're the chief engineer of a small commercial airline which, due to increased demand for its services, is considering buying (B) a used airliner. Another company is offering to sell one of its airliners for \$400,000. The actual value of a used airliner depends on its reliability, assessment of which would require a detailed inspection.


Question: should you purchase?

Modelling

- Simplification 1: categorise used airliners as either: very reliable (vR), moderately reliable (mR), or unreliable (uR).
- Given: industry airliner reliability records


	Reliability			
	vR	mR	uR	
Probability	0.2	0.3	0.5	
Utility	1.0	0.34	0.01	


- Simplification 2: use \$M as utiles; actual utility should combine management's preferences about risk, financial position (e.g., liquidity), customer sentiment, lost revenues, etc.
- Given: utility of not buying airliner—status quo: 0.17

Decision C

- Maximal utility principle: choose alternative with maximal expected utility
- Evaluate decision points/nodes by the maximal utility of its alternatives (*i.e.*, actions/strategies)
- The value of decision node is 0.31, because 0.31 > 0.17; *i.e.*, $0.31 = \max\{0.17, 0.31\}$

Victor Jauregui

Value of information

Engineering Decisions

Outline

Airline case study

2 Value of information

• Actions which affect epistemic state

3 Sensitivity analysis

Get more information?

Example (Additional information)

You have the option to consult an aeronautical engineering firm to conduct an assessment of the airliner for \$10,000. The firm's report will be either favourable (f) or unfavourable (u).

Firm's assessment reliable?

Guess/estimate that 90% of very reliable planes receive favourable assessment; *i.e.*, P(f|vR) = 0.9

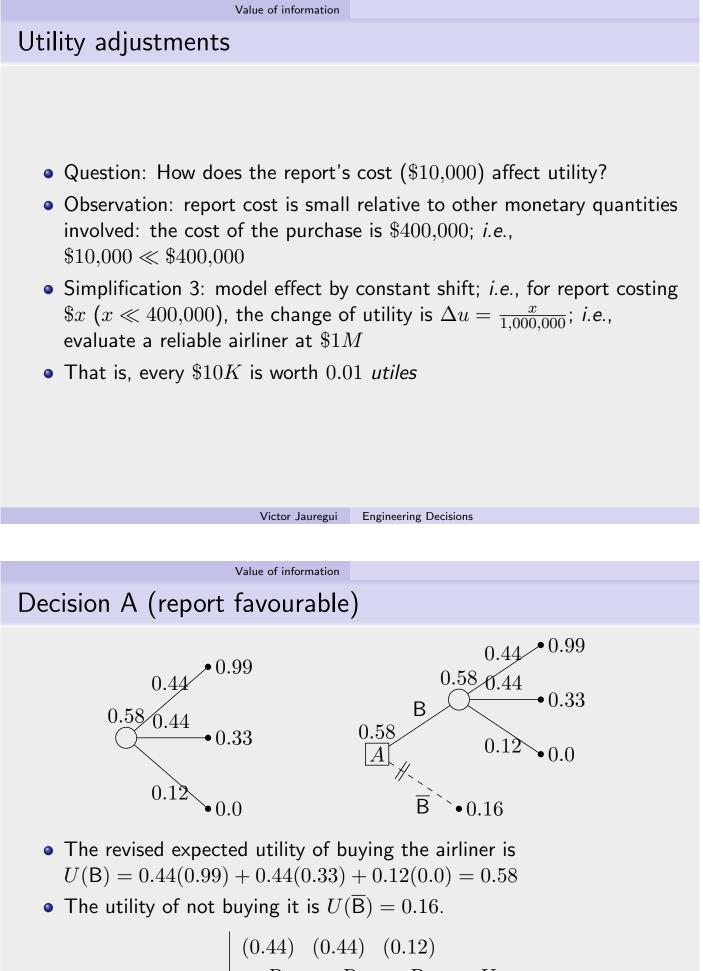
	conditional on:			
Probability of:	vR	mR	uR	
f	0.9	0.6	0.1	
u	0.1	0.4	0.9	

Victor Jauregui Engineering Decisions

Value of information

Bayesian revision of probabilities

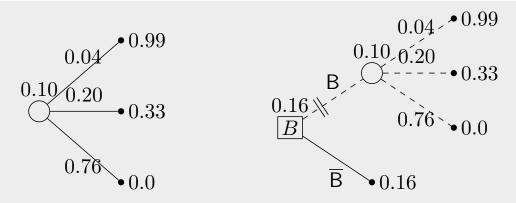
Now:


$$P(vR|f) = \frac{P(f|vR)P(vR)}{P(f|vR)P(vR) + P(f|mR)P(mR) + P(f|uR)P(uR)}$$
$$= \frac{0.9(0.2)}{0.9(0.2) + 0.6(0.3) + 0.1(0.5)}$$
$$= \frac{0.18}{0.41} \approx 0.44$$

• Similarly:

$$P(mR|f) \approx 0.44$$
 $P(uR|f) \approx 0.12$

• For an unfavourable report:


$$P(vR|u) = \frac{0.02}{0.59} \approx 0.04$$
$$P(mR|u) \approx 0.20$$
$$P(uR|u) \approx 0.76$$

		(0.11)	(0.12)	
	vR	mR	uR	U
В	0.99	0.33	0.0	0.58
B	0.16	0.16	0.16	0.16

Victor Jauregui Engineering Decisions

Decision B (report unfavourable)

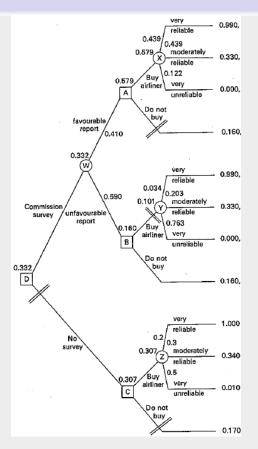
• The revised expected utility of buying the airliner is $U(\mathsf{B})=0.04(0.99)+0.20(0.33)+0.76(0.0)=0.10$

Value of information

• The utility of not buying it is $U(\overline{B}) = 0.16$.

	(0.04)	(0.20)	(0.76)	
	vR	mR	uR	U
В	0.99	0.33	0.0	0.10
B	0.16	0.16	0.16	0.16

Victor Jauregui

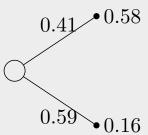

Engineering Decisions

Value of information

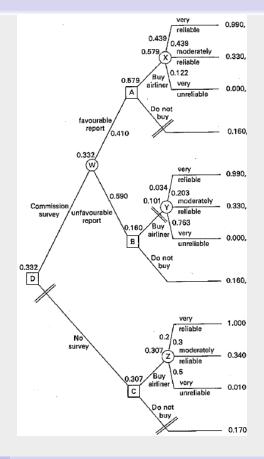
Actions which affect epistemic state

Combined decision

- Combine all three possible cases into one big decision problem
- Introduce new decision: commission survey (report), and no survey
- Introduce new event: report outcome (f or u)
- If consultant good, report likely to be good predictor of (*i.e.*, correlated to) aircraft reliability
- Consultant's increased predictive accuracy is *valuable* in making decision


Combined decision

 From the denominators in the earlier calculations:


$$P(f) = 0.41$$

$$P(u) = 0.59$$

• Therefore if the report is commissioned we have the equivalent lottery:

• The U of this lottery is 0.33

Victor Jauregui

Engineering Decisions

Value of information

Actions which affect epistemic state

Decision table

	f, vR	f, mR	f, uR	u, vR	u, mR	u, uR	U
					0.34		
A_2	0.17	0.17	0.17	0.17	0.17	0.17	0.17
A_3	0.99	0.33	0	0.99	0.33	0	
÷	÷	÷					
A_6							

where

- A_1 no survey; buy airliner
- A_2 no survey; don't buy airliner
- A_3 commission survey; buy airliner
- A_4 commission survey; don't buy
- A_5 commission survey; if favourable, buy airliner; else don't buy
- A_6 commission survey; if favourable, don't buy airliner; else buy

Value of information

• So the optimal policy if the report is commissioned is:

Policy C: report commissioned

If the report is favourable buy airliner, if not don't buy it.

- The value of this policy is U(C) = 0.33, inclusive of the 0.01 fee
- The optimal policy if the report not commissioned is:

Sensitivity analysis

Policy \overline{C} : report not commissioned

Buy the airliner.

- $U(\overline{\mathsf{C}}) = 0.31$
- How much is the report worth to you?
- $U(C) = 0.34 u_r \ge 0.31 = U(\overline{C})$; *i.e.*, you should commission the report for a value/price up to $u_r = 0.03$; *i.e.*, $x \sim $30,000$

Victor Jauregui Engineering Decisions

Outline

Bayesian updating

Airline case study

Value of information

Actions which affect epistemic state

3 Sensitivity analysis

Production and demand

Example (Production)

Alice is the CTO at a company and Bob is the CFO. They are discussing two possible production processes for one of its products. Measured in K/year, process A is expected to net 40 if demand increases, 30 if demand remains stable, and \$20 if demand falls. Process B requires a greater initial capital expenditure; it will only net \$10 if demand drops, and \$40 otherwise.

Future estimates of demand are: 20% of increasing, 30% chance of staying level, and 50% of decreasing.

Which process should Alice implement?

Victor Jauregui **Engineering Decisions**

Sensitivity analysis

Example

The decision table is:

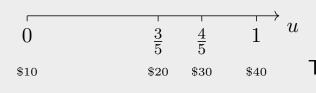
	$\frac{5}{10}$	$\frac{3}{10}$	$\frac{2}{10}$	
	\downarrow		\uparrow	$V_{$
А	\$20	\$30	\$40	\$27
В	\$10	\$40	\$40	\$25

$$V_{\$}(\mathsf{A}) = \frac{5}{10}(20) + \frac{3}{10}(30) + \frac{2}{10}(40)$$

= 10 + 9 + 8 = \$27
$$V_{\$}(\mathsf{B}) = \frac{5}{10}(10) + \frac{3}{10}(40) + \frac{2}{10}(40)$$

= 5 + 12 + 8 = \$25

A has greater expected monetary value


Sensitivity analysis

Example

Alice consults Bob who advises her that, under its current financial position, the company's preferences are:

 $\begin{aligned} \$20 &\sim \left[\frac{3}{5} : \$40 | \frac{2}{5} : \$10\right] \\ \$30 &\sim \left[\frac{4}{5} : \$40 | \frac{1}{5} : \$10\right] \end{aligned}$

The company's utility for money is:

The utility table:

	$\begin{array}{c} \frac{5}{10} \\ \downarrow \end{array}$	$\frac{3}{10}$ —	$\frac{2}{10}$ \uparrow	U
Α	$\frac{3}{5}$	$\frac{4}{5}$	1	$\frac{\overline{74}}{100}$
В	0	1	1	$\frac{50}{100}$

 $U(\mathsf{A}) = \frac{5}{10} \left(\frac{3}{5}\right) + \frac{3}{10} \left(\frac{4}{5}\right) + \frac{2}{10} \left(1\right)$ $= \frac{1}{50} \left(15 + 12 + 10\right) = \frac{74}{100}$ $U(\mathsf{B}) = \frac{5}{10} \left(0\right) + \frac{3}{10} \left(1\right) + \frac{2}{10} \left(1\right)$ $= \frac{1}{50} \left(0 + 15 + 10\right) = \frac{50}{100}$

Therefore A will have greater utility.

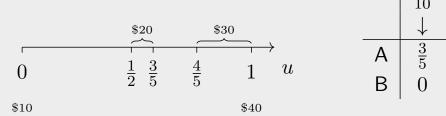
Victor Jauregui

Sensitivity analysis

Engineering Decisions

Sensitivity analysis

money is:

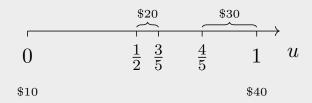

Suppose Bob cannot give precise assessments on the values of \$20 and \$30, only bounds:

$$\begin{bmatrix} \frac{3}{5} \$40 \end{bmatrix} \succ \$20 \succ \begin{bmatrix} \frac{1}{2} \$40 \end{bmatrix}$$
$$\$40 \succ \$30 \succ \begin{bmatrix} \frac{4}{5} \$40 \end{bmatrix}$$

Lower bound for A:

	$\frac{5}{10}$	$\frac{3}{10}$	$\frac{2}{10}$	
	\downarrow	—	\uparrow	U
А	$\frac{1}{2}$	$\frac{4}{5}$	1	$\begin{array}{r} \underline{69}\\ 100\\ \underline{50} \end{array}$
В	0	1	1	$\frac{50}{100}$

tor Upper bound for A:



The company's utility for

Victor Jauregui Engineering Decisions

Sensitivity analysis

Sensitivity analysis

Bounds on A:

That is:

$$U(\mathsf{A}) > \frac{5}{10}(\frac{1}{2}) + \frac{3}{10}(\frac{4}{5}) + \frac{2}{10}(1)$$

= $\frac{1}{100} (25 + 24 + 20)$
= $\frac{69}{100}$
$$U(\mathsf{A}) < \frac{5}{10}(\frac{3}{5}) + \frac{3}{10}(1) + \frac{2}{10}(1)$$

= $\frac{1}{100} (30 + 30 + 20)$
= $\frac{80}{100}$

 $\frac{69}{100} < U(\mathsf{A}) < \frac{80}{100}$

Conclusion: A is guaranteed to be preferred to B ($U(B) = \frac{50}{100}$) regardless of the uncertainty over the precise preference for \$20 and \$30.

Victor Jauregui

Sensitivity analysis

Engineering Decisions

Summary

- Explored decision problems in greater depth:
 - Actions that affect epistemic state (value of information-gathering actions)
 - dealing with uncertainty in preferences (sensitivity analysis)
- Updating beliefs (epistemic state) via Bayes's rule
- Value of information: cost of gathering more information versus increase in expected utility due to new information
- Sensitivity analysis:
 - decisions under imprecise preferences
 - does preference uncertainty affect a decision?