3a. Basics of Parameterized Complexity COMP6741: Parameterized and Exact Computation

Serge Gaspers¹²

¹School of Computer Science and Engineering, UNSW Sydney, Asutralia ²Decision Sciences, Data61, CSIRO, Australia

Semester 2, 2018

- Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - △-Clique
- 2 Basic Definitions
- 3 Further Reading

- Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - △-Clique
- 2 Basic Definitions
- Further Reading

- Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique
- 2 Basic Definitions
- Further Reading

Vertex Cover

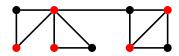
A vertex cover in a graph G=(V,E) is a subset of its vertices $S\subseteq V$ such that every edge of G has at least one endpoint in S.

Vertex Cover

Input: A graph G = (V, E) and an integer k

Parameter: k

Question: Does G have a vertex cover of size k?



Algorithms for Vertex Cover

- ullet brute-force: $O^*(2^n)$
- brute-force: $O^*(n^k)$
- vc1: $O^*(2^k)$ (cf. Lecture 1)
- vc2: $O^*(1.4656^k)$ (cf. Lecture 1)
- fastest known: $O(1.2738^k + k \cdot n)$ [Chen, Kanj, Xia, 2010]

Running times in practice

n = 1000 vertices, k = 20 parameter

	Running Time	
Theoretical	Nb of Instructions	Real
2^n	$1.07 \cdot 10^{301}$	$4.941 \cdot 10^{282}$ years
n^k	10^{60}	$4.611\cdot 10^{41}$ years
$2^k \cdot n$	$1.05 \cdot 10^{9}$	15.26 milliseconds
$1.4656^k \cdot n$	$2.10 \cdot 10^{6}$	0.31 milliseconds
$1.2738^k + k \cdot n$	$2.02 \cdot 10^4$	0.0003 milliseconds

Notes:

- We assume that 2^{36} instructions are carried out per second.
- The Big Bang happened roughly $13.5 \cdot 10^9$ years ago.

Goal of Parameterized Complexity

Confine the combinatorial explosion to a parameter k.

(1) Which problem–parameter combinations are fixed-parameter tractable (FPT)? In other words, for which problem–parameter combinations are there algorithms with running times of the form

$$f(k) \cdot n^{O(1)},$$

where the f is a computable function independent of the input size n?

(2) How small can we make the f(k)?

Examples of Parameters

A Parameterized Problem

Input: an instance of the problem

Parameter: a parameter

Question: a YES-No question about the instance and the parameter

A parameter can be

- solution size
- input size (trivial parameterization)
- related to the structure of the input (maximum degree, treewidth, branchwidth, genus, ...)
- combinations of parameters
- etc.

- Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique
- 2 Basic Definitions
- Further Reading

Coloring

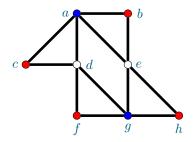
A k-coloring of a graph G=(V,E) is a function $f:V \to \{1,2,...,k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Coloring

Input: Graph G, integer k

Parameter: k

Question: Does G have a k-coloring?



Brute-force: $O^*(k^n)$, where n = |V(G)|.

Inclusion-Exclusion: $O^*(2^n)$.

FPT?

11/22

Coloring is probably not FPT

- Known: Coloring is NP-complete when k=3
- ullet Suppose there was a $O^*(f(k))$ -time algorithm for COLORING
 - Then, 3-COLORING can be solved in $O^*(f(3)) \subseteq O^*(1)$ time
 - Therefore, P = NP
- Therefore, Coloring is not FPT unless P = NP

- Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique
- 2 Basic Definitions
- Further Reading

Clique

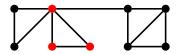
A clique in a graph G=(V,E) is a subset of its vertices $S\subseteq V$ such that every two vertices from S are adjacent in G.

CLIQUE

Input: Graph G = (V, E), integer k

Parameter: k

Question: Does G have a clique of size k?



Is CLIQUE NP-complete when k is a fixed constant? Is it FPT?

Algorithm for Clique

- ullet For each subset $S\subseteq V$ of size k, check whether all vertices of S are adjacent
- Running time: $O^*\left(\binom{n}{k}\right) \subseteq O^*(n^k)$
- When $k \in O(1)$, this is polynomial
- ullet But: we do not currently know an FPT algorithm for CLIQUE
- Since CLIQUE is W[1]-hard, we believe it is not FPT. (See lecture on W-hardness.)

- Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - △-Clique
- 2 Basic Definitions
- Further Reading

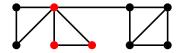
A different parameter for Clique

Δ -Clique

Input: Graph G = (V, E), integer k

Parameter: $\Delta(G)$, i.e., the maximum degree of G

Question: Does G have a clique of size k?



Is Δ -Clique FPT?

Algorithm for Δ -Clique

Algorithm for Δ -Clique

```
Input: A graph G and an integer k.
Output: YES if G has a clique of size k, and No otherwise.
if k=0 then
return YES
else if k > \Delta(G) + 1 then
 return No.
else
   /* A clique of size k contains at least one vertex v.
       For each v \in V, we check whether G has a k-clique S
       containing v (note that S \subseteq N_G[v] in this case).
   foreach v \in V do
      foreach S \subseteq N_G[v] with |S| = k do
         if S is a clique in G then
           ∟ return YES
   return No.
```

```
Input: A graph G and an integer k.
Output: YES if G has a clique of size k, and No otherwise.
if k=0 then
return YES
else if k > \Delta(G) + 1 then
return No
else
   /* A clique of size k contains at least one vertex v.
       For each v \in V, we check whether G has a k-clique S
       containing v (note that S \subseteq N_G[v] in this case).
   foreach v \in V do
       foreach S \subseteq N_G[v] with |S| = k do
       if S is a clique in G then
          ∟ return YES
   return No
Running time: O^*((\Delta+1)^k) \subseteq O^*((\Delta+1)^{\Delta}). (FPT for parameter \Delta)
```

- Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique
- 2 Basic Definitions
- Further Reading

```
n: instance sizek: parameter
```

P: class of problems that can be solved in $n^{O(1)}$ time FPT: class of parameterized problems that can be solved in $f(k) \cdot n^{O(1)}$ time XP: class of parameterized problems that can be solved in $f(k) \cdot n^{g(k)}$ time ("polynomial when k is a constant")

$$P \subseteq FPT \subseteq W[1] \subseteq W[2] \cdots \subseteq W[P] \subseteq XP$$

Known: If FPT = W[1], then the Exponential Time Hypothesis fails, i.e. 3-SAT can be solved in $2^{o(n)}$ time, where n is the number of variables.

Note: We assume that f is computable and non-decreasing.

- Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique
- 2 Basic Definitions
- 3 Further Reading

Further Reading

- Chapter 1, Introduction in Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Chapter 2, The Basic Definitions in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- Chapter I, Foundations in Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.
- Preface in Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.